
Journal of Information Systems Education, Vol. 19(3)

271

Classroom Minicases

Five Data Validation Cases

Mark G. Simkin
College of Business Administration

University of Nevada
Reno, Nevada 89557

MarkGSimkin@yahoo.com

ABSTRACT

Data-validation routines enable computer applications to test data to ensure their accuracy, completeness, and conformance to
industry or proprietary standards. This paper presents five programming cases that require students to validate five different
types of data: (1) simple user data entries, (2) UPC codes, (3) passwords, (4) ISBN numbers, and (5) credit card numbers.

Keywords: Data Validation, Computer Programming, Check Digits, ISBN Numbers, UPC Codes

1. INTRODUCTION

It is difficult to overstate the importance of creating data
validation routines as an integral component of most
application software. This observation applies to health care
systems (Barlow, 2006), engineering systems (Butts, 2007;
Griebenow and Caudill, 2005), airline baggage-handling
systems (Bailey, 2007), and mortgage banking (2007), but is
also a vital part of applications in sports, medicine, and
academia.

As used here, the term “data validation” refers to
methods for ensuring that the data entered into a computer
system are complete, accurate, and reasonable. In many
business settings, such validation also requires conformance
to industry standards—for example, consistency with the 16-
digit standard of consumer credit cards or the 10-digit ISBN
numbers used by book publishers. In other cases, proprietary
data formats are used, necessitating custom validation code
to ensure their accuracy. In all cases, it is difficult to identify
a business or government activity in which inaccurate data
entry is even remotely acceptable.

Most computer programmers are well aware of the
comparatively large amounts of code usually required to
validate input data, but such programming burdens are
typically unfamiliar to students in entry-level programming
classes. A similar comment applies to the methodologies
required to perform such data validations—for example, the
computational methods for validating ISBN codes.

The techniques for data validation tasks vary with the
application, but are usually essential to the development
process. Typically, they require an understanding of string
parsing, looping, and of course selection code for creating
the requisite validation tests. Selection code is also required
to decide whether or not the data pass such test procedures.
Because data validation tasks require a wide array of

programming skills, such problems are useful not only as
examples of real-world programming tasks but also as
integrative exercises that encourage students to draw upon
the skills they’ve acquired from disparate chapters of
standard programming texts.

The purpose of this paper is to outline the computational
strategies required to validate user values in five, common
data-entry applications. In order of presentation, they are
cases requiring the validation of (1) simple data entry, (2)
UPC codes, (3) passwords, (4) ISBN numbers, and (5) credit
card numbers. Each case is independent of the others, and
can therefore be assigned individually.

The paper presents these cases in approximate order of
programming difficulty, although this is a somewhat
subjective judgment. The author has used each of them
successfully in at least five different Visual Basic
programming classes, although the solutions to these cases
can also be developed in such other procedural programming
languages as C++ or Java.

2. CASE 1: VALIDATING SIMPLE USER ENTRIES

2.1 Description:
Many data entry screens allow users to enter name, address,
or similar personal information. The screen in Figure 1 is an
example. This interface allows users who have placed catalog
orders to also purchase monogramming, gift wrapping, or
even a singing telegram. The application also requires
developers to validate the inputs from several types of input
controls, including radio buttons, check boxes, and textboxes.

2.2 The Customize Order Screen
The application works as follows. The user enters data in the
interface shown in Figure 1. When the form first appears, the
radio buttons for the various singing telegram options are

Journal of Information Systems Education, Vol. 19(3)

272

disabled. If the user clicks on the Clear button, the system
unchecks all the checkboxes and radio buttons and clears all
the textboxes on the form. If the user checks the checkbox for
a singing telegram, the system enables the radio buttons. If
the user unchecks the checkbox for a singing telegram, the
system disables the radio buttons.

When the user clicks on the Compute Total button, the
system first validates the entries on this form as follows. (1) If
the user has checked the Monogramming checkbox, the
system ensures that there are three or less letters to monogram
and that the number of items to monogram is a positive
number. (2) The maximum number of items to monogram is
ten. (3) If the user checks the GiftWrapping checkbox, the
system ensures that the number of items to gift wrap is a
positive number less than or equal to 20. (4) If the user checks
the “Send a Singing Telegram” checkbox, the system ensures
that the user also selects one of the associated radio buttons.

Figure 1. An interface that allows users to customize an
order.

Figure 2. Error message indicating a problem with a data
entry in Figure 1.

If the user violates any of these requirements, the system
should display a customized message (Figure 2) indicating the
problem and not compute any totals. If the user enters valid
data, the system should compute the proper costs for
monogramming, gift-wrapping, and singing telegrams, and
also the grand total for all these items. In the Total Cost
Summary portion of the interface, the various cost
components should be right justified and formatted to
currency values.

2.3 Case Deliverables
Test your application with the following test cases. For each
set of good test data, screen-capture the user interface after
the system has computed the total charge for each set of user

selections. For each set of bad test data, screen capture the
error message displayed by your application at run time.

Test
Case

Mono-
gram

Letters

Number of
Monogram

Items

Number
of Gift-
wrapped

items

Singing
Telegram
Choice Comment

1 AAA 2 None Happy
Birthday

Good data

2 BBB 3 5 Congratu-
lations

Good data

3 None None 3 None Good data

4 CCC 12 2 None Monogram
mistake

5 DDD None 23 None Gift wrap
mistake

6 EEEE 2 None None Monogram
mistake

7 FF 2 -3 None Gift wrap
mistake

3. CASE 2: VALIDATING UPC CODES

3.1 Description
The universal product code (UPC) is a 12-digit code that
appears on the packaging of most items sold in U.S. retail
stores. A bar code typically accompanies the numeric code,
enabling a retailer’s bar code reader to capture the numeric
values electronically. To ensure accurate reading, the UPC
includes a check digit that a computer system can test
internally to validate the code. The purpose of this
assignment is to create a computer application that simulates
such a validation procedure.

3.2 How a UPC Check Digit Works
The final digit of the universal product code is a check digit
that can be computed from the other digits as follows:

1. Separate the last digit from the rest of the UPC code.
This is the check digit.

2. Add the digits up to, but not including, the check
digit in the odd-numbered positions (i.e., the
numbers in the first, third, fifth, etc., position)
together and multiply by three.

3. Add the digits up to, but not including, the check
digit in the even-numbered positions (second, fourth,
sixth, etc.). Add this value to the result found in step
2.

4. If the last digit of the result is 0, then the check digit
is 0. If the last digit of the result is not zero, then
subtract the last digit from 10.

5. Compare results. The computed check digit must
equal the initial check digit from step 1.

To illustrate, suppose the UPC code is "036000291452."
Here are the steps for this example.

1. The last digit is the check digit “2.” If the other
numbers in the bar code are correct, then the check
digit calculation must produce 2.

2. Add the odd number digits 0+6+0+2+1+5 = 14, and
multiply by 3 to get 14 × 3 = 42.

Journal of Information Systems Education, Vol. 19(3)

273

3. Add the even number digits to this result = 42 + 3 +
0 + 0 + 9 + 4 = 58.

4. The last digit is 8, so the check digit is not 0.
Subtract 8 from 10 to get “2.”

5. The computed value of “2” matches the check digit.
We therefore conclude that the UPC code is valid.

3.3 Case Deliverables
Create a computer application with an interface similar to
Figure 3 that validates the UPC code entered in a textbox.
When the user clicks on the “Test UPC” button, the system
performs this validation work and displays the result in a
label on the form. Document your work with a screen
capture of your user interface and provide a hard copy of
your code or formulas. Test the following UPC codes: (1)
718103049788, (2) 654249600271, (3) 654249600233, (4)
198761542312, (5) 187653416523, and (6) 048109352491.
For each number, indicate whether the UPC number is valid
or invalid.

Figure 3. A user interface for validating a UPC value.

4. CASE 3: VALIDATING USER PASSWORDS

4.1 Description
The objective of this assignment is to create a simple
computer application that allows a user to create a password
and that includes code to validate this password. This
assignment requires a good understanding of parsing
techniques, For-Next loop constructs, user-defined functions,
form-level variables, and programming logic.

4.2 Creating Passwords
In addition to validating existing passwords, many computer
systems allow (or require) users to create or change them.
Suppose, for example, that a computer system requires a user
to create a password of the form AAAANN, where “A” is
any alphabetic character (either uppercase or lowercase) and
“N” is any numeric digit. An additional requirement is that
the password contains both upper and lower case letters.
Figure 4 shows a suggested user interface. When the user
enters a password in the textboxes and clicks on the “Test
Password” button, the system performs the following tests:
(1) matching non-blank entries, (2) a proper length of six
characters, (3) first four digits are alphabetic, (4) last two
digits are numeric, and (5) password has at least one
uppercase and one lowercase letter. If the user’s entry

violates any of these rules, the system provides an error
message indicating the problem (Figure 5).

Figure 4. A user interface for creating a new password.

Figure 5. Examples of error messages for bad passwords.

Hints: (1) You should test for a valid password length first,
because short passwords cannot be parsed properly. (2) You
may find it useful to create a function that tests for a single
valid alphabetic character and that you can call repeatedly in
your code. (3) One way to test for the presence of both an
uppercase and lowercase letter in the password is to use
separate Boolean variables (e.g., “FoundUpper” and
“FoundLower”) to represent a “found” condition for each of
them. If you initially set these variables to “false,” you can
later check whether these variables were reset to “true” with
your code.

4.3 Case Deliverables
Screen-capture your user interface at run time and also print
a copy of your code. Test your program with the following
passwords: (1) MAR123, (2) MARK123, (3) Mark12, (4)
Mark123, (5) mark123, (6) Mar123, (7) MArkXX, (8)
123MAR, (9) ZZZz12, and (10) passwords that do not match
in first and second text boxes. For full credit, screen-capture
the resulting error message for each incorrect password.

5. CASE 4: VALIDATING ISBN NUMBERS

5.1 Description
The International Standard Book Number (ISBN) used on
most American books uses a weighted code and modulus-11
validation system. The purpose of this assignment is to
create a Visual Basic application that validates such
numbers.

Journal of Information Systems Education, Vol. 19(3)

274

5.2 Ten-Digit ISBN Numbers
ISBN numbers prior to 2007 use ten digits. Suppose, for

example, a user enters the number 0-7637-2478-5. How can
a computer application ensure that this is a valid number?
The first step is to strip the “number” of all extraneous
dashes, blanks, and similar characters. (Hint: parse the
original “number” element by element, and then assemble a
new string that contains only numeric values.) For this
example, the resulting number is “0763724785.”

The second step is to make sure that this new number
contains exactly 10 digits. If it does not, there is no need to
examine the number further—the ISBN number is invalid.

If the ISBN number contains 10 characters, the third step
is to multiply each successive digit in the number by the
weights of “10,” “9,” “8,” and so forth, and add the cross-
product terms. (Note: an X in an ISBN number stands for
“10.”) For the current example, this sum is “242” as
illustrated in Figure 6.

The final step is to examine the sum and verify that this
number is evenly divisible by 11. (Hint: use the Mod
function to verify that “sum mod 11 = 0.”) If so, the ISBN
number is presumed valid. If not, the ISBN is presumed
invalid. Your application should provide a message box for
each possibility.

5.3 Deliverables
Create a user interface similar to the one in Figure 7.
Document your application with a screen capture of the user
interface at run time and a hard copy of your code. Also, test
your application using (1) the example above (a valid ISBN
number), (2) the ISBN number of your textbook (also a valid
ISBN number), (3) the ISBN number 0-619-21631-X, and
(4) the ISBN number 0-13-030654-X. Make sure that you
enter the ISBN numbers with dashes or blanks. Provide a
user interface and the message box for each of these four
tests.

5.4 Thirteen-Digit ISBN Numbers
In 2007, book publishers migrated to a 13-digit ISBN
number with a slightly different check-digit validation
system. In this new system, the 13th digit is the check digit.

To validate the entire number, the system computes a new
check digit from the first 12 digits and then compares the
result to this last digit. To validate a 13-digit ISBN number,
proceed as follows: (1) strip the input string of all extraneous
blanks or dashes as before. (2) verify that the stripped
number contains exactly 13 digits, (3) parse the 13-digit
entry into two parts: the first 12 digits and the last, check
digit, (4) reading from left to right, multiply the digits in the
odd locations by “1” and the digits in the even locations by
“3” and compute the sum of these multiples, (5) divide this
sum by 10 and take the remainder (i.e., compute Sum Mod
10), (6) if the answer is greater than 0, subtract this
remainder from 10, and (7) compare this value to the check
digit found in step 3. If the two values match, the ISBN
number is presumed to be valid, and invalid otherwise.

To illustrate, suppose the 13-digit ISBN number is 978-
0-306-40615-7. The steps above lead to the following
computations. (1) The stripped number is 9780306406157.
(2) This number contains exactly 13 numeric digits. (3) The
ISBN number is actually the first 12 digits, or978030640615,
and the check digit is 7. (4) The multiplication is = 9*1 +

7*3 + 8*1 + 0*3 + 3*1 + 0*3 + 6*1 + 4*3 + 0*1 + 6*3 + 1*1
+ 5*3 = 93. (5) Computing 93 Mod 10 = 3. (6) Subtracting:
10 – 3 = 7. (7) The computed value matches the check digit
value and we conclude that the ISBN number is valid.

Figure 6: The computations for validating a 10-digit
ISBN number

Figure 7. A user interface for entering ISBN numbers.

5.5 New Case Deliverables
Document your application with a screen capture of your
user interface at run time and a hard copy of your code. Also,
test your application using (1) the example above (a valid
ISBN number), (2) the ISBN number 978-1-4188-3643-6
(also a valid ISBN number), (3) the ISBN number 978-0-07-
330427-4, and (4) the ISBN number 1254-8732-9755-6.
Make sure that you enter the ISBN numbers with dashes or
blanks. Provide a user interface and the message box for
each of these four tests.

6. CASE 5: VALIDATING CREDIT CARD NUMBERS

6.1 Description
Many web shopping applications require customers to enter
credit card information. Although the check digit
computations used to validate such information are
proprietary, we can simulate them to provide an idea of how

ISBN Number Weight Product
0 10 0
7 9 63
6 8 48
3 7 21
7 6 42
2 5 10
4 4 16
7 3 21
8 2 16
5 1 5

Sum: 242
Sum Mod 11: 0

Journal of Information Systems Education, Vol. 19(3)

275

they are performed. This case requires you to validate a 16-
digit credit card number. This assignment requires a good
understanding of parsing techniques, nested For-Next loops,
and programming logic.

6.2 A Payment Interface
Figure 8 is an example of a payments screen. The user must
select one of four types of credit cards for payment as shown
by the radio buttons in the form. If the user clicks on the OK
button, the system first validates the user’s information as
follows:

1. For the credit card number, each digit in the card
number must be numeric, and its check digit must
match the month code for the expiration date of the
card, as explained below,

2. The expiration date must contain a valid month and the
date must be greater than or equal to the system date.

3. One radio button (credit card type) must be selected in
the interface.

Figure 8. A user interface for entering a credit card
number.

If the user fails to select one of the credit card radio buttons
or enters data that fail any of the validation tests for this
screen, the system should display a Message box similar to
the ones in Figures 9 and 10. Note that the system displays
the type of credit card in Figure 10.

Of special interest is the way in which the system
computes a check digit for the credit card that must match
the expiration date’s month code. To perform this test, the
system uses a function (that you write) that tests for card
number length and numeric content. This function also
repeatedly finds the sum of the numeric digits in the credit
card number until it finds a single digit (a “check digit”). It
then compares that value to the month code of the card. For
example, if the credit card number entered was
1234567890123456, the sum of these digits would be “66,”
the sum of 6 + 6 is “12,” and the sum of these digits is 1 + 2
= 3. Thus, the computed check digit is “3.”

A similar computation is performed for the month code.
For example, if the expiration month of the credit card were
“12,” then the month code would be 1 + 2 = 3. If the month
code matches the check digit for the credit card, the input data
is assumed to be accurate. However, if the check digit and
month code do not match, the system should conclude that the
credit card number is invalid.

Figure 9. Error message indicating that the user did not
select a credit card (radio button) in the Payment Form.

Figure 10. Error message indicating that the check digit
computed for the credit card number did not match the

month code.

6.3 Case Deliverables
Test your program with the following credit cards and
expiration dates. For each credit card, screen capture the user
interface similar to the one in Figure 8, and also the error
message in Figures 9 and 10 (if the credit card is not valid).

Credit Card Type Credit Card Number
Expiration

Date
Visa 1234567890123456 08/12
Mastercard 7645243289765523 11/11
Mastercard 8634252625242611 07/13
Discovery 1234567890121212 08/10
Discovery 1010101010101001 12/10

7. SUMMARY AND CONCLUSION

Data validation is an integral part of most business
information systems, and understanding how and why such
applications require data validation is itself useful
knowledge. This paper presented five cases that introduce
students to common data validation tasks. The author’s
experience in using such cases in the course of the last five
years has been uniformly positive. Students report that they
enjoy such tasks, relate to the applications in which they are
used, appreciate the integrative nature of the work, and often
prefer such assignments to alternate, end-of-chapter
programming exercises that may lack such realism.

8. ACKNOWLEDGEMENTS

The author is indebted to two referees for several helpful
comments and suggestions on ways to improve an earlier
draft of this manuscript.

Journal of Information Systems Education, Vol. 19(3)

276

8. REFERENCES

Bailey, Jeff (2006), “In Airline Baggage Roulette, Travelers’
Odds are Getting Worse” The New York Times Vol.
CLVII, No. 54135, November 21, pp. A1 and A20.

Barlow, Rick Dana (2006), “Deep-Sixing Dirty Data”
Healthcare Purchasing News Vol. 30, Issue 5, May, pp.
44-47.

Butts, Glen C. (2007) “Excel for Cost Engineers” AACE
International Transactions,, p 7.

De la Villa Jaén, Antonio, Romero, Pedro Cruz, and
Expósito, Antonio Gómez. (2005) “Substation Data
Validation by a Local Three-Phase Generalized State
Estimator” IEEE Transactions on Power Systems, Vol.
20, Issue 1, February, pp. 264-271.

Griebenow, Ron, and Caudill, Marcus (1999), “Precision
Data Validation Boosts Process Optimization Benefits”
Power Engineering Vol. 103, Issue 11, November, pp.
104-108.

AUTHOR BIOGRAPHY

Mark G. Simkin is a professor of Information Systems at
the University of Nevada, Reno.
He earned his MBA and Ph.D.
degrees from the University of
California, Berkeley. His research
in end-user computing, computer
education, and computer crime
appears in over 100 academic
journal articles, including Decision
Sciences, The Decision Sciences
Journal of Innovative Education,
The Journal of Accountancy,
Communications of the ACM, and
Communications of the Association
for Information Systems. Professor

Simkin is also the author of 15 books, the most recent of
which is Core Concepts of Accounting Information Systems
(New York: John Wiley and Sons, 2008) with coauthors
Nancy A. Bagrannof and Carolyn Norman Strand.

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2008 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

