
Educating Software
Development
Professionals: Does
Instruction Affect
Creativity?

Judy L. Wynekoop
Diane B. Walz

ABSTRACT: Since creativity is important
in software development, the effect of
education in formal software development
methods on individual creativity was studied.
Students choosing to major in information sys­
tems and computer science in college were
found to be more creative than the general
population at the start of their programs.
In fact, individuals choosing computer science
as a major were exceptionally creative.
However, by their senior year, computer sci­
ence majors were no more creative than infor­
mation systems majors. These findings support
conclusions that computer science curricula
should include more problem-solving and de­
sign activities. Implications for computer sci­
ence and information systems curricula are
discussed.

KEYWORDS: creativity, software development,
education, information systems, computer
science

INTRODUCTION

Information systems are critical to corporate
functioning, and businesses have increasing­
ly complex information system needs. The

production of high quality computer software
and the efficiency of the software develop­
ment process are key issues facing academics
and practitioners today [1].

In an attempt to improve software quality
and development productivity, standardized
development methods and techniques have
been created. The goals of these software engi­
neering efforts include reduction of errors,
faster development time, and reuse of code
and design modules. To achieve these goals,
software development methods and tech­
niques often incorporate principles of stan­
dardization, reuse, and repetitiveness. While
software productivity tools and formal meth­
ods offer some benefits in terms of faster de­
velopment time and error management, these
primarily benefit less complex applications
and downstream activities like programming
and testing [2].

The software design process is highly cog­
nitive and intellectual, but not well-under­
stood [3][4]. Recently, attention has been
given to the increasing need for creativity in
the development of complex and difficult
software [5][6]. Within this context, fears
have surfaced that the use of standard devel­
opment methods and tools may suppress cre­
ative software solutions [7]. Deadlines for
deliverables in traditional approaches to soft­
ware design may offer disincentives for

creativity in requirements analysis and solu­
tion design [6].

Although all individuals are creative to
some extent, some individuals are intrinsically
more creative than others. It is also known
that creativity can be cultivated [8] [9]. One
study has shown that IS personnel exhibit dif­
ferent creativity styles than do individuals in
other occupations and offers practical sugges­
tions for adjusting managerial practices to the
distinct characteristics of IS personnel [10].
Couger suggests techniques for stimulating
creativity at specific points in the software de­
velopment process [5] [6].

Little is known, however, about whether
formal methods and standardized tools
used for software development have any effect
on the creativity of designers. The research re­
ported here is a first step to determine
whether the environment of software devel­
opment is nurturing, negative, or neutral to the
creativity of software developers.

In most cases, software developers are first
exposed to standard methods, tools, and pro­
cedures in their undergraduate Computer
Science (CS) or Information Systems (IS] de­
gree programs. The purpose of this study is to
determine whether this early formal educa­
tion and training of potential developers has a
nurturing, negative or neutral effect on their
creativity.

We define the effect of the software devel­
opment environment on creativity as negative
if software developers are less creative after
being exposed to the environment. This can
be the result of constraints that make individ­
uals less creative or that drive the more cre­
ative individuals out of the environment. The
effect is nurturing if developers are more cre­
ative after being exposed to the environment.
This would occur in an environment that
stimulates individuals’ creativity or that drives
the less creative individuals away. The effect is
neutral if there is no change in developers’ cre­
ativity.

CS and IS programs are very different in
orientation. Differences in the domains of IS
and CS undergraduate education which might
be considered to affect creativity are described
below. Differences are identified using
Amabile’s [11] creativity framework. Based
on the results of this analysis, we suggest two
research questions about the effect of
education on creativity. The results of the em­
pirical analyses should prove useful both to
those designing IS and CS curricula and to
those managing the IS function in
organizations.

JOURNAL OF INFORMATION SYSTEMS EDUCATION Spring 1996 11

CREATIVITY AND INFORMATION SYSTEMS
DEVELOPMENT

The early stages of software development,
analysis and design, are critical to the produc­
tion of a quality software product. Different
phases of software development involve dif­
ferent cognitive tasks [12], It has been sug­
gested that the early stages of software
development require imagination and intu­
ition [3][13]. Because the design process in­
volves the formulation, refinement and
simulation of solution models by cognitive ac­
tivity, creativity is necessary in this problem
solving process [14]. This contrasts with the
later stages of software development (e.g. pro­
gramming) which are more narrowly focused
and precise [13].

The creativity of groups and individuals in
an organization is shaped by the context cre­
ated by the interaction of individuals, groups
and the environment [15]. Creativity is not
the same across all knowledge domains, but
should be viewed as domain specific
[11][16][17]. Individual level variables affect­
ing individual creative performance include
cognitive, personality, motivational and
knowledge variables [15]. Amabile [11] pro­
vides the model of creative individual perfor­
mance shown in Figure 1.

The model shown in Figure 1 contains
three prerequisites for individual or group cre­
ativity; domain-relevant skills, creativity-rele­
vant skills and task motivation.
Domain-relevant skills include the knowledge
and abilities needed to perform in a given
area. Creativity-relevant skills are traits and
abilities needed to invoke creative processes.
Task motivation includes intrinsic and extrin­

sic motivational variables that will increase or
decrease creative processes.

Some of the domain-relevant and creativi­
ty-relevant skills can be influenced by educa­
tion and training. For instance, a person must
have knowledge and skills in the domain of ac­
tivity to be creative. In order to design an in­
formation system, an individual’s knowledge
must include analysis and design methods and
techniques, knowledge of existing technolo­
gies, and knowledge of relevant functional ar­
eas. A designer's technical skills might include
the ability to use technologies such as design
software (e.g. CASE tools) and fourth genera­
tion languages. There is evidence that expo­
sure to a wide variety of information in a
domain enhances creativity [11]. Thus, there
is some reason to believe that exposure
through education to a variety of software de­
sign methods, techniques, and technologies
might facilitate developer creativity.

Certain cognitive features are relevant to
creativity in individuals. These include the
ability to: understand complexities, see things
differently from others, suspend judgment or
commitment to a solution, see relationships
between diverse pieces of information, recog­
nize the importance of new information, and
generate novel ideas [11] [14][18]. The abili­
ty to draw analogies and to combine knowl­
edge from multiple areas is important in this
endeavor [14][18]. Pure and independent
(“bolt of lightning”) insights are rare. Instead,
the moment of insight represents the thought
that integrates the concepts within the prob­
lem space, where everything falls into place
[19].

Creative persons are able to break from the

Figure 1: Creativity Framework (Amabile, 1983)

Domain-Relevant Skills Creativity-Relevant Skills Task Motivation

Includes:
• Domain factual knowledge
• Required Technical skills
• Domain relevant talent

Includes:
• Appropriate cognitive style
• Knowledge of heuristics for

producing novel ideas
• Conducive work style

Includes:
• Attitudes toward task
• Perceptions of own

motivation for doing the task

Depends on:
• Innate cognitive abilities
• Innate perceptual & motor

skills
• Formal & informal education

Depends on:
•Training
• Experience in idea generation
• Personality characteristics

Depends on:
• Initial level of intrinsic

motivation toward the task
• Existing extrinsic constraints
• Individual ability to

cognitively minimize
constraints

past and to identify exceptions and inconsis­
tencies in the accepted way of doing things
[18]. Johnson-Laird [20] describes constraints
that are imposed by systems of rules within a
domain and contends that there can be no real
creativity without such constraints. In fact,
this implies that creative persons are those
who can rise above constraints. They can solve
problems creatively within the confines of the
domain.

Research indicates that expert designers
exhibit these traits. The software design
process involves the formulation, refinement
and simulation of solution models by cogni­
tive activity. Expert designers generate and
evaluate more alternative solutions to sub­
problems, tackling the most complex ones
first, drawing on a large experience-based
store of solutions and solution methods
[7][21][22]. The generation of many possible
solutions and the application of solutions to
different contexts is characteristic of creative
people and is a skill that can be enhanced
through training [5] [14][23].

Studies of large software development pro­
jects have identified exceptional designers
who are considered to be essential to success­
ful development projects [24]. These individ­
uals can envision the interaction of various
parts of the system and how it would behave,
and can build new models to salvage failed
projects. Expert software designers have also
been found to mentally develop and simulate
complex models of the software [3][7][25].
Such behavior is characteristic of creative
people [9].

It appears that successful software design­
ers exhibit traits associated with creative indi­
viduals. Although personality determines
these traits to some extent, they also depend
on experience and training [11]. It is not clear
how training and experience in the field of
software design affects individuals’ creativity.
It is possible that training in—and use of—for­
mal design methods and techniques can help
individuals develop domain- relevant and cre­
ativity-relevant skills. Or perhaps the formal
tools and methods represent constraints that
actually suppress creative software solutions.

RESEARCH QUESTIONS
Training and creativity

It has been suggested that standard devel­
opment methods might inhibit the creative
processes which characterize outstanding de­
signers [7][26][27]. Others have specifically
recommended formal training in normative
problem solving methodologies to enhance
creativity [14].

12 JOURNAL OF INFORMATION SYSTEMS EDUCATION Spring 1996

Although formal education can increase
creativity, too much formal education may de­
crease creativity by causing an individual to
become too dependent on established algo­
rithmic solutions to problems [11]. If so, then
postsecondary programs in vv'hich students
learn in this fashion may actually be "weeding
out”, or suppressing, creativity in individuals.
Thus, the first research question addressed
here is:

Does formal education and training in meth­
ods, techniques, and tools inhibit creativity in
software designers?

This would be answered affirmatively if
creativity decreases as students progress from
lower division courses (i.e. freshman and
sophomore] to upper division courses (i.e. ju­
nior and senior).
IS versus CS training

IS and CS curricula differ in fundamental
ways. In IS programs, technical knowledge is
taught within the context of organizations and
management. CS programs, on the other
hand, are rooted in mathematics, engineering,
and algorithms. IS curricula emphasize prob­
lem solving methods and the process of appli­
cation design and implementation of
information systems within an organizational
framework. CS majors typically receive less
exposure to organizational considerations in
developing information systems and require­
ments analysis, but more training in algorithm
development, programming, hardware, and
systems software [27][28].

Thus, the two curricula differ with respect
to educational objectives which could have
very different effects on creativity. From
analysis of the specific content of both curric­
ula, some differences and similarities were
noted. Both IS and CS majors generally re­
ceive training in the areas of programming,
database, and software development methods.
A significant difference is noted, however, in
the weights placed on the various topics and
the overall focus of each curriculum.

The ACM-IEEE/CS Joint Curriculum Task
Force [29] lists nine subject areas to comprise
the CS discipline: algorithms and data struc­
tures, architecture, Al and robotics, database
and information retrieval, human-computer
communications, numerical and symbolic
computation, operating systems, program­
ming languages, and software engineering.

From current curriculum models and work
in progress for the IS '95 Curriculum Model
[30], subject areas that are relevant for the IS
curriculum can be identified: design and im­
plementation with database management sys­

tems, hardware and software, information sys­
tems theory, programming languages, project
management, software engineering methods,
systems analysis, systems design, and telecom­
munications.

For Information Systems, most AACSB ac­
credited schools use the ACM (Association for
Computing Machinery] IS curriculum model,
which includes only two courses specifically
focusing on programming while several cours­
es include analysis and design [30][31]. These
analysis and design courses include problem­
solving skills and methods which have been
shown to enhance creativity through tech­
niques like identifying relationships between
diverse pieces of information and diverging
from the status quo [11] [14].

Less than one-fifth of the recommended
CS curriculum involves problem solving
methods and concepts and the software devel­
opment process [27]. The bulk of the curricu­
lum involves programming languages and
technical concepts, such as operating systems
and hardware architecture. In fact, it is noted

with an undergraduate degree in either IS
(usually from a business school] or CS and be­
gin their careers as programmers. However, IS
majors generally follow a career path toward
systems analyst or management positions,
while CS majors tend to follow more techni­
cally focused careers [28].

Research has shown that individuals in tra­
ditional programming jobs (e.g. third genera­
tion languages] are left-brain dominant,
exhibiting analytical and sequential thought,
whereas fourth generation language program­
mers with a user orientation are more experi­
mental, flexible and spontaneous [32]. These
authors conclude that traditional computer
science curricula train third generation lan­
guage programmers.

IS graduates generally work in an organiza­
tional environment, interacting with both the
organizational functional area environment
and relevant information technologies. CS
graduates tend to interact less with organiza­
tional functions and more with technology
[27] [28]. There is evidence that organization­

^Although formal education can increase
creativity, too much formal education may
decrease creativity by causing an
individual to become too dependent on
established algorithmic solutions to
problems”
that “programming occurs in all nine subject
areas” that are included in the curriculum [27,
p. 77], and it is not clear how much the sub­
ject area including problem-solving will nur­
ture creativity, since the subject is described as
“...a rigorous introduction to the process of al­
gorithmic problem solving....” [27, p. 83, italics
added].

A solution is considered to be creative
when it is both novel and relevant to the im­
mediate task, and the solution to the task is
not algorithmic and straightforward, but
heuristic [11]. That is, discovering the prob­
lem is an important part of creativity. Thus, IS
curricula appear to include more opportuni­
ties to teach creativity-relevant skills (Figure
1] than CS curricula, although both impart
domain-relevant skills.

Most personnel enter the IS profession

al computing departments continue to need
both technically focused and business and
end-user focused personnel, although the im­
portance of the latter is expected to increase,
while that of the former decreases [32] [33].

IS majors seem to be exposed to more of
the kind of problem solving activities which
stimulate creativity than are CS majors
[26][32]. Thus, the second research question
in this study is:

Are information systems students more cre­
ative than computer science students?

RESEARCH METHODS
The California Psychological Inventory

Adjective Check List (ACL] was used to mea­
sure creativity [34][35] of CS and IS students.
The ACL is a widely used measure of adult
creativity, showing high internal consistency

JOURNAL OF INFORMATION SYSTEMS EOUCATION Spring 1996 13

Table 1: Mean Creativity Scores

Major Lower division Upper division
Score SD n Score SD n

IS 49.8 7.5 32 50.3 8.7 41
CS 54.2 7.2 28 50.5 7.8 53

Table 2: Results of two-tailed t-tests pairwise comparisons for differences in means

Comparison of means IS
t

CS
t

Lower Division vs. Upper Division -0.25 2.06*
(‘denotes significance, a=.1O)

Table 3: Results of t-tests for pairwise comparison of IS & CS students

Comparison of means t
All students 1.3
Upper division 0.1
Lower Division 2.3*
(‘denotes significance, a=.1O)

reliability and good validity [9] [36][37]. The
ACL is also not sensitive to training effects.

The ACL was administered to lower divi­
sion (freshman or sophomore) and upper divi­
sion (junior or senior students majoring in CS
and IS. Lower division IS students were en­
rolled in the first programming course in the
IS major; upper division students were en­
rolled in a required senior level IS projects
course and an IS elective. Upper division IS
students had completed required analysis and
design and application development courses.
Lower division CS majors were enrolled in
the first programming course in the major; up­
per division CS majors were enrolled in two
junior/senior level programming courses.
Upper division CS majors had completed sev­
eral programming courses, as well as courses in
data structures and hardware architecture.
The sample included 73 undergraduate IS ma­
jors (32 lower division and 41 upper division)
and 81 undergraduate CS majors (28 lower
division and 53 upper division).

In order to address the first research ques­
tion, the ACL creativity scores of lower divi­
sion students were compared to the scores of
upper division students for both IS and CS
majors. The IS and CS students were consid­
ered separately because the curricula are so
different. If the educational process is sup­
pressing creativity or driving out more cre­
ative individuals, the lower division students
would be expected to have significantly high­

er scores than would the upper division stu­
dents. For each comparison, two-tailed t-tests
(a = .10) were performed to identify trends in
creativity.

The second research question was ad­
dressed by comparing mean creativity scores
of IS majors to the scores of CS majors, both
in aggregate and by class (lower division and
upper division). One-tailed t-tests (a= .10)
were used to test the significance of the differ­
ences.

RESULTS
Mean creativity scores are shown in Table

1. It should be noted that the means scores of
all the groups are above the ACL population
norm of 48.5 for college students [35].

Table 2 presents the results of t-tests for
differences in the means of lower division ver­
sus upper division students. For the IS under­
graduate majors, there was no significant
difference in mean creativity scores (t = -0.25,
p = .81), indicating the design courses taken
by the upper division students had not affect­
ed individual creativity. Both upper and lower
division students had mean scores of approxi­
mately 50.

However, there were differences between
the lower and upper division CS majors (t =
2.06, p = .04). Lower division students scored
significantly higher than did upper division
students, indicating either the curriculum neg­
atively impacted creativity or that the more

creative students left the major.
The second research question was ad­

dressed by comparing mean creativity scores
of IS and CS undergraduate majors using one-
tailed t-tests. The results are presented in
Table 3. When lower and upper division stu­
dents were combined, there was no significant
difference in creativity scores between IS and
CS students (t = 1.3, p = .18, DF = 152).
However, when scores were compared within
class levels, differences existed. However, the
difference was not in the expected direction:
creativity scores of lower division CS majors
were significantly higher (t = 2.3, p = .03, DF
= 58) than the scores of the lower division IS
majors. The creativity scores of IS and CS up­
per division students were virtually identical
(t=.14,p=.89, DF=92).

DISCUSSION
The data suggest that individuals preparing

for careers in information systems through IS
and CS undergraduate programs are more cre­
ative, on average, than the general population
in the United States. These results can repre­
sent a benchmark for managers of IS profes­
sionals who are interested in providing
creativity training for software developers.

The data also indicate that undergraduate
CS programs attract more creative individuals
than do IS programs. IS training does not ap­
pear to adversely affect individual creativity,
and may actually improve it slightly. The CS
program, on the other hand, did appear to
have an adverse affect on creativity. Thus, it
appears that CS programs are negative to soft­
ware developers' creativity, while that con­
veyed by IS programs is at least neutral to
creativity. From the empirical results we can
infer that either creative individuals leave the
major or that the training somehow stifles nat­
ural creativity. It has been suggested that com­
puter science curricula over-emphasize
left-brain thinking and should include more
problem solving and design activities
[26][32]. These findings support that sugges­
tion.

Although third generation languages are
still in use, and legacy systems will require
maintenance in the future, the software devel­
opment environment is changing. An increas­
ing emphasis is placed on simultaneous
thinking, flexibility, and client interaction
[32]. Furthermore, the impact of these differ­
ences on the software product may be of con­
cern. Amabile [11] has suggested that
individuals with high initial domain-relevant
skills and a low permanent repertory of cre-

14 JOURNAL OF INFORMATION SYSTEMS EDUCATION Spring 1996

ativity-relevant skills will produce products
which are "predictable” but low in creativity.
Individuals with high levels of both skills will
produce creative products. Although creativi­
ty is important in software development
[3][5][7], CS programs may be failing to con­
vey creativity-relevant skills.

In conclusion, since creativity is important
in software development, IS and CS curricula
should incorporate methods which teach cre­
ativity-relevant skills (e.g. the ability to see
patterns and relationships between diverse
pieces of knowledge and the ability to break
free from the past) in addition to the teaching
of domain-relevant skills (e.g. design methods
and programming languages). The focus of
these methods should not be algorithmic
problem-solving, but heuristic problem-solv­
ing, in which defining the problem and identi­
fying a variety of procedures for solving it are
part of the problem-solving process. .4

REFERENCES
[1] Pressman, R.S. (1992). Software Engineering: A

Practitioner's Approach. 3rd edition. New York: McGraw-Hill.

[2] Forte, G. & Norman, R. (1992) CASE: A self assessment

by the software engineering community, Communications of

t/icACM,35 (4) 28-32.

[3] Guindon, R., Krasner, H., & Curtis, B. (1987). Breakdowns

and processes during the early activities of software design by

professionals. In Sheppard, S. & Soloway, E. (eds.) Empirical

Studies of Programmers Second Workshop, 65-82, Norwood,

NJ:Ablex.

[4] Kant, E. & Newell, A. (1985) Naive algorithm design

techniques — a case study, in Progress in Artificial Intelligence,

L. Steels and J. Campbell, eds., Chichester: Ellis Horwood

Limited.

[5] Couger, J.D., Higgins, L.F., & McIntyre, S.C. (1993).

(Un)Structured creativity in information systems organiza­

tions. MIS Quarterly, (17) 375-397.

[6] Couger, J.D. (1990). Ensuring creative approaches in in­

formation system design. Managerial and Decision-Making

Economics, 11,1268-1287.

[7] Glass, R.L. (1992). Creativity and software design: the

missing link. Information Systems Management, 9(3), 38-41.

[8] Fontenot, N. (1993). Effects of training in creativity and

creative problem finding upon business people. The Journal of

Social Psychology, 133 (1), 11-22.

[9] Davis, G.A. (1992). Creativity is Forever. Dubuque:

Kendall/Hunt.

[10] Miller, W.C, Couger, J.D. & Higgins, L.F. (1993).

Comparing innovation styles of I.S. personnel to other occu­

pations. In Proceedings of the Hawaii International Conference

on Systems Sciences, pp. 378-386..

[11] Amabile,T.M. (1983). The Social Psychology of Creativity.

New York: Springer-Verlag.

[12] Laughery, Jr., K.R. & Laughery, Sr., K.R. (1985). Human

factors in software engineering: A review of the literature. The

Journal of Systems and Software, 5,3-14.

[13] Dimino, S.A. & Nygren, CM. (1985). There is a differ­

ence. Journal of Systems Management, 36(7), 34-36.

[14] Evans, J. (1993). Creativity in MS/OR: the multiple di­

mensions of creativity. Interfaces, 23(2), 80-83.

[15] Woodman, R.W, Sawyer, J.E., & Griffin, R.W. (1993).

Toward a theory of organizational creativity. Academy of

Management Review, 18 (2), 293-321.

[16] Li, J., & Gardner, H. (1993). How domains constrain cre­

ativity. American Behavioral Scientist, 37 (1), 94-101.

[17] Gardner, H. (1988). Creativity lives, creative works: A

synthetic scientific approach. In R.J. Sternberg (ed.). The

Nature of Creativity, New York: Cambridge University Press.

298-325.

[18] Bawden, D. (1986). Information systems and the stimu­

lation of creativity. Journal of Information Science, 12(5), 203-

216.

[19] Kneller, G.E (1967) The Art and Science of Creativity,

New York: Holt, Rinehart and Winston.

[20] Johnson-Laird, P.N. (1988) Freedom and constraints in

creativity. In R.J. Sternberg (ed.). The Nature of Creativity,

New York: Cambridge University Press. 202-219.

[21] Turner, J. A. (1987). Understanding the elements of sys­

tem design. In Boland, R.J. & Hirschheim, R.A. (eds.). Critical

Issues in Information Systems Research, 97-111, Chichester:

John Wiley.

[22] Jeffries, R., Turner, A., Polson, P. & Atwood, M. (1981).

The process involved in designing software, in Cognitive skills

and their acquisition, J. Anderson, ed., Hillsdale, NJ: Lawrence

Erlbaum Associates

[23] Guilford, J.P. (1967). Creativity: Yesterday, today and to-

morrow. Journal of Creative Behavior, 1(1).

[24] Curtis, B., Krasner, H. & Iscoe, N. (1988). A field study of

the software design process for large systems. Communications

o/tIie/lCM,31 (11), 1268-1287.

[25] Adelson, B. & Soloway, E. (1985). The role of domain ex­

perience in software design. IEEE Transactions on Software

Engineering, SE-ll(ll), 1351-1360.

[26] Chesson, D., McBride, B. & Cartwright, C. (1992).

Toward creativity: educating the college student in computer

programming. Journal of Research on Computing Education,

25(2), 265-273.

[27] Turner, J.A. (1991). A summary of the ACM/IEEE-CS

joint curriculum task force report: computing curricula 1991.

Communications of the ACM, 34(6), 69-84

[28] Nunamaker, Jr., J.F., Couger, J.D. & Davis, G.B. (1982).

Information systems curriculum recommendations for the

80s: undergraduate and graduate programs. Communications

o/theACM, 25(11), 781-805.

[29] ACM/IEEE-CS Joint Curriculum Task Force. (1991)

Computing Curricula 1991. February.

[30] Gorgone, J.T, Couger, J.D., Davis, G., Feinstein, D.,

Kasper, G. & Longenecker, Jr., H.E. (1994). Information sys­

tems ‘95 curriculum model — a collaborative effort. Data

Base, 25(4), 5-8.

[31] Chen, J., Danesh, N.A. & Willhardt, J.A. (1991-1992).

Computer curricula in AACSB-accredited business schools.

Interfaces, 13(4), 60-72.

[32] Kettler, K., Smith, R.D. & Weinroth, J. (1992) Recruiting

fourth-generation programmers. Information Systems

Management, 9,64-67.

[33] Jackson, D.P. (1991-1992). Curriculum design and the

marketplace for MIS professionals. Interface, 13(4), 2-7.

[34] Gough, H.G. (1952). Adjective Check List. Palo Alto:

Consulting Psychologists' Press.

[35] Gough, H.G. & Heilbrun, A.B. (1983). The Adjective

Check List Manual. Palo Alto: Consulting Psychologists’ Press.

[36] Davis, G.A. & Bull, K.S. (1978). Strengthening affective

components of creativity in a college course. Journal of

Educational Psychology, 70,833-836.

[37] Domino, G. (1970), Identification of potentially creative

persons from the Adjective Check List. Journal of Consulting

and Clinical Psychology. 35,48-51.

Judy L. Wynekoop
Diane B. Walz
Division of Accounting and Information Systems
University ofTexas at San Antonio
San Antonio TX 78249-0632
j wynekooioJonestar. j pl. utsa .edu

Judy L. Wynekoop is an assistant professor of information
systems at the University ofTexas at San Antonio. Her
research interests include systems development and the use
and impact of information technology in medicine.

Diane B. Walz is an associate professor of information
systems at the University of Texas at San Antonio. Her
research interests include personality dimensions of
software designers and software tools for managing the
principal-agent problem.

This research was partially funded by a UTSA Faculty
Research Award.

JOURNAL OF INFORMATION SYSTEMS EDUCATION Spring 1996 15

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1996 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

