Journal of Information Systems Education

Fall 1994

Applying a Framework for Software Development
Methods in an Information Systems Curriculum

ABSTRACT: Software developers are constantly exploring new software development meth-
ods that are timely and cost effective, and also foster productivity and better quality systems.
“A Software Development Method (SDM) is a system of technical procedures and notational
conventions for the organized construction of software” [Karam and Casselman p. 34|

Karam and Casselman [1] provide a framework for evaluating SDMs within an organization.
There are 14 technical properties, 5 usage properties and 2 managerial properties. Is this
framework viable for cataloging SDMs in an academic setting, thereby providing guidelines
for selecting an appropriate software development methodology for an Information Systems
curriculum? The main purpose of this paper is to demonstrate the use of a cataloging frame-
work for SDMs within a business Information Systems curriculum. Information Engineering (IE)
and Software Engineering (SE) are SDMs used to illustrate the usage of framework. The
framework can be expanded to include additional SDMs. The Washington Post (February 24,
1993) forecasts a 78% increase in the demand for system analysts within the next 10 years. It is
important for Information Systems’ graduates to know state of the art techniques, and there-

fore, courses must constantly be updated to meet this demand.

KEYWORDS: Information Systems Curriculum, Software Development Methodology, Framework,

Cataloging Framework

INTRODUCTION

Because current business Information
Systems (IS) are larger, deal with
unstructured tasks and process more data,
application software complexity has
increased. Software developers are con-
stantly exploring new software development
methods that are timely and cost effective,
and also foster productivity and better
quality systems. “A Software Development
Method (SDM) is a system of technical pro-
cedures and notational conventions for the

organized construction of software” [1 p.

34]. “The results tend to indicate that in
spite of two decades of experience in
developing software, the question of the
best methodology is still largely unsettled”
[2 p. 38]. As business organizations re-
evaluate software development method-
ologies, so must business schools re-evaluate
their IS curriculum. Faculty preparing 1S
graduates for careers in software devel-
opment are confronted with a variety of
SDMs; they can use some assistance with
the selection process. The changing
requirements and methods for system
development have implications throughout
the IS curriculum, therefore, the choice of a
SDM is not a trivial decision. The
Washington Post (February 24, 1993)
forecasts a 78% increase in the demand for
system analysts within the next 10 years. It

is important for IS graduates to know state
of the art techniques and, therefore, the IS
curriculum needs to be constantly updated
to meet this demand.

The main purpose of this paper is to
demonstrate the use of a cataloging
framework for SDMs within a business IS
curriculum. Academic environments,
similar to business environments, are
unique; one SDM is not appropriate in every
environment. This classification provides
some guidelines, not recommendations. The
operative framework is one developed by
Karam and Casselman [1]; it provides an
unbiased method for evaluating SDMs.
Information Engineering and Software
Engineering (structured methodologies) are
SDMs used to illustrate the functionality of
the framework. Information Engineering
(IE) methodologies focus on the data and
the strategic aspects of the entire business
organization. Although developed during
the late 1970s and introduced in 1982 by
Finkelstein, IE has only recently gained
popularity. Introduced in the mid-1970s,
Software Engineering (SE) methodologies
stress the organization’s procedures and
processes for a single application or project,
and are the most widely accepted SDM.

Karam and Casselman [1] provide a
framework for evaluating SDMs within an
organization. In order to provide guidelines

Mary J. Granger

Assistant Professor

-Management Science Department
The George Washington University
Washington, D.C. 20052
granger@gwuvm.gwu.edu

Ross A. Malaga
Information Engineer

Ogden Government Service
3211 Jermantown Road
Fairfax, Virginia 22030
70252,3367@compuserve.com

for selecting an appropriate software devel-
opment methodology, this framework is
applied in an academic setting, specifically
the undergraduate business IS field.

BUSINESS INFORMATION
SYSTEMS CURRICULUM

Emerging methodologies and technologies
drive business IS curriculum and research.
Business organizations want to employ IS
graduates with problem solving skills, an
understanding of the business organization
and a knowledge of appropriate software
development methodologies. The constant
changes in methodologies and technologies
create pressures when selecting IS cur-
riculum content.

There may be one or more project oriented
courses in an IS curriculum. Undergraduate
student projects, even if they are ‘real-world’
systems for a business organization, are
often constrained by semester/quarter time
and available computer resources. Even
with a strongly enforced prerequisite
structure, students enrolled in project
oriented courses may have widely different
knowledge bases. Because Computer-Aided
Software Engineering (CASE) tools are often
provided to the-university by a vendor at
either no cost or at a substantial reduction,
SDM selection is predetermined.
Additionally, the SDM taught in the project

PAGE 148

oriented course influences the content of
other IS courses. Prerequisite courses, such
as programming, prepare the student for the
SDM course. Database courses or other sub-
sequent courses build on the knowledge
gained from the SDM course. Due to reper-
cussions throughout the IS curriculum and
demands from prospective employers,
selection of the software methodology
demands careful consideration. Ultimately,
IS faculty are trying to determine the best
curriculum for preparing their graduates for
careers in 1IS.

“A CATALOGING FRAMEWORK
FOR SOFTWARE DEVELOPMENT
METHODS"

Software development methodologies
often deliver less than they promise; a
technique is needed for determining the
strong and weak components of a SDM.
However, there are few frameworks
[31[4][1]{5] available for SDM evaluation
within a business organization; there are no
frameworks specifically targeting an
academic setting. The Karam and Casselman
{1] framework incorporates not just the
technical properties of SDMs, but also the
usage and managerial properties. It appears
to be more comprehensive than other
frameworks. The framework is fairly easy to
understand and can be readily applied to
groups of SDMs, or to a single SDM. It
appears to be a viable framework for cata-
loging SDMs for an IS curriculum.

Karam and Casselman [1] developed a
general framework for cataloging software
development methods for enabling practi-
tioners to select a methodology or collection
of methodologies. There are 21 SDM prop-
erties, grouped into three categories:
technical, managerial and usage. As the
category names imply, technical properties
evaluate the SDM’s clarification (notation
and procedures) of technical problems,
managerial properties concentrate on man-
agerial considerations (staffing, cost,
planning) and usage properties deal with
practical issues (training, tools). These prop-
erties are not based on tool support, they
determine which SDM is appropriate for the
organization or the application.

Software Engineering and Information
Engineering are the two SDMs used
throughout this paper to demonstrate use of
the 21 framework properties. However,
since project oriented courses are simu-
lations of ‘real world’ projects, some of the
properties are inappropriate or difficult to
apply to an academic setting. Due to the

Journal of Information Systems Education

Fall 1994

impact on the IS curriculum and IS
graduates, it is felt that a systematic approach
to selecting a SDM is as critical in an
academic setting as in the business setting.

SOFTWARE ENGINEERING

Software Engineering applies engineering
principles to software development, orga-
nizing software projects as engineering
projects. Initially, the formal methodologies
of SE were applied to scientific or technical
software such as compilers and operating
systems; currently, they are also being used
to develop information systems and
business application software [6][7].
Constantine and Yourdon, Gane and Sarson,
Warnier-Orr, and Jackson methodologies
are process driven [8] techniques. They
emphasize the functional requirements of
the system being developed, concentrating
on activities required to complete the task.

The three formal methodologies of SE that
have a major impact on system
development and productivity are
structured programming [9], structured
design [10] and structured analysis [11].
These formal methodologies emphasize, at
different levels, the processes and
procedures of the organization.

Structured programming is the writing of a
computer program in a standardized
manner to decrease debugging and testing
problems, increase documentation and
readability; and facilitate maintenance. The
empbhasis is on writing clear, concise, more
readable and less error-prone code. Yourdon
[12 p. 8] defines structured design as “the
art of designing the components of a system
and the interrelationship between those
components in the best possible way.” The
major graphical design tools for structured
design are structure charts and data flow
diagrams. Structure charts emphasize the
procedural aspects of the system. They
depict the system modules and the
interactions between them; a hierarchical
order controls the graphic representation of
the system. Data flow diagrams represent
the data that flow between the processes of
the system and the way those processes
transform the data. Initially, structured
analysis defined all the system requirements
in narrative form {12 p. 123]. Currently,
requirement specifications are graphical rep-
resentations used to interface with the
user/client.

INFORMATION ENGINEERING
Information Engineering is a data driven
software development method. The 1E

PAGE 149

methodology focuses on the way the organi-
zation does and will do business. Driven by
changing business environments, this
methodology incorporates the organization’s
long-term goals and objectives into an
Information System which, in turn, mirrors
the strategic plan.

Initially, a strategic plan is created to
define the goals and strategies of the
organization. IE models the strategic plan,
identifying vital organizational data and
functions. After modeling the strategic plan,
the business areas of the organization are
targeted for design. Entities and their
relationships defined for the organization
are subsequently used in the analysis
of the organization’s business areas. The
strategic data model drives system devel-
opment at all levels.

IE combines entity relationship (E-R)
diagrams [13] and relational theory [14].
Initially, business data models are simplified
into third, fourth, and fifth business normal
form [15]. Then business processes are
identified and derived from the normalized
E-R diagrams. :

APPLYING THE FRAMEWORK FOR
BUSINESS INFORMATION
SYSTEMS CURRICULUM
TECHNICAL PROPERTIES

There are 14 technical properties. Many of
these properties are based on the
assumption that the methodologies have the
standard system development life cycle
(requirements analysis, requirements speci-
fication, architectural design, detailed
design, implementation and evolution) and
evaluate the SDMs on per-phase levels.
Since SE and IE have different software
development life cycles (SDLC), discussion
of each of the technical properties relates to
the whole methodology, not to individual
life cycle phases.
Philosophy

The main focus of the IE methodology is
the strategic, long-term planning for the
business organization emphasizing current
and future requirements and priorities.
SE methodologies concentrate on an
organization’s short-term, immediate
projects and resources. Both methodologies
are highly structural, concentrating on inter-
acting components, but at different
organizational levels. IE tends to take into
account effects of external events
(behavioral); SE is more functional, concen-
trating on data transforms [1]
Life cycle

Software Engineering and Information

Table 1. SYSTEM DEVELOPMENT
LIFE CYCLE

Engineering methodologies both develop
software systems in an iterative, top-down
manner. Text books offer different versions
of software development life cycles for each
of the SDMs. Table 1 lists one version of the
software development life cycle [16] for
each of the SDMs.
Major work products and notations

There are three levels of management in
every organization: strategic, tactical and
operations. Both SE [17] and IE [18]
support these levels. Organizations and text
books observe various work products or dif-
ferent versions of work products for each of
the SDMs. Table 2 lists some of the more
popular work products and their notations.
Versions of the SDLC for either SDM may
not advocate all work products listed. In an
academic setting, the number and depth of
coverage of work products is dictated by the

Journal of Information Systems Education

Fall 1994

length of time in the semester/quarter.
Often, meaningful projects are developed
using a subset of the available work
products.
Problem domain analysis and
understanding

The SE methodology analyzes specific
application areas or domains of the organi-
zation. Depending upon the type of software
being developed, there are specific recom-
mended techniques (data flow diagrams,
hierarchical diagrams, Warnier represen-
tations) [19]. Before designing any specific
application areas, the IE methodology
requires.a global definition of the organi-
zation’s data requirements (data models)
[20]. This global definition is a super-
structure for detailed work and assists in
defining the business organization’s strategy.
Procedure/Guidelines, criteria, measures

The procedure property and the
guidelines, criteria and measures property
prescribe per-phase narrative and per-phase
rating. After identification of a procedure for
each life cycle phase, the consistency of the
associated procedure is rated. Each
methodology has a definite set of recom-
mended per-phase procedures that should
produce dependable outputs from each
phase. Since practitioners may not be con-
sistent when implementing these
procedures, it is doubtful whether or not
students, when applying the same
procedures, will obtain similar results. Song
and Osterweil [21] are laying the
groundwork for this level of evaluation.
There is a lack of standards and metrics in
IE [8]. Much work has been done
on SE measurement and metrics
[2211231[241[25](26]. In an academic

Table 2. MAJOR WORK PRODUCTS AND NOTATIONS

PAGE 150

setting, these measures are often discussed,
but rarely have an impact during the imple-
mentation or rating of the student projects.
Verification

Both SDMs advocate verification of SDLC
stages. Within an academic setting, verifi-
cation of work products is accomplished by
manual inspections. Peer reviews of work
products (data flows, data models) are sim-
ulated; the feedback often generates modifi-
cations to the work in progress. These
inspections and reviews are used to find
logical flaws. If the SDMs are automated,
syntactical errors are easily identified, but
formal proofs of the correctness of the work
product, while discussed, are rarely applied
to student projects.
Degree of formality

Formality is [1p. 38] dependent upon the
SDM notations, the relationships between
phases and verification. There have been
attempts [27]{28] to apply precise, mathe-
matical definitions to designs generated by
structured design methodology. These
proofs are rarely, if ever, used in either a
business setting or an academic setting.
Advocates of IE apply business rules to the
generated data models; if the models accu-
rately reflect the business rules they are con-
sidered precise.
Maintainability/flexibility

Systems with high levels of information
hiding/data abstraction are more flexible

-and easier to maintain. SE methodologies

stress the design of functional modules with
information hiding/data abstraction. Since
academics teach the theory of information
hiding/data abstraction, students should
take these principles into account when
designing a system. The IE methodology
logically separates data definitions from
program logic [18] and forces the separation
of data and process. Within an academic
setting, system maintenance is mentioned,
but often neglected.

Reusability :

Within two to three years, firms using IE
are able to design 80% of a firm’s data.
Through the reuse of previously defined
data and process models, applications can
be developed more easily and quickly [18].
Developers using SE advocate the use of
software libraries containing written and
tested software modules. Either previously
defined data or software libraries facilitate
student software development.

Concurrent processing

Concurrency in software systems is not
addressed by 1E; it is supported by SE.
Although most databases on microcom-

puters are single-user databases, there are
concurrency issues for multi-user databases.
This issue is thoroughly discussed in the IS
curriculum, but rarely actually encountered
in student projects; students are usually
working on microcomputers and tend to
ignore this problem.
Performance engineering

In general, IS developers are not con-
cerned with performance engineering issues
(buffers, resource allocation); these issues
are for system software developers and
hardware designers.
Traceability

This property is concerned with
reconciling system requirements with work
products. Both SDMs have rules for
traceability. In the academic environment,
due to the limited scope of the project and
time constraints, this is rarely an issue.
However, it is fairly obvious when the
student developed system does not meet the
initial requirements.
Method specialization

Can the SDM be tailored to meet a system’s
specialized functionality? IE is based on the
organization’s business rules; there is built-
in tailoring. SE methods can be modified;
often an organization has their own system
development life cycle which is a modifi-
cation of the traditional SDLC. Again, in the
academic environment, due to the project
scope and time constraints there are few
modifications to the selected SDM.

USAGE PROPERTIES

There are 5 usage properties dealing with
practical issues of adopting a specific
software development methodology.
System size

Both SDMs are suitable for all size appli-
cations. Due to the time constraints of the
academic quarter (10 weeks) or semester
(15 weeks), projects are usually small
(30,000 lines of code or less). Subsets of
either SDM are appropriate for an
academic setting.
Applications areas

Both [E and SE are used to develop trans-
action processing systems where data is
updated on-line. Since SE places more
emphasis on code optimization, it is better
suited for development of real-time systems.
Using IE, code can be generated imme-
diately after procedure design, creating pro-
totypes and user interfaces during the con-
struction phase. Although IE allows the user
to proceed more quickly to a working
system, SE also supports prototyping.
Prototyping provides limited development

Journal of Information Systems Education

Fall 1994

Table 3. SUMMARY OF TECHNICAL PROPERTIES

Technical Property

Information Engineering

Software Engineering

and Notations

System Development see Table 1 see Table 1
Life Cycle
Major Work Products see Table 2 see Table 2

Problem Domain

initially requires global definitions

analyzes specific application areas

behavioral

Analysis of the organization’s data of the organization
requirements; a super-structure for
detailed work

Philosophy strategic, long-term planning, short-term immediate projects,

functional

Procedure/Guidlines,
Criteria. Measures

definite set of recommended per-
phase procedures, lack of
standards and metrics

definite set of recommended per-
phase procedures, metrics and
standards

Verifications

verification of SDLC stages, rarely
applied in an academic settin

verification of SDLC stages, rarely
applied in an academic setting

Formality

considered correct

rules of the business being
modeled are the rules for the data
model; if the data model follows
these rules, the model is

precise mathematical definitions
are applied to the structured
methodology designs

Maintainability/

flexibility - logically separates data

flexibility - functional modules

Flexibility definitions from program logic - with information hiding/data
within an academic setting abstraction - within an academic
maintenance is neglected setting maintenance is neglected

Reusability reuse of previously defined data software libraries containing

facilitate student software
development across semesters

written and tested software
modules facilitate student
software development across
semesters

Concurrent Processing is not addressed

is supported

Performance

L 1 is not addressed
Engineering

is supported and used by system
software developers an
hardware designers

setting

Tracebility rules for traceability, not often rules for traceability, not often
implemented within an academic implemented within an academic
setting setting

Method Specification based on organization’s business organizations modify the SDLC;

rules; built-in tailoring, but few
modifications within an academic

few modifications within an
academic setting

of the system; the students can quickly
achieve a working system suited to the
limited time frame. Table 4 lists major
application areas and the appropriate SDMs.
Automated support

Once a software development
methodology is accepted, then a search for
an automated tool begins. The current
emphasis is on fully integrated Computer-
Aided Software Engineering tools (I-CASE),
which support all phases of a software
development life cycle [29]. Both upper
(analysis and design) and lower (coding and
testing) CASE tools support SE. Developers
of upper CASE tools have joint ventures
with lower CASE tools developers to create
the interfaces required for integration. Some

PAGE 151

Table 4. APPLICATION AREAS

APPLICATION AREA IE SE
X
X

Transaction Processing X
Real Time Systems

User Interface X
Prototyping X

developers create their own integration
[30]. CADRE and Index Technologies are
developers of CASE tools supporting SE
methodologies. The two most prominent
fully developed I-CASE tools supporting IE
are developed by Texas Instruments and
KnowledgeWare.

Tablc 5. SUMMARY OF USAGE PROPERTIES

Journal of Information Systems Education

Fall 1994

Table 6. SUMMARY OF MANAGERIAL PROPERTIES

Ease of instruction

There are numerous, textbooks on
Software Engineering {31] (19]{321[12] and
texts dealing with Information Engineering
[81[331[15][20] are beginning to be pub-
lished. Some developers of CASE products
supporting IE provide, for a fee, student
guidelines and materials. However, these
materials are often biased, presenting IE
from the tool perspective. Almost every uni-
versity with either a computer science or
information systems concentration has a
required Software Engineering or System
Analysis and Design course in the
curriculum. Information Engineering
courses are beginning to appear at some
universities; developers of CASE products
supporting the IE methodology offer courses
to educators adopting their products. Since
SE has been the most popular SDM, there
are numerous case studies that chronicle
software development using SE in both
organizational and academic settings. These
‘types of case studies are beginning to appear
for IE development within an organization.
Both SDMs are moderately complex with
regard to notational structures and design

rules. Although there are steep learning
curves associated with both SDMs, there is
some evidence that this does not deter
students {34].
Maturity/project history

Both methodologies are mature SDMs, at
least five years old, with 20 or more expe-
rience reports, 20 of which are multiple use.
While there are studies [35][36][371[38]
involving the use of SE methodologies in
academic settings, there are none evaluating
the use of IE.

MANAGERIAL PROPERTIES

There are 2 managerial properties dealing
with the organizational issues of the
software development method. While both
of these issues are considered important,
cost estimation and project staffing are not
traditionally implemented in an academic
setting. Project staffing is usually
determined by the number of students
enrolled in the course; if more man hours
are needed for a project, the scope of the
project probably is downsized. Cost esti-
mation may well be the amount of time
required to achieve the desired grade.

PAGE 152

Software development organization

Both SDMs have well defined phases, mile-
stones and deliverables that are very appro-
priate within the academic setting. Very
specific guidelines and due dates are estab-
lished; real software development structure
is simulated.
Ease of integration

How easily can the methodology be inte-
grated into the existing IS curriculum?
Adopting a different methodology has rami-
fications throughout the entire curriculum
and impacts faculty. Courses are added
and/or subject matter changes; new syllabi
are written. As in an organizational setting,
for success everyone needs to support the
same methodology. Without a faculty con-
sensus, there is no unity within the cur-
riculum. Evaluation of faculty talents and
interests is important. Similar to IS practi-
tioners, academics are often reluctant to alter
the techniques they use. In the academic
setting, adoption of different methodologies
requires re-education of the participants and
course revisions; many promotion and
tenure models do not reward curriculum
formation and faculty development.

SUMMARY

Many business schools and IS faculty are
undertaking curriculum revisions and 1S
faculty are facing decisions about curriculum
content. In order to resolve some of these
dilemmas, this paper applied a framework,
originally created for organizational
decisions concerning SDMs, to an academic
setting. This paper uses a cataloging
framework [1] to compare two SDMs,
Software Engineering and Information
Engineering within an IS curriculum. The
application of this framework can be
expanded to include additional SDMs; it
need not be limited to only two SDMs. Since
every academic environment is unique, no
decision as to the best SDM for an academic
setting is made. Rather, the differences and
similarities of the two SDMs are organized
and presented within the framework to
assist educators making these decisions.
Therefore, this approach provides some
guidelines for SDM selection not a recom-
mendation for a SDM for an IS curriculum.
It is clear that the framework is viable for
cataloging SDMs in an IS curriculum. Using
this cataloging framework, additional
research is currently being conducted to
determine SDM preferences among IS
faculty. A future paper will report the results
of the survey developed using this
framework.

Some questions remain unanswered and
are areas for future research: Is this the best
cataloging framework for SDMs within an
academic setting? Should other frameworks
be used/created for use in the business IS
curriculum? Is there one methodology that
is better suited for business IS development?
Which methodology will enable 1S students
to solve business problems and understand
the business itself? Should/can multiple
SDMs be taught, thereby exposing students
to different SDMs?

Although there are numerous studies
involving the use of Software Engineering in
academic settings, there are no studies eval-
uating the use of Information Engineering in
a similar setting. Additional research in this
area will help answer some of the questions
raised, and provide additional information
to be used in conjunction with Karam and
Casselman’s cataloging framework. ﬁ

REFERENCES

1. Karam, Gerald M. and Casselman, Ronald
S. (1993) “A Cataloging Framework for
Software Development Methods.” IEEE
Computer, Vol. 26, No. 2, February 1993,
34-45,

2. Keyes, Jessica (1992) “How Software is
Developed Undergoing Basic Changes.”
Software Magazine, Vol. 12, No. 1,
January 1992, 38-56.

3. Davis, Alan M., Bersoff, Edward H. and
Comer, Edward R. (1988) “A Strategy for
Comparing Alternative Software ‘
Development Life Cycle Models.” IEEE
Transactions on Software Engineering,
Vol. 14, No. 10, October 1988, 1453-
1461.

4. Fichman, Robert G. and Kemerer, Chris F.
{1993) “Adoption of Software
Engineering Process Innovations: The
Case of Object Orientation.” Sloan
Management Review, Winter 1993, 7-22.

5. Motschnig-Pitrik, Renate (1990) “A
Framework for the Support of a Common
Structural Level of Software-, Data Base-,
and Knowledge-Based Systems.” Journal
of Systems Software, Vol. 12, No. 2, May
1990, 125-137.

6. Messenheimer, Susan and Weiszmann,
Carol (1988) “Quality Software Quest.”
Software Magazine, Vol. 8, No. 2,
February 1988, 29-36.

Journal of Information Systems Education

Fall 1994

7. Norman, Ronald J. and Nunamaker, Jay
F. (1989) “CASE Productivity Perceptions
of Software Engineering Professionals.”
Communications of the ACM, Vol. 23,
No. 9, September 1989, 1102-1108.

8. Brathwaite, Kenmore S. (1992)
Information Engineering, Volume |,
Concepts, CRC Press, Boca Raton,
Florida.

9. Linger, Richard C., Mills, Harlan D. and

Witt, Bernard 1. (1979) Structured
Programming: Theory and Practice.
Addison-Wesley Publishing Company,
Reading, Massachusetts.

10. Yourdon, Edward N. and Constantine,
Larry L. (1979) Structured Design.
Prentice-Hall, Englewood Cliffs, New
Jersey.

11. DeMarco, Thomas (1979) Structured
Analysis and System Specifications.
Prentice-Hall, Englewood Cliffs, New
Jersey.

12. Yourdon, Edward N. (1989) Modern
Structured Analysis, Yourdon Press,
Englewood Cliffs, New Jersey.

13. Chen, Peter P. (1976) “Entity-
Relationship Model: Toward a Unified
View of Data.” ACM Transactions on
Database Systems, Vol. 1, No. 1, March
1976, 9-36.

14. Codd, E. F. (1970) "A Relational Model
of Data for Large Shared Data Banks."
Communications of ACM, Vol. 13, No.
6, June 1970, 377-387.

15. Finkelstein, Clive (1989) An Introduction
to Information Engineering. Addison-
Wesley Publishing Company, Reading,
Massachusetts.

16. Kerr, James M. (1991) The IRM
Imperative, John Wiley & Sons, New
York, New York.

17. Martin, Merle P. (1991) Analysis and

Design of Business Information Systems.

MacMillan Publishing Company, New
York, New York.

18. Kerr, James M. (1991) “The Information
Engineering Paradigm.” Journal of
Systems Management, Vol. 42, No. 4,
April 1991, 28-32.

PAGE 153

19. Pressman, Roger S. (1992) Software
Engineering. McGraw-Hill, Inc. New
York, New York. ‘

20. Martin, James (1989) Information
Engineering. Prentice Hall, Englewood,
Cliffs, New Jersey.

21. Song, Xiping and Osterweil, Leon J.
(1992) “Toward Objective, Systematic
Design-Method Comparisons.” IEEE
Software, Vol. 9, No. 3, May 1992, 43-53.

22. Gilb, Thomas (1977) Software Metrics.
Winthrop Publishers, inc., Cambridge,
Massachusetts.

23. Halstead, Maurice H. (1977) Elements of
Software Science. Elsevier, New York.

24, Elshoff, James L. (1984) “Characteristic
Program Complexity Measures."
Proceedings of the 7th International
Conference on Software Engineering,
March 1984, Orlando, Florida, 288-293
IEEE Computer Society Press, Los
Angeles, California.

25. Weyuker, Elaine J. (1988) “Evaluating
Software Complexity Measures.” IEEE
Transactions on Software Engineering,
Vol. SE-14, No. 9, September 1988,
1357-1365.

26. IEEE Transactions on Software
- Engineering, Vol 18, No. 11, November
1992, Special Issue on Software
Measurement Principles, Techniques
and Environments, eds. Selby, R. W. and
Torii, K.

27. Boehm, Barry. W. (1984) "Verifying and
Validating Software Requirements and
Design Specifications.” IEEE Software,
January 1984, 75-88.

28. Karimi, Jahangir, and Konsynski, Benn R.
(1988) "An Automated Software Design
Assistant.” IEEE Transactions on
Software Engineering, Vol. 14, No. 2,
February 1988, 194-210.

29. Chen, Minder and Norman, Ronald J.
(1992) "A Framework for Integrated
CASE.” IEEE Software, Vol. 9, No. 2,
March 1992, 18-22.

30. Steinberg, Geoffrey and Baram, Giora
(1992) “An Investigation of CASE
Software Integration.” Journal of
Systems Management, Vol. 43, No. 9,
September 1992, 20-22.

31. Fairley, Richard (1985) Software
Engineering Concepts, McGraw-Hill Co.,
New York, New York.

32. Schach, Stephen R. (1990) Software
Engineering. Irwin, Homewood, illinois.

33. Brathwaite, Kenmore S. (1992)
Information Engineering, Volume I,
Analysis and Administration, CRC Press,
Boca Raton, Florida.

34. Granger, Mary J. and Pick, Roger Alan
(1991) “The Impact of Computer-Aided
Software Engineering on Student
Performance” Proceedings of the
Twenty-Second Special Interest Group
on Computer Science Education
(SIGCSE), March 1991, San Antonio,
Texas, 62-72.

Journal of Information Systems Education

Fall 1994

35. Aukerman, Richard; Schooley, Robert;
Nord, Dary! and Nord, Jeretta. (1989)
“The Importance of Selected Systems
Analysis and Design Tools and
Techniques as Determined by Industry
Systems Analysts and University
Educators.” SIGCSE Bulletin, Vol. 21,
No. 3, September 1989, 30-34.

36. Joyce, Daniel (1987) “An Identification
and Investigation of Software Design
Guidelines for Encapsulation Units.”

Doctoral Dissertation, Temple University
1987.

37. McKeeman, William M. (1987)
“Experience with a Software
Engineering Project Course.” IEEE
Transactions on Software Engineering,
Vol. SE-13, No. 11, November 1987,
1182-92.

38. Selby, Richard W., Basili, Victor R., &
Baker, F. Terry (1987) “Cleanroom
Software Development: An Empirical
Evaluation.” IEEE Transactions on
Software Engineering, SE-13, No. 9,
September 1987, 1027-37.

Author’s Biography

Mary J. Granger is Assistant Professor of Management
Science in the School of Business and Public Management at
The George Washington University. She received her Ph.D
degree in Information Systems from the University of
Cincinnati. Her current research interests focus on
Information Systems curriculum development, CASE and
international Information Systems issues.

Author's Biography

Ross A. Malaga received his Masters of Science in
Information Systems from The George Washington
University and is currently pursuing his PhD in Information
Systems at George Mason University. Mr. Malaga is cur-
rently employed by Ogden Government Services as an
Information Engineer.

Subscribe!

PAGE 154

‘Subscribe to the Journal of Information Systems Education and you’ll get far more than this valuable /
journal! Because the Journal of Information Systems Education is published by EDSIG, the DPMA’

 special interest group for education. And as a subscriber, you'll get: = o
s

The s Prcel A termmbon Busoss Momers
pert sy

Cle.Serve Computng, Gt o s Wit
Sonens merhps e oo Sy ot -~
e s st S CuingOppin
Comortun g Tmproing e Dt Chact
bty Cousomoh - A Syt View

ook Revew: ekl Datcon Mo nd inforvelon iy

ISCCID Epsi6

Serving Information Systems Educators

Information Systems & Computing
Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1994 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

