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ABSTRACT 
 
Advances in information and communication technologies (ICT) coupled with artificial intelligence have made computer 
programming skills indispensable for IT majors and for an increasing number of other science, technology, engineering, and 
mathematics (STEM) disciplines. Like any hands-on skill, mastering computer programming requires dedicated time, patience, 
focus, and persistent effort. Understanding students’ learning strategies as they engage in computer programming activities can 
reduce attrition and lay a solid foundation for a successful career in IT/STEM disciplines. This paper focuses on developing the 
cognitive programming engagement (CPE) scale, which builds on existing cognitive engagement measures. Self-reported data from 
undergraduate IT students who are learning computer programming show that CPE supports four-dimensional learning strategies: 
memorization, practice, analysis, and visualization, which aligns with the levels of Bloom’s Taxonomy. The new scale supports 
confirmatory, discriminant, and predictive validity and tests on programming self-efficacy and coding grit with acceptable 
predictive validity. IT/STEM educators can use the scale to assess and evaluate students’ learning and improve their teaching 
strategies.  
 
Keywords: Bloom’s taxonomy, Cognitive engagement, Computing education, Learning styles, Pedagogy, Programming 
 
 

1. INTRODUCTION 
 
Introductory programming courses serve as gateways to careers 
in information technology (IT) and an increasing number of 
science, technology, engineering, and math (STEM) fields. 
However, many IT educators can attest that it is extremely 
challenging to teach an introductory programming course. 
Practical teaching tips and pedagogical approaches to improve 
learning are frequently shared among fellow instructors 
(Menon, 2023; Zhang et al., 2020). Unfortunately, notoriously 
high failure rates (Bennedsen & Caspersen, 2019) and 
disheartening student experiences lead many students to quit or 
switch majors (Giannakos et al., 2017; Obaido et al., 2023).  

Research suggests that low levels of student engagement 
may contribute to challenges in programming classes (Morgan 
et al., 2018a; Morgan et al., 2018b). IT students typically enter 
college with strong high school GPAs and SAT scores—two 
measures often associated with collegiate success—near the top 
of all college majors (College Board, n.d.; Westrick et al., 
2021). Yet, IT majors score near the bottom of all students in 
terms of student engagement (Butler et al., 2016; Morgan et al., 
2018a; Morgan et al., 2018b). As a result, some have suggested 
that improving student engagement might be the key to 
improving outcomes and reducing attrition in computing majors 
(Morgan et al., 2018a; Morgan et al., 2018b).  

However, many computing educators are concerned that 
existing student engagement scales, such as the National Survey 
of Student Engagement (NSSE), do not accurately capture the 

engagement crucial for success in programming courses (Butler 
et al., 2016; Sinclair et al., 2015). These educators suggest that 
the problem is not with the students but with the scales used to 
capture student engagement. Supporting this, fourth-year 
computing students, who have already successfully navigated 
introductory programming courses, score lower on student 
engagement than first-year computing students (Sinclair et al., 
2015). Many computing academics believe that scales focusing 
on metrics such as research paper length or reflective learning 
offer little insight into the domain-specific cognitive and 
metacognitive skills essential for programming success (Butler 
et al., 2016; Morgan et al., 2018a; Morgan et al., 2018b). We 
agree and believe that a new, tailored instrument is needed to 
assess domain-specific skills in programming education. 

Student engagement is a multifaceted construct composed 
of three distinct subconstructs: cognitive engagement, 
behavioral engagement, and emotional engagement (Fredricks 
& McColskey, 2012). In this study, we focus exclusively on the 
cognitive engagement subscale as it pertains to computer 
programming. This work addresses a gap in the current 
literature by developing and validating the cognitive 
programming engagement (CPE) scale. The CPE scale builds 
on existing cognitive engagement measures and computer 
learning strategies (Greene, 2015; Mahatanankoon & Wolf, 
2021). Ultimately, this work aims to empower computing 
faculty with the knowledge and tools to improve student 
success, retention, and diversity in computing courses, as well 
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as providing learners with a framework to reflect on their 
learning. 
 

2. COGNITIVE ENGAGEMENT AND COMPUTER 
PROGRAMMING 

 
Student engagement is the student’s psychological commitment 
and purposeful dedication to acquire, comprehend, or excel in 
terms of knowledge, skill, or craft (Newman et al., 1992). It is 
positively associated with academic performance, retention, 
and graduation and is one of the most widely studied 
educational constructs (Fredricks & McColskey, 2012; Yu et 
al., 2021). Student engagement has three subconstructs: 
cognitive, behavioral, and emotional (Wong & Liem, 2022). 
Other proposed subconstructs include behavioral, 
psychological, socio-cultural, and holistic (Kahu, 2013). In 
contrast to generic student engagement measures that focus on 
time spent or effort expended, cognitive engagement embodies 
the student’s purposeful and strategic investment in the learning 
process (Greene, 2015). 

Further, student engagement focuses on two components: 
one related to the students and the other centered on the 
institution (Kuh, 2001; Wolf-Wendel et al., 2009). The student-
centric aspect involves students’ time and effort in their studies 
and the various activities contributing to their academic success 
(Kuh, 2001). The organization-centric aspect pertains to how 
higher education institutions allocate resources and structure 
learning opportunities to encourage student participation and 
benefit from such activities (Kuh, 2001). In computing studies, 
the bulk of student engagement research focuses on instructor-
centric aspects or instructional innovation (Gunness et al., 
2023; Hazzam & Wilkins, 2023; Hsiao et al., 2022). In these 
studies, researchers implement an instructional innovation or 
organizational change and then test for variations in student 
engagement. For example, research found that perceived 
teaching presence impacted online students’ engagement 
(Zhang et al., 2016). 

As behavioral engagement is the easiest to measure, the 
bulk of earlier computing studies on instructional innovation 
focused on students’ behavioral engagement (Davies, 2002). 
Likewise, the majority of items in existing student engagement 
scales, such as the National Survey of Student Engagement 
(NSSE), also capture student behaviors (Butler et al., 2016). 
However, a growing number of recent computing-related 
student engagement studies have explored cognitive 
engagement (Gunness et al., 2023; Zhong, 2023).  

Behavioral and cognitive engagement are closely related 
but distinct subconstructs. Behavioral engagement refers to a 
student’s active participation and positive conduct in both 
academic and school-related activities (Fredricks et al., 2004). 
In contrast, cognitive engagement involves students’ mental 
investment in their learning, their commitment to learning, 
strategic thinking, and readiness to invest effort (Fredricks et 
al., 2004). Items such as class participation and valuing school 
can span both behavioral and cognitive engagement.  

This work focuses on a domain-specific learning strategy of 
cognitive engagement within the context of computer 
programming. This focus is crucial because the existing student 
engagement measures may not capture the unique demands of 
programming education.  
 

2.1 Cognitive Engagement: Shallow and Deep Learning  
Cognitive engagement encapsulates a student’s deliberate 
endeavors to comprehend new concepts and cultivate new skills 
(Greene, 2015). It goes beyond passive information absorption 
and involves actively seeking understanding, developing new 
skills, and constructing meaningful connections between ideas 
(Greene, 2015). The original cognitive engagement scale has 
three sub-scales: self-regulation, deep strategy use, and shallow 
strategy use. According to Greene (2015), the shallow and deep 
strategy use sub-scales are two distinct “learning strategies.”  

Deep cognitive engagement connects novel concepts with 
existing knowledge, intentional practice, and elaboration. 
Elaborative processing is so closely intertwined with deep 
engagement that these terms are often used interchangeably in 
the literature (Greene, 2015). Effective learning strategies such 
as flashcards, self-quizzing, and spaced studying are all linked 
to deep cognitive engagement (Greene, 2015). In contrast, 
shallow engagement emphasizes memorizing facts and details 
and focuses on finishing learning tasks rather than obtaining 
understanding (Li & Lajoie, 2022). Shallow cognitive 
engagement is most associated with cramming and rote 
memorization (Dunlosky et al., 2013). Cramming improves 
factual recall for immediate assessments but does not cultivate 
the deeper understanding, critical thinking skills, or long-term 
knowledge retention needed for academic success (Kornell, 
2009; Rawson & Kintsch, 2005). 

However, just as cramming does work in specific settings, 
shallow learning techniques may also be a successful strategy 
for some academic tasks. Deep learning strategies have long 
been associated with success, whereas shallow cognitive 
processing, or shallow learning strategies, has received less 
favorable attention (Asikainen & Gijbels, 2017). Recent 
research has revealed a more nuanced perspective. Notably, 
accomplished students employ deep and shallow techniques, 
tailoring their approach to specific academic tasks 
(Mahatanankoon & Wolf, 2021). 
 
2.2 Deep and Shallow Learning Strategies in Computer 
Programming 
Emerging research suggests that college students may employ 
a mixture of deep and shallow processing strategies depending 
on the specific learning task and context, which further 
complicates the traditional “deep good, shallow bad” 
dichotomy (Asikainen & Gijbels, 2017; Greene, 2015). Studies 
assessing the evolution of college students’ learning strategies 
over time yielded mixed results. These mixed results suggest 
that learning strategies are far more intricate than a simple 
binary of deep being effective and shallow being less so (Vrugt 
& Oort, 2008).  

Supporting this, research has emphasized the need for 
domain-specific considerations when measuring cognitive 
engagement and cited previous challenges in differentiating 
deep and shallow engagement in mathematics (Greene, 2015). 
Mahatanankoon and Wolf (2021) posited that shallow learning 
strategies might be more effective in introductory classes. In 
contrast, deep learning strategies become more relevant in 
advanced courses, which suggests potential variations in 
optimal deep-learning strategies across different IT 
specializations. Their findings align with cognitive theory (Chi 
et al., 1981) and emphasize the importance of mastering deep 
and shallow cognitive processes for academic success. 
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2.3 The Need for a New Cognitive Engagement Scale for 
Computer Programming 
Recognizing the importance of programming competence for 
computing students’ career success, both computer science 
(CS) and information systems (IS) professional associations 
and accrediting agencies heavily emphasize programming 
instruction in their accreditation processes. In their model 
curriculum, IS 2020, the joint task force of the Association for 
Computing Machinery (ACM) and the Association for 
Information Systems (AIS) identified application development 
and programming as two required competencies for graduates 
of undergraduate programs in IS (Leidig & Anderson, 2020). 
Similarly, the Accreditation Board for Engineering and 
Technology (ABET) mandates extensive programming and 
software development coverage within its computer science and 
similarly named computing program criteria (ABET, 2025).  

While there is near universal acceptance that student 
engagement is beneficial for learning, there is an open debate—
especially among computing educators—on the 
appropriateness of current instruments used to measure student 
engagement. IT educators measure student engagement based 
on the emotional-cognitive dimensions (i.e., vigor, dedication, 
and absorption) of task-specific activities (Schwarz & Zhu, 
2015). Nonetheless, IT students consistently demonstrate lower 
engagement levels in various international benchmark surveys, 
including the National Survey of Student Engagement (NSSE), 
the Student Experience Survey (SES), and the United Kingdom 
Engagement Survey (UKES; Morgan et al., 2018a; Morgan et 
al., 2018b). The SES and UKES were designed to assess 
students’ educational experience and engagement in Australian 
and UK higher education institutions (Morgan et al., 2018a; 
Morgan et al., 2018b).  

The cognitive processes and skills needed to learn computer 
programming are unique and typically not required in other 
learning domains (Renumol et al., 2010). Supporting this, Silva 
et al. (2024) found that students who employed programming-
specific learning strategies were more likely to be successful in 
their programming courses. Further, high-performing students 
were more likely to use programming-specific strategies than 
low-performing students (Silva et al., 2024). Recognizing this, 
IT educators have raised concerns about the suitability of these 
widely used student engagement instruments for computing 
students. Many suggest that these measures may not capture 
relevant aspects of engagement or use terminology that students 
may interpret differently (Morgan et al., 2018a; Morgan et al., 
2018b; Sinclair et al., 2015). These educators suggest that 
current student engagement scales fail to capture the unique 
engagement activities required for success in programming 
courses and computing degree programs.  

This failure warrants the development of a new instrument 
specifically tailored to the unique demands of programming 
education. While valuable in other contexts, student 
engagement scales that focus on metrics such as paper length 
(Kuh, 2001) offer limited insight into the domain-specific 
cognitive and metacognitive skills essential for programming 
success (Zhang et al., 2020). By identifying and addressing 
these limitations, a domain-specific engagement measure can 
provide valuable insights into student learning strategies and 
inform the development of effective interventions to improve 
student outcomes in programming education. 

Further, an active community of computing educators is 
involved in student engagement research (Bai et al., 2021; Lai, 

2021; Saqr et al., 2023). However, many of these studies use 
student engagement scales designed for more general 
educational contexts. These generic scales, while appropriate 
for many academic disciplines, may fail to capture the nuances 
of engagement crucial for success in computing courses. 
Previous research also advocates sub-dimensions of cognitive 
engagement in computer programming learning environments 
(Mahatanankoon & Wolf, 2021). 

Fortunately, IT has a rich history of developing domain-
specific constructs tailored to explicitly capture IT-related 
attitudes and behaviors, with established tools like computer 
self-efficacy (Compeau & Higgins, 1995), IT adoption based 
on the theory of planned behavior (Mathieson, 1991), and the 
many incarnations of the technology acceptance model (TAM; 
Davis, 1989) providing a roadmap for scale development 
(Straub et al., 2004). This work seeks to develop and validate a 
cognitive engagement assessment tool designed explicitly for 
programming education. 
 

3. METHOD 
 
3.1 Existing Cognitive Engagement Constructs 
The first step in developing the CPE scale was to examine the 
existing literature. Greene’s (2015) excellent cognitive 
engagement measures are the “gold standard” in educational 
psychology. Fueled by intrinsic motivation and self-regulation, 
cognitive engagement stresses the mental exertions, not 
behavioral efforts, to learn new skills (Fredricks et al., 2004); 
cognitive engagement is defined as “thoughtfulness and 
willingness to exert the effort necessary to comprehend 
complex ideas and master difficult skills” (p. 60). While the 
construct is geared toward a generic educational setting, Greene 
(2015) emphasized the need for domain-specific considerations 
when measuring cognitive engagement and later appended self-
regulation and persistence as additional sub-dimensions. Miller 
et al. (1996) provided an example of how to adapt the scales for 
use in a mathematics course. This study utilizes the two original 
cognitive engagement sub-scales (Fredricks et al., 2004; 
Greene, 2015; Miller et al., 1996): deep and shallow learning 
(processing) strategies. Based on the literature and the 
preliminary work by Mahatanankoon and Wolf (2021), we 
propose the 21-item CPE scale (see Appendix A). 
 
3.2 Procedure and Sample 
We conducted our scale development in four steps (Igbaria & 
Baroudi, 1993; Pett et al., 2003; Straub et al., 2004): 1) pre-
analysis, 2) extracting the initial factors, 3) evaluating and 
refining the exploratory factors, and 4) examining construct 
validity through confirmatory factor analysis.  

We developed the CPE scale using data collected from 
undergraduate IT students (i.e., computer science, cyber-
security, information systems, and network 
telecommunications majors) enrolled in our ABET-accredited 
institution in the Midwest region of the United States. Data 
collection, assisted by introductory computer programming 
course instructors, occurred from fall 2020 to spring 2022. The 
identified instructors forwarded the web-based survey links to 
their students. The survey was voluntary, but some instructors 
offered extra credits for participants.  

We received 261 completed responses (fall 2020, n=28; 
spring 2021, n=138; fall 2021, n=27; spring 2022, n=68). We 
dropped incomplete responses (n=49), non-IT majors (n=44), 
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and graduate students (n=6). The incomplete responses were 
excluded because the dependent variables (CPE items) were 
missing (Hair et al., 1995). Responses that were completed in 
non-English browsers were also eliminated (n=8). Our data had 
120 IT students who enrolled in introductory (IT 1xx) 
programming classes (i.e., Java and C++) from fall 2020 to 
spring 2022. See Table 1 below. The sample comprised 85.8% 
men (n=103), 12.5% women (n=15), and two unknowns. The 
IT majors included 50.8% computer science (CS; n=61), 26.7% 
cyber-security (CyS; n=32), 18.3% information systems (IS; 
n=22), and 4.2% network telecommunications (NT; n=5). 
Independent t-tests showed no significant difference in research 
variables between men and women, except for SL5 (t=1.78, 
df=21.39, p=.045), suggesting that both groups provided 
similar answers to the questionnaire. There was no significant 
age difference between the two genders (t=.447, df=116, 
p=.656). 
 

Course Title Major 
(CS, IS, CyS, NT) 

Gender  
(M, F, U) 

Structured 
Problem Solving  

(9, 3, 6, 0) (16, 2, 0) 

Scripting 
Languages  

(0, 1, 13, 3) (14, 1, 2) 

Application 
Programming 

(2, 16, 10, 2) (27, 3, 0) 

Data  
Structures 

(19, 1, 2, 0) (18, 4, 0) 

C++ Programming (31, 1, 1, 0) (28, 5, 0) 
Chi-square  χ2=102.67, df=8,  

p<001 
χ2=13.79, 
df=8, 
p=.087 

Table 1. Sample’s Characteristics 

 
3.2.1 Step 1: Pre-Analyses of Correlation Matrix. An initial 
examination of the 21x21 correlation matrix (SL1-SL5 and 
DL1-DL16) suggested that the shallow learning items were 
significantly correlated, while several items from deep learning 
were also correlated among themselves (DL1-DL16). Bartlett’s 
Test of Sphericity, a test of “singular correlation matrix,” 
suggested that factor analysis was feasible (chi-
square=1163.11, df=210, p<.001; not an identity matrix; Pett et 
al., 2003). Our correlation matrix yielded a Kaiser-Meyer-Olkin 
(KMO) value of .765 (>.60), which suggested a sufficient 
sample size relative to the number of items in our proposed 
scale (Pett et al., 2003). The measure of sampling adequacy 
(MSA) statistics revealed weak correlations of SL4 (.574) and 
DL11 (.565) among other items. Appendix C shows the 
correlation matrix of all items. 
 
3.2.2 Step 2: Extracting Initial Factors and Rotation. We ran 
unrotated principal component analysis (PCA) using SPSS v.28 
to extract the initial factors, which yielded a six-factor solution. 
PCA is suitable for exploratory factor analysis (Pett et al., 
2003). Initial inspection of the factor loadings showed that 
shallow cognitive engagement (SL1-SL4) loaded strongly onto 
the same component, except for SL5 (.442). Since SL5 had low 
correlation values among other shallow cognitive engagements 
(see Appendix C), it was dropped from further analysis. We 
scrutinized DL6 (“I classify programming problems into 
categories before I begin to work them”) as it correlated with 

the shallow cognitive engagement items. Given its low 
communality value (.351) and the ambiguity of “classify,” DL6 
was eliminated from our factor analysis because of a 
community value of less than .40. 

After eliminating the previously mentioned items, we 
performed PCA with orthogonal varimax rotation to help 
interpret the meaning of the factors (Igbaria & Baroudi, 1993). 
We eliminated items with cross-loadings (>.40) and loadings 
with less than .50, given our sample size needed for significance 
(Hair et al., 1995). DL1 (“When studying, I try to combine 
different pieces of information from the course material in new 
ways”) suffered from cross-loadings, while SL5 (“In order for 
me to understand what technical terms meant, I memorized the 
textbook definition”) had insufficient factor loading with a 
communality value of less than a .40. DL5 (“I examine example 
programming problems that have already been worked to help 
me figure out how to do similar ‘coding’ problems on my own”) 
also did not fall into any dimensions. These items were 
eliminated from further analyses.  

 
3.2.3 Step 3: Evaluating and Interpreting the Factors. The 
remaining items produced a five-factor solution with an 
eigenvalue above 1.0. Eigenvalues indicate the total variance 
accounted for by each factor (Hair et al., 1995). The five-factor 
solution accounted for nearly 73% of the total variance. While 
previous studies demonstrated that shallow and deep cognitive 
engagements are two distinct constructs (Fredricks et al., 2004; 
Greene, 2015; Miller et al., 1996), our results reveal the 
existence of sub-dimensions beyond shallow learning in the 
context of computer programming. Appendix D shows each 
factor’s internal composite reliability (Cronbach’s alpha) and 
the maximum internal composite reliability for each factor with 
deleted items (if fewer questions were possible). Only SL1 and 
DL7 showed a negligible increment of alpha values when 
deleted.  

 
3.2.4 Step 4: Confirmatory Factor Analysis. We reassessed 
our factors using confirmatory factor analysis (CFA). CFA is 
often used in scale development and construct validation. Since 
we already examined the factor loadings from the previous 
steps, CFA can be used to assess each item with “fewer 
parameter estimates than exploratory factor analysis” (Brown, 
2015, p. 37). By fixing cross-loading among items to zero, 
standardized factor loadings and model-fit indices foster more 
“parsimonious” measurement models (Brown, 2015). We used 
R-Studio with lavaan statistical package to estimate each item’s 
standardized loading and the measurement model’s fit indices, 
i.e., CFI (>.95), TFI (>.95), and RMSEA (<.05). Fit indices 
captured how well our exploratory results of factors (Appendix 
D, “default model”) fit between the independence model 
(“worse model,” fit indices=0) and the “saturated model” (or 
“just identified model,” fit indices=1). Our model produced 
CFI=.887, TLI=.859, and RMSEA=.090. In reviewing each 
standardized loading, we found that SL1 and DL11 explained 
35.2% and 34.5% of factor 1 and factor 5, respectively. These 
two items resided on the lower bound of reliability (Harrington, 
2009). DL16 also had a standardized loading of 1.07 (a negative 
residual variance). After eliminating these items (i.e., DL1, 
DL11, and DL16), our model produced CFI=.906, TLI=.869, 
RMSEA=0.093. The values point to a moderate-acceptable fit 
of a four-factor solution (Harrington, 2009). Given the small 
size, researchers should be cautious about the interpretation of 
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our model. Based on our final CFA results, we labeled our CPE 
as follows: shallow, visual, practical, and analytical 
dimensions. See Appendix B for details. 

We demonstrated convergent and discriminant validity 
using suggestions from Straub et al. (2004). Convergent 
validity can be demonstrated by observing a higher than 0.5 of 
the standardized loading estimates along with a composite 
reliability (CR) value exceeding 0.7 (Hair et al., 1995). 
However, excluding SL1 and DL11 was problematic because 
of the different “acceptable” standardized loadings (Harrington, 
2009; Straub et al., 2004). Convergent validity is demonstrated 
in Appendix E, showing that once the irrelevant items had been 
eliminated, the retained items loaded “cleanly” on their 
designated construct and did not load onto another construct 
(Straub et al., 2004). 

While convergent validity establishes inter-item 
relationships within a component (factor), discriminant validity 
is “the degree to which items differentiate between constructs 
or measure distinct concepts” (Igbaria & Baroudi, 1993, p. 
142). We assessed discriminant validity by examining the 
variance shared between the items (squared correlations), 
which should be lower than the average variance extracted 
(AVE) of the items loaded onto a factor (Igbaria & Baroudi, 
1993). All CPE dimensions satisfy discriminant validity criteria 
(see Appendix E). Shallow CPE, bearing no correlation with 
any “deep” CPEs, is empirical evidence that the proposed 
measures will support the theoretical cognitive engagement 
constructs.  

 
4. DIMENSIONS OF COMPUTER COGNITIVE 

ENGAGEMENT (CPE) 
 
Our analyses demonstrate that cognitive engagement has four 
unique dimensions related to computer programming.  
 
4.1 Dimension 1: Shallow-CPE 
Shallow-CPE (cpe-S) is a coding strategy to memorize 
programming syntax, coding patterns, or steps. This 
fundamental cognitive engagement occurs when novice 
programmers can memorize and understand the syntax of a 
programming language. It maps to remembering and 
understanding in Bloom’s Taxonomy. Shallow-CPE coincides 
with rote learning (Mayer, 2002). During this learning stage, 
programming students memorize the steps or patterns needed to 
solve a given programming problem. However, new 
programming problems pose a challenge for this level of 
cognitive engagement. Similar to the different levels of 
Bloom’s Taxonomy—lower learning levels support higher 
learning levels—Shallow-CPE provides a solid foundation for 
other advanced CPEs. This dimension aligns with the previous 
empirical studies (Greene, 2015; Miller et al., 1996). The items 
related to Shallow-CPE are:  

• When I study for the tests, I review my class notes and 
look at solved programming problems (SL2). 

• When I study for tests, I use solved programming 
problems in my notes or in the book to help me 
memorize the “programming” steps involved (SL3). 

• I find reviewing previously solved programming 
problems to be a good way to study for a test (SL4). 

 

4.2 Dimension 2: Practical-CPE 
Practical-CPE (cpe-P) is defined as a coding strategy focused 
on task repetition of exercises to form new programming 
concepts and skills. The strategy involves doing by repetition, 
and through these reiterations, the programmers may start to 
notice recurring new coding patterns or new ways to solve 
programming problems. Therefore, this cognitive engagement 
dimension requires that programmers continuously work on 
coding assignments and examples. Practical-CPE involves 
iterative hands-on experiences required to realize this level of 
cognitive engagement. When programming instructors 
advocate that their students must engage in hands-on practices 
and exercises, they are intentionally (or unintentionally) trying 
to cultivate Practical-CPE. Mayer (2002) suggested that this 
level of learning is comprised of two cognitive activities, 
“closely linked to procedural knowledge”: executing—doing 
exercises familiar to learners; and implementing—applying 
learned procedures to unfamiliar tasks. This level closely aligns 
with Bloom’s Applying the learned programming skills. The 
items related to Practical-CPE are: 

• I work on several programming examples of the same 
type of problems when studying this class so I can 
understand the problems better (DL3). 

• I practice programming problems to check my 
understanding of new concepts or rules (DL4). 

• I work on practice programming questions/problems to 
check my understanding of new concepts or rules 
(DL10). 

 
4.3 Dimension 3: Analytical-CPE 
Analytical-CPE (cpe-A) is defined as a coding strategy seeking 
to form new programming logic and semantics. It is closely 
aligned to Bloom’s Analyzing—the ability to form new 
connections among different concepts. In this learning stage, 
new coding strategies along with new connections and 
semantics are formed. While Shallow-CPE helps form the 
syntaxes (grammar or representation), Analytical-CPE 
formulates the semantics (or language meaning). This 
dimension supports Mayer’s definition of “meaningful 
learning”—the ability to transfer knowledge to new situations 
and “devising a way of achieving a goal that one has never 
previously achieved” (Mayer, 2002, p. 227). We believe that 
Analytical-CPE is the precursor to being a proficient computer 
programmer whose intention is to develop new user 
applications from scratch or to become a system software 
engineer. To novice programmers, Analytical-CPE is time-
consuming and cognitively demanding. The Analytical-CPE 
dimension includes the following items: 

• When I work on a programming problem, I analyze it to 
see if there is more than one way to get the right solution 
(DL7). 

• While learning new programming concepts, I try to 
think of practical applications (DL8). 

• I put together programming ideas or concepts and draw 
conclusions that were not directly stated in course 
materials (DL9). 

 
4.4 Dimension 4: Visual-CPE 
Visual-CPE (cpe-V) is defined as a coding strategy that can be 
supplemented by modeling languages or diagramming tools. 
When requirements are ambiguous, systems analysts and 
software engineers often exercise a variety of modeling 
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languages to depict software requirement specifications. 
Software requirements as well as documentation are captured 
through these standardized graphical models. Unified Modeling 
Language (UML, see www.uml.org), as well as other 
traditional modeling techniques, are good examples of these 
modeling tools.  

Although proficient programmers may develop their own 
“concept maps” (Novak & Canas, 2008) to visualize the 
relationship between programming syntax and semantics, 
students without fundamental programming skills often 
struggle to create UML diagrams effectively. Understanding 
programming concepts is essential for accurately modeling 
system structures, behaviors, and interactions. This is why 
foundational programming courses are a prerequisite for 
Software Analysis and Design (SA&D) classes. These 
diagrams allow software designers to visualize the interrelated 
parts of hardware and software components. They also serve as 
“blueprints” for system behaviors or functionalities. When 
confronted with alternative software solutions, systems 
designers often develop multiple comparison models as a way 
to “evaluate” the efficiency, labor (programmer) cost, and 
maintainability of their software designs before commencing to 
program.  

Visual-CPE operates at Bloom’s Evaluating level, which 
involves synthesizing various components into a cohesive 
whole (Mayer, 2002). Visualizing software requirements 
demands additional effort beyond programming and often 
places a significant cognitive load on programmers, as they 
must align their design models with their functional programs. 
Effective programmers have a habit of documenting and 
creating visual representations of their computer programs for 
evaluation, modification, and maintenance. As such, the ability 
to develop diagrams and visualize how various code modules 
work extends beyond all previous CPEs. The items related to 
Visual-CPE are: 

• I draw pictures or diagrams to help me solve some 
programming problems (DL2). 

• Some “programming” problems can be visualized using 
diagrams or models (DL12).  

• I develop models or pictures to help me visualize how 
programming works (DL13). 

• I model different program modules or functions using 
some diagramming techniques (DL14). 

• I use some diagramming techniques to understand how 
programming works (DL15). 

 
In the next section, we will discuss the nomological validity 

of CPE dimensions. We elaborate on these dimensions later in 
the Discussion and Implications sections and offer practical 
suggestions based on our findings. 
 

5. NOMOLOGICAL AND PREDICTIVE VALIDITY 
 
To provide additional validity evidence of our measures, we 
tested the CPEs with other existing computer programming 
constructs: grit and self-efficacy. Predictive and nomological 
validity seek to establish relationships among the proposed 
measures and other extant constructs. Predictive validity 
demonstrates how an existing construct serves either as an 
independent or a dependent variable for the new measures, 
while nomological validity aims to test relationships among 
multiple constructs (Hagger et al., 2017).  

5.1 Coding Grit 
Individual differences in persistence and sustained effort 
influence academic achievement and overall life success 
(Duckworth, 2016). Among these factors, grit has emerged as a 
crucial construct that combines passion, long-term 
commitment, and unwavering dedication to achieving one’s 
goals (Duckworth et al., 2007). Duckworth (2016) defined grit 
as “determination and direction” (p. 13). It reflects individuals’ 
consistent pursuit of their passions despite encountering 
setbacks and challenges. Grit has a positive impact on learning 
outcomes regardless of instruction mode or subject matter 
(Pellas et al., 2024).  

Individuals tend to develop higher grit as they grow older. 
This upward trend may be attributed to various factors, 
including self-awareness, exposure to diverse challenges, and 
the acquisition of effective coping strategies. Furthermore, grit 
can be strengthened through deliberate and focused practice, 
highlighting its potential for educational and professional 
intervention (McClendon et al., 2017). Wolf and Jia (2015) 
found that “general grit” predicts success in introductory 
programming courses and even exceeds college entrance exams 
in predictive power. While they explored the link between 
“general grit” and programming success, Mahatanankoon and 
Sikolia (2017) focused on “coding grit,” a domain-specific 
concept tailored for programming. Their work established and 
validated “coding grit” as perseverance and focus within the 
programming domain. They also demonstrated a positive 
association between passion, coding grit, and positive attitudes 
toward programming, which suggested that fostering coding 
grit and passion might be key to promoting positive attitudes 
and ultimately retaining computer science majors 
(Mahatanankoon & Sikolia, 2017).  
 
5.2 Coding Self-Efficacy 
Computer self-efficacy, a well-established construct in 
information systems, is the belief in one’s ability to use 
computers, and it is influenced by past experiences, observing 
others, encouragement, and even how individuals feel in 
specific situations (Compeau & Higgins, 1995). Compeau and 
Higgins (1995) adapted the broader concept of self-efficacy and 
Bandura’s (1977) scale to the specific domain of computer use. 
Notably, self-efficacy is malleable and can be influenced by 
four key sources: performance accomplishments, vicarious 
experiences, verbal persuasion, and physiological states 
(Bandura, 1977). 

Computer self-efficacy is the most-studied socio-cognitive 
attribute of beginning programming students and is positively 
associated with interest in computing, success in computer 
programming courses, and a desire to remain in computing 
majors (Clarke-Midura et al., 2019; Kanaparan et al., 2013). 
Computer self-efficacy is not fixed but can be improved 
(Compeau et al., 2007). Additionally, teaching methods 
employed in programming courses can influence students’ 
computer self-efficacy (Tsai et al., 2023). This malleability 
suggests the potential for interventions aimed at enhancing 
computer self-efficacy. Building on Compeau and Higgins’ 
(1995) work, the computer self-efficacy scale was adapted to 
measure IT-related self-efficacy. For example, coding self-
efficacy, which pertains to one’s belief in competence in 
computer programming, reveals a positive correlation between 
coding grit and programming self-efficacy (Mahatanankoon, 
2018). As such, individuals with higher levels of perseverance 
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and passion for programming tend to exhibit greater confidence 
in their coding abilities. Figure 1 illustrates the overall 
constructs and proposes that coding grit influences different 
types of CPEs, which, in turn, affects coding self-efficacy.  
 
5.3 Results 
To demonstrate nomological validity, we correlated the sub-
dimensions of CPEs with coding grit and coding self-efficacy. 
Table 2 reveals the correlations among the research variables in 
question.  

Coding grit and self-efficacy were significantly correlated. 
The higher the programming grit, the higher one’s coding self-
efficacy. Coding grit was moderately correlated with Practical-
CPE (cpe-P), while coding self-efficacy was significantly 
related to Analytic-CPE (cpe-A). The relationship between 
coding grit and Practical-CPE is reasonable since both 
constructs foster experiential learning. Moreover, Analytic-
CPE may promote belief in one’s programming skills—coding 
self-efficacy, or vice versa. From our nomological assumption, 
it was not a surprise that Shallow-CPE had no relationship with 

either coding grit or coding self-efficacy. These findings 
hypothetically supported the conceptual definitions of these 
constructs.  

For predictive validity, coding grit was then hypothesized 
to predict CPE’s sub-dimensions, which then influenced coding 
self-efficacy. Multiple regression analyses (MRA) were used to 
test the causal relationships among the variables. The average 
variance inflation factors (VIF) of regressing coding self-
efficacy onto CPEs was 1.158, which showed that the 
multicollinearity of CPE dimensions was not a concern (see 
Section 3 for convergent and discriminant validity). Predictive 
validity tests revealed that coding grit predicted all deep-
learning CPEs, but only practical CPE (cpe-P) yielded 
noticeable variance explanation. Coding grit was not a predictor 
of Shallow-CPE, which by itself also hindered coding self-
efficacy. Practical-CPE (cpe-P) and Analytical-CPE (cpe-A) 
positively predicted coding self-efficacy. No causal relationship 
was found between visual CPE (cpe-V) and coding self-
efficacy. Figure 2 illustrates our predictive validity results. 
 

 

 
Figure 1. Nomological Network of Computer Programming Constructs 

 
 

CPE cpe-S  cpe-P cpe-A cpe-V CGR CSE 
cpe-S 1 .144 .021 .100 -.168 -.143 
cpe-P  1 .351** .347** .336** .323** 
cpe-A  1 .243** .284** .423** 
cpe-V  1 .194* .212* 
CGR  1 .471** 
CSE  1 
(*= p < .01, **=p < .001) 

Table 2. Correlation Matrix With Other Measures 
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Figure 2. Predictive Validity 

6. DISCUSSION AND IMPLICATIONS 
 
Our nomological and predictive validity tests imply that: a) 
Shallow-CPE has less to do with hands-on coding and more 
with rote learning and memorizing. Shallow-CPE is the 
foundation to “remember” coding syntax, but it is an 
insufficient learning strategy to be a proficient programmer. 
Based on Bloom’s Taxonomy (1956), Shallow-CPE operates at 
the foundational level of cognitive engagement of 
“remembering” and “understanding” programming language 
syntax and patterns. b) Practical-CPE focuses on hands-on 
experience, which is related to coding grit. Since grit constitutes 
the qualities of “continued interests” and “perseverance of 
efforts” (Duckworth, 2016), devoting time and energy to this 
cognitive engagement also influences one’s coding self-
efficacy. c) Coding self-efficacy is highly influenced by 
Analytical-CPE. Because coding self-efficacy is determined by 
grit and passion (Mahatanankoon, 2018; Mahatanankoon & 
Sikolia, 2017), this level of cognitive engagement corresponds 
to Bloom’s Analyze level (i.e., finding new programming 
solutions, searching for practical use of learned syntax or 
patterns, and drawing new conclusions and ideas). d) With 
concentration on “modeling” and less engagement on active 
coding, Visual-CPE has a low significant relationship with 
coding grit and coding self-efficacy. However, the ability to 
model and visualize interrelated software components requires 
a higher level of cognitive engagement. We consider Visual-
CPE to be aligned with at least Bloom’s Analyze level, if not 
Evaluate. In some cases, system designers create a set of design 
diagrams to “evaluate” or “compare and contrast” the quality of 
software components and architectures, e.g., structured chart, 
design class diagram, and state machine diagram.  

We, therefore, argue that CPE’s four sub-dimensions align 
conceptually with Bloom’s Taxonomy. CPE ranges from basic 
rote learning to practical and analytical learning, and to the 
ability to visualize programming logic. Figure 3 displays the 
mappings of CPE’s sub-dimensions to Bloom’s. Empirical 
evidence of CPE and its sub-dimensions has several 

implications, including the expansion of coding skills and grit 
as well as the development of IT artifacts/products.  
 

 
Figure 3. Aligning CPE Dimensions With Bloom’s 

Taxonomy 

 
6.1 Implications for Educators and Researchers 
This work has several implications for educators and 
researchers. First, educators can use CPE to evaluate student 
learning and computer programming comprehension. Lorås et 
al. (2022) highlighted the importance of bridging the gap 
between general higher education theories and definitions and 
the specific research conducted in computing education. CPE 
offers a solution by providing computing educators with a 
domain-specific framework based on Greene’s (2015) well-
established theoretical work.  

Next, changes in pedagogical approaches may advance 
students to higher CPE levels. For example, this work suggests 
that the first few weeks of an introductory programming class 
should focus on memorizing programming language syntax, 
including the three building blocks of a programming language 
(i.e., code sequencing, repetition (looping), and decision-
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making). Once learners have internalized programming syntax 
and patterns, they should focus on the analytical or practical 
aspects of computer programming. This progression leads to 
higher levels of learning, such as applying their skills to solve 
new problems (Practical-CPE) or devising alternative solutions 
for existing problem sets (Analytical-CPE). In addition, CPEs 
may be used to support practical teaching techniques, such as 
“read before writing,” “code early and often,” and “yield results 
beyond teaching syntax” (Zhang et al., 2020, p. 115). 
 
6.2 Students and Practitioners 
This work has several implications for students and 
practitioners. First, practitioners and students may use this scale 
(see Appendix B) to guide their cognitive efforts and evaluate 
their programming skills and knowledge acquisition progress. 
Instead of waiting for formative and summative feedback from 
their instructors, IT students and beginning programmers can 
focus their study efforts via memorization, practice, analysis, 
and visualization. Armed with this knowledge, students can 
move from surface-level to deeper levels of cognitive 
engagement. Second, rote memorization learning strategies 
(i.e., cramming) are less effective for computer programming 
and may reduce long-term commitment to persist in their degree 
program. Our findings suggest that Shallow-CPE—a solid 
foundation for higher learning strategies—has a low correlation 
with the sub-dimensions of Deep-CPEs. Research suggests that 
shallow and deep learning strategies have an inverse 
relationship (Alexander, 2004). Succeeding in a programming 
course requires more than reviewing class notes and 
memorizing programming steps and solutions; it requires 
additional time and effort—not just to memorize but to 
“understand” how “things work.” Deep CPEs (i.e., analytical, 
practical, and visual) will foster connections between 
programming syntaxes and semantics. 

Finally, this work suggests that students are underutilizing 
diagrams and visualization tools. Visual-CPE is the least 
utilized cognitive learning strategy based on our data. Perhaps 
visualizing alone does not contribute to a final “executable” 
product or a specific programming outcome, similar to creating 
a concept map to connect complex ideas (Novak & Canas, 
2008). In practice, visual diagrams “serve as an abstraction—
an approximate representation of the real item that is being 
built,” which allows programmers to see the systematic 
relationships or effects among various programs (Cernosek & 
Naiburg, 2004, p. 1). As such, Visual-CPE reveals significantly 
low correlations with coding grit and self-efficacy (see Table 
2). Other measurable outcomes of Visual-CPE, such as 
effective coding, project success, code maintenance, or end-
user acceptance, may be more appropriate to capture this 
learning strategy.  
 
6.3 Limitations 
We acknowledge well-known difficulties with self-reported 
data. However, we maintain that these instruments still hold 
value because they directly access students’ perceptions of their 
motivation and engagement, which are crucial for 
understanding their learning processes and behaviors. Since an 
individual’s contextual interpretation largely drives motivation, 
self-reporting offers unique insights into these subjective 
experiences. While all measurement methods have inherent 
limitations, self-reporting has historically contributed valuable 
findings to understanding motivation and engagement. 

Therefore, we believe that the solution to limitations with self-
reported data is not to abandon these measures but to move 
beyond their exclusive use, augmenting self-reports with other 
methodologies, such as interviews, observations, and trace 
analyses, to achieve a more comprehensive and nuanced 
understanding of cognitive engagement. We plan to explore 
additional methodologies for capturing cognitive engagement 
in the programming domain in future work.  

We advise educators to exercise caution when applying 
CPEs. First, our findings are based on our small sample (n=120) 
of convenience, with students passing their first introductory 
programming class. Nunnally (1978) suggested that at least 10 
subjects per item are required; our sample size is nearly 
adequate for the final 14 items. Most of our respondents were 
white males majoring in computer science and cybersecurity. 
Since our scale development was inductive, generalizability 
might be challenging for other IT or STEM majors. Further 
research is needed to test our scales on other information 
technology majors. Second, while we established our scale’s 
nomological and predictive validity on other computer 
programming constructs (i.e., coding grit and coding self-
efficacy), we plan to expand its nomological network or path 
analysis to other established educational motivation and 
engagement measures. Applying CPEs to another theoretical 
educational framework will ascertain their usefulness for future 
educational researchers. Third, while we adhered to the 
established factor analysis method, our confirmatory factor 
analysis (CFA) yielded only moderate to good fit indices 
below .95 for CFA/TFI and above >.05 for RMSEA. 
Improvement to the instrument will require further data 
collection. Lastly, learning to program may not occur linearly; 
in other words, learning strategies may not gradually move up 
Bloom’s levels of knowledge and abilities. Learners could be 
“overlapping” learning strategies (Dinsmore, 2018), thereby 
applying all sub-dimensions of CPEs simultaneously.  
 

7. CONCLUSION 
 
In this work, we have developed and validated the CPE scale as 
a domain-specific strategy. This new scale will be valuable to 
IT/STEM educators and researchers, who can use it to assess 
and evaluate student learning and teaching strategies. This work 
suggests that there are multiple learning strategies for computer 
programming. Future research may investigate CPE 
dimensions impact on other existing constructs. Similarly, 
future research may test CPE constructs on different levels of 
programming classes (e.g., computer science capstone or 
software engineering classes) where Visual-CPE is more salient 
or investigate the associations between CPE and various 
learning outcomes (performance goals, mastery goals, etc.). 
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APPENDICES 
 

Appendix A. Original Cognitive Programming Engagement (CPE) Scale 
 
Please read the following statements, and for each, select the answer that best represents your learning strategies in your most recent 
programming class. 1=not like me at all, 2=not much like me, 3=somewhat like me, 4=mostly like me, 5=very much like me 
 
Shallow Learning Strategies 
SL1: I try to memorize the steps for solving programming problems presented in the text or in the lecture. (dropped; CFA) 
SL2: When I study for the tests I review my class notes and look at solved programming problems. 
SL3: When I study for tests I used solved programming problems in my notes or in the book to help me memorize the 
“programming” steps involved. 
SL4: I find reviewing previously solved programming problems to be a good way to study for a test. 
SL5: In order for me to understand what technical terms meant, I memorized the textbook definitions. (dropped) 
 
Deep Learning Strategies 
DL1: When studying, I try to combine different pieces of information from course material in new ways. (dropped; PCA) 
DL2: I draw pictures or diagrams to help me solve some programming problems. 
DL3: I work on several programming examples of the same type of problems when studying this class so I can understand the 
problems better. 
DL4: I practice programming problems to check my understanding of new concepts or rules. 
DL5: I examine example programming problems that have already been worked to help me figure out how to do similar “coding” 
problems on my own. (dropped; PCA) 
DL6: I classify programming problems into categories before I begin to work them. (dropped; PCA) 
DL7: When I work a programming problem, I analyze it to see if there is more than one way to get the right solution.  
DL8: While learning new programming concepts, I try to think of practical applications. 
DL9: I put together programming ideas or concepts and draw conclusions that were not directly stated in course materials. 
DL10: I work on practice programming questions/problems to check my understanding of new concepts or rules. 
DL11: When I finish my programming practice questions/problems I check my solution for syntax errors (dropped; PCA) 
DL12: Some “programming” problems can be visualized using diagrams or models.  
DL13: I develop models or pictures to help me visualize how programming work. 
DL14: I model different program modules or functions using some diagramming techniques. 
DL15: I use some diagramming techniques to understand how programming work (dropped; CFA). 
DL16: When I finish my programming practice questions/problems I check my solution for semantic errors. (dropped; CFA) 
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Appendix B. Final Cognitive Programming Engagement (CPE) Dimensions 
 
Cognitive Programming Engagement (CPE) 
 
Shallow-CPE (cpe-S, α =.821) 

• When I study for the tests, I review my class notes and look at solved programming problems. 
• When I study for tests, I used solved programming problems in my notes or in the book to help me memorize the 

“programming” steps involved. 
• I find reviewing previously solved programming problems to be a good way to study for a test. 

 
Practical-CPE (cpe-P, α =.809) 

• I work on several programming examples of the same type of problems when studying this class so I can understand 
the problems better. 

• I practice programming problems to check my understanding of new concepts or rules. 
• I work on practice programming questions/problems to check my understanding of new concepts or rules. 

 
Analytical-CPE (cpe-A, α =.782) 

• When I work on a programming problem, I analyze it to see if there is more than one way to get the right solution. 
• While learning new programming concepts, I try to think of practical applications. 
• I put together programming ideas or concepts and draw conclusions that were not directly stated in course materials. 

 
Visual-CPE (cpe-V, α =.881) 

• I draw pictures or diagrams to help me solve some programming problems. 
• Some “programming” problems can be visualized using diagrams or models.  
• I develop models or pictures to help me visualize how programming works. 
• I model different program modules or functions using some diagramming techniques. 
• I use some diagramming techniques to understand how programming works. 

 
Nomological Validity Constructs 
 
Coding Self-Efficacy (CSE, α =.869) 

• Compared to others in my programming class, I am confident in my programming skills. 
• Compared to others in my programming class, I am confident of my technical skills. 
• I have faith in my ability to learn new programming skills constantly. 
• Compared to others in my programming class, I am confident of my programming techniques. 

 
Coding Grit (CGR, see Mahatanankoon & Sikolia, 2017, adapted from Duckworth et al., 2007; Duckworth & Quinn, 2009) 
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Appendix C. Correlation Matrix 
 
 
  

 AV SD SL1 SL2 SL3 SL4 SL5 DL1 DL2 DL3 DL4 DL5 DL6 DL7 DL8 DL9 DL 
10 

DL 
11 

DL 
12 

DL 
13 

DL 
14 

DL 
15 

DL 
16 

SL1 3.04 1.05 1.00 .434 .551 .376 .238 .304 .099 .152 .116 -.004 .109 .098 -.022 -.187 -.059 .219 .162 .115 .162 .220 .123 
SL2 3.70 1.08  1.00 .621 .641 .206 .367 .135 .224 .245 .173 .183 .171 .150 .032 .151 .121 .243 .068 .034 .102 .217 
SL3 3.31 1.22   1.00 .561 .260 .204 .079 .125 .078 .063 .208 .150 -.018 -.150 .038 .174 .090 -.03 .072 .160 .192 
SL4 3.67 1.10    1.00 .282 .195 -.074 -.014 -.005 .289 .152 .014 -.022 -.188 .115 .208 .053 .038 .025 .088 .083 
SL5 2.41 1.01     1.00 .120 .093 .150 .096 .112 .191 -.042 -.202 -.189 .091 .026 -.018 .047 .077 .136 .021 
DL1 3.21 1.03      1.00 .251 .480 .414 .187 .282 .242 .337 .310 .331 .102 .284 .120 .281 .252 .269 
DL2 2.69 1.26       1.00 .319 .254 .080 .211 .012 .211 .157 .233 -.057 .532 .631 .599 .615 .159 
DL3 3.00 1.11        1.00 .619 .259 .325 .305 .220 .197 .541 .176 .180 .299 .381 .271 .283 
DL4 3.23 1.09         1.00 .256 .261 .285 .331 .191 .599 .125 .224 .119 .210 .183 .236 
DL5 3.89 0.99          1.00 .130 .260 .230 .157 .240 .038 .067 .099 .106 .149 .082 
DL6 2.55 1.05           1.00 .226 .231 .214 .248 .147 .076 .244 .340 .320 .247 
DL7 3.38 1.07            1.00 .526 .463 .225 .326 .223 .029 .159 .141 .426 
DL8 3.78 1.03             1.00 .648 .228 .173 .347 .067 .217 .250 .320 
DL9 3.26 1.04              1.00 .259 .082 .296 .055 .180 .226 .299 
DL10 3.21 1.04               1.00 .146 .225 .225 .318 .233 .163 
DL11 3.80 1.21                1.00 .270 .115 .106 .087 .638 
DL12 3.33 1.06                 1.00 .527 .512 .534 .385 
DL13 2.73 1.07                  1.00 .739 .654 .234 
DL14 2.50 0.92                   1.00 .759 .272 
DL15 2.63 0.98                    1.00 .283 
DL16 3.78 1.05                     1.00 
Bolded correlation values signify significant relationships of at least .05, one-tailed. 
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Appendix D. Factor Loadings 
 

 
CPE 
Items 

CPE Dimensions 
Factor 1: 
Shallow 

Factor 2: 
Visual 

Factor 3: 
Practical  

Factor 4: 
Analytical 

Factor 5: 
Compiling 

α 
(if deleted) 

SL1 .687     .821 
SL2 .843     .748 
SL3 .851     .739 
SL4 .806     .776 
DL2  .805    .864 
DL12  .673    .880 
DL13  .867    .844 
DL14  .853    .844 
DL15  .847    .846 
DL3   .810   .749 
DL4   .845   .701 
DL10   .803   .765 
DL7    .651  .787 
DL8    .855  .633 
DL9    .850  .689 
DL11     .910  NA 
DL16     .785  NA 

Reliability 
α 

.820 .881 .809 .782 .774  

*Factor loadings more than 0.4 are shown. NA = Fewer than three items. 
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Appendix E. Intercorrelations: Factor-Based Scales of Computer Programming Engagement (CPE) (N=120) 
 
Dimension Mean S.D. Shallow  

 
Practical 

 
Analytical 

 
Visual 

 
AVE Composite 

Reliability 
Shallow 
(SL2-SL4) 

3.56 .973 1 .144 .021 .100 .610 .821 

Practical 
(DL3, DL4, DL10) 

3.17 .918  1 .351** .347** .590 .809 

Analytical 
(DL7-DL9) 

3.47 .874  1 .243** .561 .782 

Visual 
(DL2, DL12-DL15) 

2.78 .875  1 .617 .881 

**p < .001 
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