Journal of

Information

S Volume 36
yStemS Issue 4

Education Fall 2025

Development of the Cognitive Programming Engagement
(CPE) Scale: A Learning Strategy

Pruthikrai Mahatanankoon and James R. Wolf

Recommended Citation: Mahatanankoon, P., & Wolf, J. R. (2025). Development of
the Cognitive Programming Engagement (CPE) Scale: A Learning Strategy. Journal
of Information Systems Education, 36(4), 400-416.
https://doi.org/10.62273/KIKC8408

Article Link: https://jise.org/Volume36/n4/JISE2025v36n4pp400-416.html

Received: November 15, 2024
First Decision: February 10, 2025
Accepted: April 27, 2025
Published: December 15, 2025

Find archived papers, submission instructions, terms of use, and much more at the JISE website:
https://jise.or

ISSN: 2574-3872 (Online) 1055-3096 (Print)

https://doi.org/10.62273/KJKC8408
https://jise.org/Volume36/n4/JISE2025v36n4pp400-416.html
https://jise.org/

Journal of Information Systems Education, 36(4), 400-416, Fall 2025
https://doi.org/10.62273/KJKC8408

Development of the Cognitive Programming Engagement
(CPE) Scale: A Learning Strategy

Pruthikrai Mahatanankoon
James R. Wolf
School of Information Technology
[llinois State University
Normal, IL 61790, USA
pmahata@ilstu.edu, jrwolf@ilstu.edu

ABSTRACT

Advances in information and communication technologies (ICT) coupled with artificial intelligence have made computer
programming skills indispensable for IT majors and for an increasing number of other science, technology, engineering, and
mathematics (STEM) disciplines. Like any hands-on skill, mastering computer programming requires dedicated time, patience,
focus, and persistent effort. Understanding students’ learning strategies as they engage in computer programming activities can
reduce attrition and lay a solid foundation for a successful career in IT/STEM disciplines. This paper focuses on developing the
cognitive programming engagement (CPE) scale, which builds on existing cognitive engagement measures. Self-reported data from
undergraduate IT students who are learning computer programming show that CPE supports four-dimensional learning strategies:
memorization, practice, analysis, and visualization, which aligns with the levels of Bloom’s Taxonomy. The new scale supports
confirmatory, discriminant, and predictive validity and tests on programming self-efficacy and coding grit with acceptable
predictive validity. IT/STEM educators can use the scale to assess and evaluate students’ learning and improve their teaching

strategies.

Keywords: Bloom’s taxonomy, Cognitive engagement, Computing education, Learning styles, Pedagogy, Programming

1. INTRODUCTION

Introductory programming courses serve as gateways to careers
in information technology (IT) and an increasing number of
science, technology, engineering, and math (STEM) fields.
However, many IT educators can attest that it is extremely
challenging to teach an introductory programming course.
Practical teaching tips and pedagogical approaches to improve
learning are frequently shared among fellow instructors
(Menon, 2023; Zhang et al., 2020). Unfortunately, notoriously
high failure rates (Bennedsen & Caspersen, 2019) and
disheartening student experiences lead many students to quit or
switch majors (Giannakos et al., 2017; Obaido et al., 2023).

Research suggests that low levels of student engagement
may contribute to challenges in programming classes (Morgan
et al., 2018a; Morgan et al., 2018b). IT students typically enter
college with strong high school GPAs and SAT scores—two
measures often associated with collegiate success—near the top
of all college majors (College Board, n.d.; Westrick et al.,
2021). Yet, IT majors score near the bottom of all students in
terms of student engagement (Butler et al., 2016; Morgan et al.,
2018a; Morgan et al., 2018b). As a result, some have suggested
that improving student engagement might be the key to
improving outcomes and reducing attrition in computing majors
(Morgan et al., 2018a; Morgan et al., 2018b).

However, many computing educators are concerned that
existing student engagement scales, such as the National Survey
of Student Engagement (NSSE), do not accurately capture the

engagement crucial for success in programming courses (Butler
et al., 2016; Sinclair et al., 2015). These educators suggest that
the problem is not with the students but with the scales used to
capture student engagement. Supporting this, fourth-year
computing students, who have already successfully navigated
introductory programming courses, score lower on student
engagement than first-year computing students (Sinclair et al.,
2015). Many computing academics believe that scales focusing
on metrics such as research paper length or reflective learning
offer little insight into the domain-specific cognitive and
metacognitive skills essential for programming success (Butler
et al., 2016; Morgan et al., 2018a; Morgan et al., 2018b). We
agree and believe that a new, tailored instrument is needed to
assess domain-specific skills in programming education.
Student engagement is a multifaceted construct composed
of three distinct subconstructs: cognitive engagement,
behavioral engagement, and emotional engagement (Fredricks
& McColskey, 2012). In this study, we focus exclusively on the
cognitive engagement subscale as it pertains to computer
programming. This work addresses a gap in the current
literature by developing and validating the cognitive
programming engagement (CPE) scale. The CPE scale builds
on existing cognitive engagement measures and computer
learning strategies (Greene, 2015; Mahatanankoon & Wolf,
2021). Ultimately, this work aims to empower computing
faculty with the knowledge and tools to improve student
success, retention, and diversity in computing courses, as well

400

https://doi.org/10.62273/KJKC8408
mailto:pmahata@ilstu.edu
mailto:jrwolf@ilstu.edu

Journal of Information Systems Education, 36(4), 400-416, Fall 2025
https://doi.org/10.62273/KJKC8408

as providing learners with a framework to reflect on their
learning.

2. COGNITIVE ENGAGEMENT AND COMPUTER
PROGRAMMING

Student engagement is the student’s psychological commitment
and purposeful dedication to acquire, comprehend, or excel in
terms of knowledge, skill, or craft (Newman et al., 1992). It is
positively associated with academic performance, retention,
and graduation and is one of the most widely studied
educational constructs (Fredricks & McColskey, 2012; Yu et
al.,, 2021). Student engagement has three subconstructs:
cognitive, behavioral, and emotional (Wong & Liem, 2022).
Other proposed subconstructs include behavioral,
psychological, socio-cultural, and holistic (Kahu, 2013). In
contrast to generic student engagement measures that focus on
time spent or effort expended, cognitive engagement embodies
the student’s purposeful and strategic investment in the learning
process (Greene, 2015).

Further, student engagement focuses on two components:
one related to the students and the other centered on the
institution (Kuh, 2001; Wolf-Wendel et al., 2009). The student-
centric aspect involves students’ time and effort in their studies
and the various activities contributing to their academic success
(Kuh, 2001). The organization-centric aspect pertains to how
higher education institutions allocate resources and structure
learning opportunities to encourage student participation and
benefit from such activities (Kuh, 2001). In computing studies,
the bulk of student engagement research focuses on instructor-
centric aspects or instructional innovation (Gunness et al.,
2023; Hazzam & Wilkins, 2023; Hsiao et al., 2022). In these
studies, researchers implement an instructional innovation or
organizational change and then test for variations in student
engagement. For example, research found that perceived
teaching presence impacted online students’ engagement
(Zhang et al., 2016).

As behavioral engagement is the easiest to measure, the
bulk of earlier computing studies on instructional innovation
focused on students’ behavioral engagement (Davies, 2002).
Likewise, the majority of items in existing student engagement
scales, such as the National Survey of Student Engagement
(NSSE), also capture student behaviors (Butler et al., 2016).
However, a growing number of recent computing-related
student engagement studies have explored cognitive
engagement (Gunness et al., 2023; Zhong, 2023).

Behavioral and cognitive engagement are closely related
but distinct subconstructs. Behavioral engagement refers to a
student’s active participation and positive conduct in both
academic and school-related activities (Fredricks et al., 2004).
In contrast, cognitive engagement involves students’ mental
investment in their learning, their commitment to learning,
strategic thinking, and readiness to invest effort (Fredricks et
al., 2004). Items such as class participation and valuing school
can span both behavioral and cognitive engagement.

This work focuses on a domain-specific learning strategy of
cognitive engagement within the context of computer
programming. This focus is crucial because the existing student
engagement measures may not capture the unique demands of
programming education.

2.1 Cognitive Engagement: Shallow and Deep Learning
Cognitive engagement encapsulates a student’s deliberate
endeavors to comprehend new concepts and cultivate new skills
(Greene, 2015). It goes beyond passive information absorption
and involves actively seeking understanding, developing new
skills, and constructing meaningful connections between ideas
(Greene, 2015). The original cognitive engagement scale has
three sub-scales: self-regulation, deep strategy use, and shallow
strategy use. According to Greene (2015), the shallow and deep
strategy use sub-scales are two distinct “learning strategies.”

Deep cognitive engagement connects novel concepts with
existing knowledge, intentional practice, and elaboration.
Elaborative processing is so closely intertwined with deep
engagement that these terms are often used interchangeably in
the literature (Greene, 2015). Effective learning strategies such
as flashcards, self-quizzing, and spaced studying are all linked
to deep cognitive engagement (Greene, 2015). In contrast,
shallow engagement emphasizes memorizing facts and details
and focuses on finishing learning tasks rather than obtaining
understanding (Li & Lajoie, 2022). Shallow cognitive
engagement is most associated with cramming and rote
memorization (Dunlosky et al., 2013). Cramming improves
factual recall for immediate assessments but does not cultivate
the deeper understanding, critical thinking skills, or long-term
knowledge retention needed for academic success (Kornell,
2009; Rawson & Kintsch, 2005).

However, just as cramming does work in specific settings,
shallow learning techniques may also be a successful strategy
for some academic tasks. Deep learning strategies have long
been associated with success, whereas shallow cognitive
processing, or shallow learning strategies, has received less
favorable attention (Asikainen & Gijbels, 2017). Recent
research has revealed a more nuanced perspective. Notably,
accomplished students employ deep and shallow techniques,
tailoring their approach to specific academic tasks
(Mahatanankoon & Wolf, 2021).

2.2 Deep and Shallow Learning Strategies in Computer
Programming

Emerging research suggests that college students may employ
a mixture of deep and shallow processing strategies depending
on the specific learning task and context, which further
complicates the traditional “deep good, shallow bad”
dichotomy (Asikainen & Gijbels, 2017; Greene, 2015). Studies
assessing the evolution of college students’ learning strategies
over time yielded mixed results. These mixed results suggest
that learning strategies are far more intricate than a simple
binary of deep being effective and shallow being less so (Vrugt
& Oort, 2008).

Supporting this, research has emphasized the need for
domain-specific considerations when measuring cognitive
engagement and cited previous challenges in differentiating
deep and shallow engagement in mathematics (Greene, 2015).
Mahatanankoon and Wolf (2021) posited that shallow learning
strategies might be more effective in introductory classes. In
contrast, deep learning strategies become more relevant in
advanced courses, which suggests potential variations in
optimal deep-learning strategies across different IT
specializations. Their findings align with cognitive theory (Chi
et al., 1981) and emphasize the importance of mastering deep
and shallow cognitive processes for academic success.

401

https://doi.org/10.62273/KJKC8408

Journal of Information Systems Education, 36(4), 400-416, Fall 2025
https://doi.org/10.62273/KJKC8408

2.3 The Need for a New Cognitive Engagement Scale for
Computer Programming

Recognizing the importance of programming competence for
computing students’ career success, both computer science
(CS) and information systems (IS) professional associations
and accrediting agencies heavily emphasize programming
instruction in their accreditation processes. In their model
curriculum, IS 2020, the joint task force of the Association for
Computing Machinery (ACM) and the Association for
Information Systems (AIS) identified application development
and programming as two required competencies for graduates
of undergraduate programs in IS (Leidig & Anderson, 2020).
Similarly, the Accreditation Board for Engineering and
Technology (ABET) mandates extensive programming and
software development coverage within its computer science and
similarly named computing program criteria (ABET, 2025).

While there is near universal acceptance that student
engagement is beneficial for learning, there is an open debate—
especially among computing educators—on the
appropriateness of current instruments used to measure student
engagement. IT educators measure student engagement based
on the emotional-cognitive dimensions (i.e., vigor, dedication,
and absorption) of task-specific activities (Schwarz & Zhu,
2015). Nonetheless, IT students consistently demonstrate lower
engagement levels in various international benchmark surveys,
including the National Survey of Student Engagement (NSSE),
the Student Experience Survey (SES), and the United Kingdom
Engagement Survey (UKES; Morgan et al., 2018a; Morgan et
al.,, 2018b). The SES and UKES were designed to assess
students’ educational experience and engagement in Australian
and UK higher education institutions (Morgan et al., 2018a;
Morgan et al., 2018Db).

The cognitive processes and skills needed to learn computer
programming are unique and typically not required in other
learning domains (Renumol et al., 2010). Supporting this, Silva
et al. (2024) found that students who employed programming-
specific learning strategies were more likely to be successful in
their programming courses. Further, high-performing students
were more likely to use programming-specific strategies than
low-performing students (Silva et al., 2024). Recognizing this,
IT educators have raised concerns about the suitability of these
widely used student engagement instruments for computing
students. Many suggest that these measures may not capture
relevant aspects of engagement or use terminology that students
may interpret differently (Morgan et al., 2018a; Morgan et al.,
2018b; Sinclair et al., 2015). These educators suggest that
current student engagement scales fail to capture the unique
engagement activities required for success in programming
courses and computing degree programs.

This failure warrants the development of a new instrument
specifically tailored to the unique demands of programming
education. While valuable in other contexts, student
engagement scales that focus on metrics such as paper length
(Kuh, 2001) offer limited insight into the domain-specific
cognitive and metacognitive skills essential for programming
success (Zhang et al., 2020). By identifying and addressing
these limitations, a domain-specific engagement measure can
provide valuable insights into student learning strategies and
inform the development of effective interventions to improve
student outcomes in programming education.

Further, an active community of computing educators is
involved in student engagement research (Bai et al., 2021; Lai,

2021; Saqr et al., 2023). However, many of these studies use
student engagement scales designed for more general
educational contexts. These generic scales, while appropriate
for many academic disciplines, may fail to capture the nuances
of engagement crucial for success in computing courses.
Previous research also advocates sub-dimensions of cognitive
engagement in computer programming learning environments
(Mahatanankoon & Wolf, 2021).

Fortunately, IT has a rich history of developing domain-
specific constructs tailored to explicitly capture IT-related
attitudes and behaviors, with established tools like computer
self-efficacy (Compeau & Higgins, 1995), IT adoption based
on the theory of planned behavior (Mathieson, 1991), and the
many incarnations of the technology acceptance model (TAM;
Davis, 1989) providing a roadmap for scale development
(Straub et al., 2004). This work seeks to develop and validate a
cognitive engagement assessment tool designed explicitly for
programming education.

3. METHOD

3.1 Existing Cognitive Engagement Constructs

The first step in developing the CPE scale was to examine the
existing literature. Greene’s (2015) excellent cognitive
engagement measures are the “gold standard” in educational
psychology. Fueled by intrinsic motivation and self-regulation,
cognitive engagement stresses the mental exertions, not
behavioral efforts, to learn new skills (Fredricks et al., 2004);
cognitive engagement is defined as “thoughtfulness and
willingness to exert the effort necessary to comprehend
complex ideas and master difficult skills” (p. 60). While the
construct is geared toward a generic educational setting, Greene
(2015) emphasized the need for domain-specific considerations
when measuring cognitive engagement and later appended self-
regulation and persistence as additional sub-dimensions. Miller
et al. (1996) provided an example of how to adapt the scales for
use in a mathematics course. This study utilizes the two original
cognitive engagement sub-scales (Fredricks et al., 2004;
Greene, 2015; Miller et al., 1996): deep and shallow learning
(processing) strategies. Based on the literature and the
preliminary work by Mahatanankoon and Wolf (2021), we
propose the 21-item CPE scale (see Appendix A).

3.2 Procedure and Sample

We conducted our scale development in four steps (Igbaria &
Baroudi, 1993; Pett et al., 2003; Straub et al., 2004): 1) pre-
analysis, 2) extracting the initial factors, 3) evaluating and
refining the exploratory factors, and 4) examining construct
validity through confirmatory factor analysis.

We developed the CPE scale using data collected from
undergraduate IT students (i.e., computer science, cyber-
security, information systems, and network
telecommunications majors) enrolled in our ABET-accredited
institution in the Midwest region of the United States. Data
collection, assisted by introductory computer programming
course instructors, occurred from fall 2020 to spring 2022. The
identified instructors forwarded the web-based survey links to
their students. The survey was voluntary, but some instructors
offered extra credits for participants.

We received 261 completed responses (fall 2020, n=28;
spring 2021, n=138; fall 2021, n=27; spring 2022, n=68). We
dropped incomplete responses (n=49), non-IT majors (n=44),

402

https://doi.org/10.62273/KJKC8408

Journal of Information Systems Education, 36(4), 400-416, Fall 2025
https://doi.org/10.62273/KJKC8408

and graduate students (n=6). The incomplete responses were
excluded because the dependent variables (CPE items) were
missing (Hair et al., 1995). Responses that were completed in
non-English browsers were also eliminated (n=8). Our data had
120 IT students who enrolled in introductory (IT 1xx)
programming classes (i.e., Java and C++) from fall 2020 to
spring 2022. See Table 1 below. The sample comprised 85.8%
men (n=103), 12.5% women (n=15), and two unknowns. The
IT majors included 50.8% computer science (CS; n=61), 26.7%
cyber-security (CyS; n=32), 18.3% information systems (IS;
n=22), and 4.2% network telecommunications (NT; n=5).
Independent t-tests showed no significant difference in research
variables between men and women, except for SLS (+~=1.78,
df=21.39, p=.045), suggesting that both groups provided
similar answers to the questionnaire. There was no significant
age difference between the two genders (t=.447, df=116,
p=.656).

Course Title Major Gender
(CS,IS,CyS,NT) | (M, F, U)

Structured 9,3,6,0) (16,2,0)

Problem Solving

Scripting 0,1,13,3) (14,1,2)

Languages

Application (2,16, 10, 2) (27,3,0)

Programming

Data (19,1,2,0) (18,4,0)

Structures

C++ Programming | (31,1, 1,0) (28,5,0)

Chi-square 1*=102.67, df=8, ¥*=13.79,
p<001 df=8,

p=.087

Table 1. Sample’s Characteristics

3.2.1 Step 1: Pre-Analyses of Correlation Matrix. An initial
examination of the 21x21 correlation matrix (SL1-SL5 and
DL1-DL16) suggested that the shallow learning items were
significantly correlated, while several items from deep learning
were also correlated among themselves (DL1-DL16). Bartlett’s
Test of Sphericity, a test of “singular correlation matrix,”
suggested that factor analysis was feasible (chi-
square=1163.11, df=210, p<.001; not an identity matrix; Pett et
al., 2003). Our correlation matrix yielded a Kaiser-Meyer-Olkin
(KMO) value of .765 (>.60), which suggested a sufficient
sample size relative to the number of items in our proposed
scale (Pett et al., 2003). The measure of sampling adequacy
(MSA) statistics revealed weak correlations of SL4 (.574) and
DL11 (.565) among other items. Appendix C shows the
correlation matrix of all items.

3.2.2 Step 2: Extracting Initial Factors and Rotation. We ran
unrotated principal component analysis (PCA) using SPSS v.28
to extract the initial factors, which yielded a six-factor solution.
PCA is suitable for exploratory factor analysis (Pett et al.,
2003). Initial inspection of the factor loadings showed that
shallow cognitive engagement (SL1-SL4) loaded strongly onto
the same component, except for SL5 (.442). Since SL5 had low
correlation values among other shallow cognitive engagements
(see Appendix C), it was dropped from further analysis. We
scrutinized DL6 (“I classify programming problems into
categories before I begin to work them”) as it correlated with

the shallow cognitive engagement items. Given its low
communality value (.351) and the ambiguity of “classify,” DL6
was eliminated from our factor analysis because of a
community value of less than .40.

After eliminating the previously mentioned items, we
performed PCA with orthogonal varimax rotation to help
interpret the meaning of the factors (Igbaria & Baroudi, 1993).
We eliminated items with cross-loadings (>.40) and loadings
with less than .50, given our sample size needed for significance
(Hair et al., 1995). DL1 (“When studying, I try to combine
different pieces of information from the course material in new
ways”) suffered from cross-loadings, while SL5 (“In order for
me to understand what technical terms meant, I memorized the
textbook definition”) had insufficient factor loading with a
communality value of less than a .40. DL5 (“7 examine example
programming problems that have already been worked to help
me figure out how to do similar ‘coding’ problems on my own”)
also did not fall into any dimensions. These items were
eliminated from further analyses.

3.2.3 Step 3: Evaluating and Interpreting the Factors. The
remaining items produced a five-factor solution with an
eigenvalue above 1.0. Eigenvalues indicate the total variance
accounted for by each factor (Hair et al., 1995). The five-factor
solution accounted for nearly 73% of the total variance. While
previous studies demonstrated that shallow and deep cognitive
engagements are two distinct constructs (Fredricks et al., 2004;
Greene, 2015; Miller et al.,, 1996), our results reveal the
existence of sub-dimensions beyond shallow learning in the
context of computer programming. Appendix D shows each
factor’s internal composite reliability (Cronbach’s alpha) and
the maximum internal composite reliability for each factor with
deleted items (if fewer questions were possible). Only SL1 and
DL7 showed a negligible increment of alpha values when
deleted.

3.2.4 Step 4: Confirmatory Factor Analysis. We reassessed
our factors using confirmatory factor analysis (CFA). CFA is
often used in scale development and construct validation. Since
we already examined the factor loadings from the previous
steps, CFA can be used to assess each item with “fewer
parameter estimates than exploratory factor analysis” (Brown,
2015, p. 37). By fixing cross-loading among items to zero,
standardized factor loadings and model-fit indices foster more
“parsimonious” measurement models (Brown, 2015). We used
R-Studio with lavaan statistical package to estimate each item’s
standardized loading and the measurement model’s fit indices,
i.e., CFI (>.95), TFI (>.95), and RMSEA (<.05). Fit indices
captured how well our exploratory results of factors (Appendix
D, “default model”) fit between the independence model
(“worse model,” fit indices=0) and the “saturated model” (or
“just identified model,” fit indices=1). Our model produced
CF1=.887, TLI=.859, and RMSEA=.090. In reviewing each
standardized loading, we found that SL1 and DL11 explained
35.2% and 34.5% of factor 1 and factor 5, respectively. These
two items resided on the lower bound of reliability (Harrington,
2009). DL16 also had a standardized loading of 1.07 (a negative
residual variance). After eliminating these items (i.e., DLI,
DL11, and DL16), our model produced CFI=.906, TLI=.869,
RMSEA=0.093. The values point to a moderate-acceptable fit
of a four-factor solution (Harrington, 2009). Given the small
size, researchers should be cautious about the interpretation of

403

https://doi.org/10.62273/KJKC8408

Journal of Information Systems Education, 36(4), 400-416, Fall 2025
https://doi.org/10.62273/KJKC8408

our model. Based on our final CFA results, we labeled our CPE
as follows: shallow, visual, practical, and analytical
dimensions. See Appendix B for details.

We demonstrated convergent and discriminant validity
using suggestions from Straub et al. (2004). Convergent
validity can be demonstrated by observing a higher than 0.5 of
the standardized loading estimates along with a composite
reliability (CR) value exceeding 0.7 (Hair et al., 1995).
However, excluding SL1 and DL11 was problematic because
of'the different “acceptable” standardized loadings (Harrington,
2009; Straub et al., 2004). Convergent validity is demonstrated
in Appendix E, showing that once the irrelevant items had been
eliminated, the retained items loaded “cleanly” on their
designated construct and did not load onto another construct
(Straub et al., 2004).

While convergent validity establishes inter-item
relationships within a component (factor), discriminant validity
is “the degree to which items differentiate between constructs
or measure distinct concepts” (Igbaria & Baroudi, 1993, p.
142). We assessed discriminant validity by examining the
variance shared between the items (squared correlations),
which should be lower than the average variance extracted
(AVE) of the items loaded onto a factor (Igbaria & Baroudi,
1993). All CPE dimensions satisfy discriminant validity criteria
(see Appendix E). Shallow CPE, bearing no correlation with
any “deep” CPEs, is empirical evidence that the proposed
measures will support the theoretical cognitive engagement
constructs.

4. DIMENSIONS OF COMPUTER COGNITIVE
ENGAGEMENT (CPE)

Our analyses demonstrate that cognitive engagement has four
unique dimensions related to computer programming.

4.1 Dimension 1: Shallow-CPE

Shallow-CPE (cpe-S) is a coding strategy to memorize
programming syntax, coding patterns, or steps. This
fundamental cognitive engagement occurs when novice
programmers can memorize and understand the syntax of a
programming language. It maps to remembering and
understanding in Bloom’s Taxonomy. Shallow-CPE coincides
with rote learning (Mayer, 2002). During this learning stage,
programming students memorize the steps or patterns needed to
solve a given programming problem. However, new
programming problems pose a challenge for this level of
cognitive engagement. Similar to the different levels of
Bloom’s Taxonomy—Ilower learning levels support higher
learning levels—Shallow-CPE provides a solid foundation for
other advanced CPEs. This dimension aligns with the previous
empirical studies (Greene, 2015; Miller et al., 1996). The items
related to Shallow-CPE are:

e When I study for the tests, I review my class notes and
look at solved programming problems (SL2).

e When I study for tests, I use solved programming
problems in my notes or in the book to help me
memorize the “programming” steps involved (SL3).

e [find reviewing previously solved programming
problems to be a good way to study for a test (SL4).

4.2 Dimension 2: Practical-CPE

Practical-CPE (cpe-P) is defined as a coding strategy focused
on task repetition of exercises to form new programming
concepts and skills. The strategy involves doing by repetition,
and through these reiterations, the programmers may start to
notice recurring new coding patterns or new ways to solve
programming problems. Therefore, this cognitive engagement
dimension requires that programmers continuously work on
coding assignments and examples. Practical-CPE involves
iterative hands-on experiences required to realize this level of
cognitive engagement. When programming instructors
advocate that their students must engage in hands-on practices
and exercises, they are intentionally (or unintentionally) trying
to cultivate Practical-CPE. Mayer (2002) suggested that this
level of learning is comprised of two cognitive activities,
“closely linked to procedural knowledge”: executing—doing
exercises familiar to learners; and implementing—applying
learned procedures to unfamiliar tasks. This level closely aligns
with Bloom’s Applying the learned programming skills. The
items related to Practical-CPE are:

e [work on several programming examples of the same
type of problems when studying this class so I can
understand the problems better (DL3).

e [practice programming problems to check my
understanding of new concepts or rules (DL4).

e [work on practice programming questions/problems to
check my understanding of new concepts or rules
(DL10).

4.3 Dimension 3: Analytical-CPE
Analytical-CPE (cpe-A) is defined as a coding strategy seeking
to form new programming logic and semantics. It is closely
aligned to Bloom’s Analyzing—the ability to form new
connections among different concepts. In this learning stage,
new coding strategies along with new connections and
semantics are formed. While Shallow-CPE helps form the
syntaxes (grammar or representation), Analytical-CPE
formulates the semantics (or language meaning). This
dimension supports Mayer’s definition of ‘“meaningful
learning”—the ability to transfer knowledge to new situations
and “devising a way of achieving a goal that one has never
previously achieved” (Mayer, 2002, p. 227). We believe that
Analytical-CPE is the precursor to being a proficient computer
programmer whose intention is to develop new user
applications from scratch or to become a system software
engineer. To novice programmers, Analytical-CPE is time-
consuming and cognitively demanding. The Analytical-CPE
dimension includes the following items:
e When [work on a programming problem, I analyze it to
see if there is more than one way to get the right solution
(DL7).
e While learning new programming concepts, I try to
think of practical applications (DLS).
o [put together programming ideas or concepts and draw
conclusions that were not directly stated in course
materials (DL9).

4.4 Dimension 4: Visual-CPE

Visual-CPE (cpe-V) is defined as a coding strategy that can be
supplemented by modeling languages or diagramming tools.
When requirements are ambiguous, systems analysts and
software engineers often exercise a variety of modeling

404

https://doi.org/10.62273/KJKC8408

Journal of Information Systems Education, 36(4), 400-416, Fall 2025
https://doi.org/10.62273/KJKC8408

languages to depict software requirement specifications.
Software requirements as well as documentation are captured
through these standardized graphical models. Unified Modeling
Language (UML, see www.uml.org), as well as other
traditional modeling techniques, are good examples of these
modeling tools.

Although proficient programmers may develop their own
“concept maps” (Novak & Canas, 2008) to visualize the
relationship between programming syntax and semantics,
students without fundamental programming skills often
struggle to create UML diagrams effectively. Understanding
programming concepts is essential for accurately modeling
system structures, behaviors, and interactions. This is why
foundational programming courses are a prerequisite for
Software Analysis and Design (SA&D) classes. These
diagrams allow software designers to visualize the interrelated
parts of hardware and software components. They also serve as
“blueprints” for system behaviors or functionalities. When
confronted with alternative software solutions, systems
designers often develop multiple comparison models as a way
to “evaluate” the efficiency, labor (programmer) cost, and
maintainability of their software designs before commencing to
program.

Visual-CPE operates at Bloom’s Evaluating level, which
involves synthesizing various components into a cohesive
whole (Mayer, 2002). Visualizing software requirements
demands additional effort beyond programming and often
places a significant cognitive load on programmers, as they
must align their design models with their functional programs.
Effective programmers have a habit of documenting and
creating visual representations of their computer programs for
evaluation, modification, and maintenance. As such, the ability
to develop diagrams and visualize how various code modules
work extends beyond all previous CPEs. The items related to
Visual-CPE are:

e [draw pictures or diagrams to help me solve some
programming problems (DL2).

e Some “programming” problems can be visualized using
diagrams or models (DL12).

e [develop models or pictures to help me visualize how
programming works (DL13).

e [model different program modules or functions using
some diagramming techniques (DL14).

o [use some diagramming techniques to understand how
programming works (DL15).

In the next section, we will discuss the nomological validity
of CPE dimensions. We elaborate on these dimensions later in
the Discussion and Implications sections and offer practical
suggestions based on our findings.

5. NOMOLOGICAL AND PREDICTIVE VALIDITY

To provide additional validity evidence of our measures, we
tested the CPEs with other existing computer programming
constructs: grit and self-efficacy. Predictive and nomological
validity seek to establish relationships among the proposed
measures and other extant constructs. Predictive validity
demonstrates how an existing construct serves either as an
independent or a dependent variable for the new measures,
while nomological validity aims to test relationships among
multiple constructs (Hagger et al., 2017).

5.1 Coding Grit

Individual differences in persistence and sustained effort
influence academic achievement and overall life success
(Duckworth, 2016). Among these factors, grit has emerged as a
crucial construct that combines passion, long-term
commitment, and unwavering dedication to achieving one’s
goals (Duckworth et al., 2007). Duckworth (2016) defined grit
as “determination and direction” (p. 13). It reflects individuals’
consistent pursuit of their passions despite encountering
setbacks and challenges. Grit has a positive impact on learning
outcomes regardless of instruction mode or subject matter
(Pellas et al., 2024).

Individuals tend to develop higher grit as they grow older.
This upward trend may be attributed to various factors,
including self-awareness, exposure to diverse challenges, and
the acquisition of effective coping strategies. Furthermore, grit
can be strengthened through deliberate and focused practice,
highlighting its potential for educational and professional
intervention (McClendon et al., 2017). Wolf and Jia (2015)
found that “general grit” predicts success in introductory
programming courses and even exceeds college entrance exams
in predictive power. While they explored the link between
“general grit” and programming success, Mahatanankoon and
Sikolia (2017) focused on “coding grit,” a domain-specific
concept tailored for programming. Their work established and
validated “coding grit” as perseverance and focus within the
programming domain. They also demonstrated a positive
association between passion, coding grit, and positive attitudes
toward programming, which suggested that fostering coding
grit and passion might be key to promoting positive attitudes
and ultimately retaining computer science majors
(Mahatanankoon & Sikolia, 2017).

5.2 Coding Self-Efficacy

Computer self-efficacy, a well-established construct in
information systems, is the belief in one’s ability to use
computers, and it is influenced by past experiences, observing
others, encouragement, and even how individuals feel in
specific situations (Compeau & Higgins, 1995). Compeau and
Higgins (1995) adapted the broader concept of self-efficacy and
Bandura’s (1977) scale to the specific domain of computer use.
Notably, self-efficacy is malleable and can be influenced by
four key sources: performance accomplishments, vicarious
experiences, verbal persuasion, and physiological states
(Bandura, 1977).

Computer self-efficacy is the most-studied socio-cognitive
attribute of beginning programming students and is positively
associated with interest in computing, success in computer
programming courses, and a desire to remain in computing
majors (Clarke-Midura et al., 2019; Kanaparan et al., 2013).
Computer self-efficacy is not fixed but can be improved
(Compeau et al., 2007). Additionally, teaching methods
employed in programming courses can influence students’
computer self-efficacy (Tsai et al., 2023). This malleability
suggests the potential for interventions aimed at enhancing
computer self-efficacy. Building on Compeau and Higgins’
(1995) work, the computer self-efficacy scale was adapted to
measure [T-related self-efficacy. For example, coding self-
efficacy, which pertains to one’s belief in competence in
computer programming, reveals a positive correlation between
coding grit and programming self-efficacy (Mahatanankoon,
2018). As such, individuals with higher levels of perseverance

405

https://doi.org/10.62273/KJKC8408
http://www.uml.org/

Journal of Information Systems Education, 36(4), 400-416, Fall 2025
https://doi.org/10.62273/KJKC8408

and passion for programming tend to exhibit greater confidence
in their coding abilities. Figure 1 illustrates the overall
constructs and proposes that coding grit influences different
types of CPEs, which, in turn, affects coding self-efficacy.

5.3 Results

To demonstrate nomological validity, we correlated the sub-
dimensions of CPEs with coding grit and coding self-efficacy.
Table 2 reveals the correlations among the research variables in
question.

Coding grit and self-efficacy were significantly correlated.
The higher the programming grit, the higher one’s coding self-
efficacy. Coding grit was moderately correlated with Practical-
CPE (cpe-P), while coding self-efficacy was significantly
related to Analytic-CPE (cpe-A). The relationship between
coding grit and Practical-CPE is reasonable since both
constructs foster experiential learning. Moreover, Analytic-
CPE may promote belief in one’s programming skills—coding
self-efficacy, or vice versa. From our nomological assumption,
it was not a surprise that Shallow-CPE had no relationship with

either coding grit or coding self-efficacy. These findings
hypothetically supported the conceptual definitions of these
constructs.

For predictive validity, coding grit was then hypothesized
to predict CPE’s sub-dimensions, which then influenced coding
self-efficacy. Multiple regression analyses (MRA) were used to
test the causal relationships among the variables. The average
variance inflation factors (VIF) of regressing coding self-
efficacy onto CPEs was 1.158, which showed that the
multicollinearity of CPE dimensions was not a concern (see
Section 3 for convergent and discriminant validity). Predictive
validity tests revealed that coding grit predicted all deep-
learning CPEs, but only practical CPE (cpe-P) yielded
noticeable variance explanation. Coding grit was not a predictor
of Shallow-CPE, which by itself also hindered coding self-
efficacy. Practical-CPE (cpe-P) and Analytical-CPE (cpe-A)
positively predicted coding self-efficacy. No causal relationship
was found between visual CPE (cpe-V) and coding self-
efficacy. Figure 2 illustrates our predictive validity results.

Shallow-CPE

(cpe-S)

Coding Grit

/

Practical-
(cpe-P)

CPE

\
]

Coding Self-

(CGR) - efficacy (CSE)
\ Analytical-CPE
(cpe-A)
Visual-CPE
(cpe-V)
Figure 1. Nomological Network of Computer Programming Constructs

CPE cpe-S cpe-P cpe-A cpe-V CGR CSE
cpe-S 1 .144 .021 .100 -.168 -.143
cpe-P 1 351%* 347%* 336%* .323%*
cpe-A 1 243%* 284 %* A23%*
cpe-V 1 .194* 212%
CGR 1 AT1**
CSE 1

(*=p <.01, **=p <.001)

Table 2. Correlation Matrix With Other Measures

406

https://doi.org/10.62273/KJKC8408

Journal of Information Systems Education, 36(4), 400-416, Fall 2025
https://doi.org/10.62273/KJKC8408

-.168

Shallow-CPE

(cpe-S)
R2=.028

-.187*

336%*

Practical-CPE

(cpe-P)
RZ=.113

205%

Coding Grit

Coding Self-efficacy

(CGR) 284%

Analytical-CPE 336%*
(cpe-A)
R2=.081

(CSE)
R2= 252

Vi

.194%*

.078

Visual-CPE
(cpe-V)
R2=.038

*=p < 05, **=p <.001

Figure 2. Predictive Validity

6. DISCUSSION AND IMPLICATIONS

Our nomological and predictive validity tests imply that: a)
Shallow-CPE has less to do with hands-on coding and more
with rote learning and memorizing. Shallow-CPE is the
foundation to “remember” coding syntax, but it is an
insufficient learning strategy to be a proficient programmer.
Based on Bloom’s Taxonomy (1956), Shallow-CPE operates at
the foundational level of cognitive engagement of
“remembering” and “understanding” programming language
syntax and patterns. b) Practical-CPE focuses on hands-on
experience, which is related to coding grit. Since grit constitutes
the qualities of “continued interests” and “perseverance of
efforts” (Duckworth, 2016), devoting time and energy to this
cognitive engagement also influences one’s coding self-
efficacy. ¢) Coding self-efficacy is highly influenced by
Analytical-CPE. Because coding self-efficacy is determined by
grit and passion (Mahatanankoon, 2018; Mahatanankoon &
Sikolia, 2017), this level of cognitive engagement corresponds
to Bloom’s Analyze level (i.e., finding new programming
solutions, searching for practical use of learned syntax or
patterns, and drawing new conclusions and ideas). d) With
concentration on “modeling” and less engagement on active
coding, Visual-CPE has a low significant relationship with
coding grit and coding self-efficacy. However, the ability to
model and visualize interrelated software components requires
a higher level of cognitive engagement. We consider Visual-
CPE to be aligned with at least Bloom’s Analyze level, if not
Evaluate. In some cases, system designers create a set of design
diagrams to “evaluate” or “compare and contrast” the quality of
software components and architectures, e.g., structured chart,
design class diagram, and state machine diagram.

We, therefore, argue that CPE’s four sub-dimensions align
conceptually with Bloom’s Taxonomy. CPE ranges from basic
rote learning to practical and analytical learning, and to the
ability to visualize programming logic. Figure 3 displays the
mappings of CPE’s sub-dimensions to Bloom’s. Empirical
evidence of CPE and its sub-dimensions has several

implications, including the expansion of coding skills and grit
as well as the development of IT artifacts/products.

_ Development of IT Artifact
i
Creating i

3V VE 3 37: A VS, VE—

Visual

. . Expansion of Coding
e e Analytical
Analyzing " Skills and Grit Over
Time

Applying - Practical

[Understanding \
/ Remembering \

Bloom’s Taxonomy

Shallow

Stages of CPEs

Figure 3. Aligning CPE Dimensions With Bloom’s
Taxonomy

6.1 Implications for Educators and Researchers

This work has several implications for educators and
researchers. First, educators can use CPE to evaluate student
learning and computer programming comprehension. Lorés et
al. (2022) highlighted the importance of bridging the gap
between general higher education theories and definitions and
the specific research conducted in computing education. CPE
offers a solution by providing computing educators with a
domain-specific framework based on Greene’s (2015) well-
established theoretical work.

Next, changes in pedagogical approaches may advance
students to higher CPE levels. For example, this work suggests
that the first few weeks of an introductory programming class
should focus on memorizing programming language syntax,
including the three building blocks of a programming language
(i.e,, code sequencing, repetition (looping), and decision-

407

https://doi.org/10.62273/KJKC8408

Journal of Information Systems Education, 36(4), 400-416, Fall 2025
https://doi.org/10.62273/KJKC8408

making). Once learners have internalized programming syntax
and patterns, they should focus on the analytical or practical
aspects of computer programming. This progression leads to
higher levels of learning, such as applying their skills to solve
new problems (Practical-CPE) or devising alternative solutions
for existing problem sets (Analytical-CPE). In addition, CPEs
may be used to support practical teaching techniques, such as
“read before writing,” “code early and often,” and “yield results
beyond teaching syntax” (Zhang et al., 2020, p. 115).

6.2 Students and Practitioners

This work has several implications for students and
practitioners. First, practitioners and students may use this scale
(see Appendix B) to guide their cognitive efforts and evaluate
their programming skills and knowledge acquisition progress.
Instead of waiting for formative and summative feedback from
their instructors, IT students and beginning programmers can
focus their study efforts via memorization, practice, analysis,
and visualization. Armed with this knowledge, students can
move from surface-level to deeper levels of cognitive
engagement. Second, rote memorization learning strategies
(i.e., cramming) are less effective for computer programming
and may reduce long-term commitment to persist in their degree
program. Our findings suggest that Shallow-CPE—a solid
foundation for higher learning strategies—has a low correlation
with the sub-dimensions of Deep-CPEs. Research suggests that
shallow and deep learning strategies have an inverse
relationship (Alexander, 2004). Succeeding in a programming
course requires more than reviewing class notes and
memorizing programming steps and solutions; it requires
additional time and effort—not just to memorize but to
“understand” how “things work.” Deep CPEs (i.e., analytical,
practical, and visual) will foster connections between
programming syntaxes and semantics.

Finally, this work suggests that students are underutilizing
diagrams and visualization tools. Visual-CPE is the least
utilized cognitive learning strategy based on our data. Perhaps
visualizing alone does not contribute to a final “executable”
product or a specific programming outcome, similar to creating
a concept map to connect complex ideas (Novak & Canas,
2008). In practice, visual diagrams “serve as an abstraction—
an approximate representation of the real item that is being
built,” which allows programmers to see the systematic
relationships or effects among various programs (Cernosek &
Naiburg, 2004, p. 1). As such, Visual-CPE reveals significantly
low correlations with coding grit and self-efficacy (see Table
2). Other measurable outcomes of Visual-CPE, such as
effective coding, project success, code maintenance, or end-
user acceptance, may be more appropriate to capture this
learning strategy.

6.3 Limitations

We acknowledge well-known difficulties with self-reported
data. However, we maintain that these instruments still hold
value because they directly access students’ perceptions of their
motivation and engagement, which are crucial for
understanding their learning processes and behaviors. Since an
individual’s contextual interpretation largely drives motivation,
self-reporting offers unique insights into these subjective
experiences. While all measurement methods have inherent
limitations, self-reporting has historically contributed valuable
findings to understanding motivation and engagement.

Therefore, we believe that the solution to limitations with self-
reported data is not to abandon these measures but to move
beyond their exclusive use, augmenting self-reports with other
methodologies, such as interviews, observations, and trace
analyses, to achieve a more comprehensive and nuanced
understanding of cognitive engagement. We plan to explore
additional methodologies for capturing cognitive engagement
in the programming domain in future work.

We advise educators to exercise caution when applying
CPEs. First, our findings are based on our small sample (n=120)
of convenience, with students passing their first introductory
programming class. Nunnally (1978) suggested that at least 10
subjects per item are required; our sample size is nearly
adequate for the final 14 items. Most of our respondents were
white males majoring in computer science and cybersecurity.
Since our scale development was inductive, generalizability
might be challenging for other IT or STEM majors. Further
research is needed to test our scales on other information
technology majors. Second, while we established our scale’s
nomological and predictive validity on other computer
programming constructs (i.e., coding grit and coding self-
efficacy), we plan to expand its nomological network or path
analysis to other established educational motivation and
engagement measures. Applying CPEs to another theoretical
educational framework will ascertain their usefulness for future
educational researchers. Third, while we adhered to the
established factor analysis method, our confirmatory factor
analysis (CFA) yielded only moderate to good fit indices
below .95 for CFA/TFI and above >.05 for RMSEA.
Improvement to the instrument will require further data
collection. Lastly, learning to program may not occur linearly;
in other words, learning strategies may not gradually move up
Bloom’s levels of knowledge and abilities. Learners could be
“overlapping” learning strategies (Dinsmore, 2018), thereby
applying all sub-dimensions of CPEs simultaneously.

7. CONCLUSION

In this work, we have developed and validated the CPE scale as
a domain-specific strategy. This new scale will be valuable to
IT/STEM educators and researchers, who can use it to assess
and evaluate student learning and teaching strategies. This work
suggests that there are multiple learning strategies for computer
programming. Future research may investigate CPE
dimensions impact on other existing constructs. Similarly,
future research may test CPE constructs on different levels of
programming classes (e.g., computer science capstone or
software engineering classes) where Visual-CPE is more salient
or investigate the associations between CPE and various
learning outcomes (performance goals, mastery goals, etc.).

8. REFERENCES

ABET. (2025). Criteria for Accrediting Computing Programs,
2025 - 2026.
https://www.abet.org/accreditation/accreditation-
criteria/criteria-for-accrediting-computing-programs-
2025-2026/

Alexander, P. A. (2004). A Model of Domain Learning:
Reinterpreting Expertise as a Multidimensional, Multistage
Process. In D. Y. Dai & R.J. Sternberg (Eds.), Motivation,
Emotion, and Cognition: Integrative Perspectives on

408

https://doi.org/10.62273/KJKC8408
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-computing-programs-2025-2026/
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-computing-programs-2025-2026/
https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-computing-programs-2025-2026/

Journal of Information Systems Education, 36(4), 400-416, Fall 2025
https.//doi.org/10.62273/KJKC8408

Intellectual Functioning and Development (pp. 273-298).
Mahwah, NJ: Lawrence Erlbaum Associates.

Asikainen, H., & Gijbels, D. (2017). Do Students Develop
Towards More Deep Approaches to Learning During
Studies? A Systematic Review on the Development of
Students’ Deep and Surface Approaches to Learning in
Higher Education. Educational Psychology Review, 29(2),
205-234. https://doi.org/10.1007/510648-017-9406-6

Bai, S., Hew, K. F., Sailer, M., & Jia, C. (2021). From Top to
Bottom: How Positions on Different Types of Leaderboard
May Affect Fully Online Student Learning Performance,
Intrinsic Motivation, and Course Engagement. Computers
& Education, 173, Article 104297.

Bandura, A. (1977). Self-Efficacy: Toward a Unifying Theory
of Behavioral Change. Psychological Review, 84(2), 191-
215. https://doi.org/10.1037/0033-295X.84.2.191

Bennedsen, J., & Caspersen, M. E. (2019). Failure Rates in
Introductory Programming: 12 Years Later. ACM Inroads,
10(2), 30-36. https://doi.org/10.1145/3324888

Bloom, B. S. (1956). Taxonomy of Educational Objectives. NY:
Longmans, Green.

Brown, T. A. (2015). Confirmatory Factor Analysis for Applied
Research (2nd ed.). NYC, NY: Guilford Publications.

Butler, M., Sinclair, J., Morgan, M., & Kalvala, S. (2016).
Comparing International Indicators of Student Engagement
for Computer Science. Proceedings of the Australasian
Computer Science Week Multiconference (pp. 1-10).
https://doi.org/10.1145/2843043.2843065

Cernosek, G. & Naiburg, E. (2004). The Value of Modeling
[White paper]. IBM.
https://download.boulder.ibm.com/ibmdl/pub/software/dw
/library/rational/pdf/valueofmodeling.pdf

Chi, M. T., Feltovich, P. J., & Glaser, R. (1981). Categorization
and Representation of Physics Problems by Experts and
Novices. Cognitive Science, 5(2), 121-152.
https://doi.org/10.1207/s15516709¢0g0502_2

College Board. (n.d.). SAT Suite of Assessments — Reports.
https://reports.collegeboard.org/sat-suite-program-results

Compeau, D. R., & Higgins, C. A. (1995). Computer Self-
Efficacy: Development of a Measure and Initial Test. MIS
Quarterly, 19(2), 189-211. https://doi.org/10.2307/249688

Compeau, D., Gravill, J., Haggerty, N., & Kelley, H. (2007).
Computer Self-Efficacy: A Review. In P. Zhang & D. F.
Galletta (Eds.), Human-Computer Interaction and
Management Information Systems: Foundations (pp. 225-
261. New York: Routledge.

Clarke-Midura, J., Sun, C., Pantic, K., Poole, F., & Allan, V.
(2019). Using Informed Design in Informal Computer
Science Programs to Increase Youths’ Interest, Self-
Efficacy, and Perceptions of Parental Support. ACM
Transactions on Computing Education, 19(4), 1-24.
https://doi.org/10.1145/3319445

Davies, C. H. (2002). Student Engagement With Simulations:
A Case Study. Computers & Education, 39(3), 271-282.
https://doi.org/10.1016/S0360-1315(02)00046-5

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of
Use, and User Acceptance of Information Technology. MIS
Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008

Dinsmore, D. L. (2018). Strategic Processing in Education.
New York, NY: Routledge.
https://doi.org/10.4324/9781315505732

Duckworth, A. L. (2016). Grit: The Power of Passion and

Perseverance. NY: Scribner.

Duckworth, A. L., Peterson, C., Matthews, M. D., & Kelly, D.
R. (2007). Grit: Perseverance and Passion for Long-Term
Goals. Journal of Personality and Social Psychology,
92(6), 1087-1101. https://doi.org/10.1037/0022-
3514.92.6.1087

Duckworth, A. L., & Quinn, P.D. (2009). Development and
Validation of the Short Grit Scale. Journal of Personality
Assessment, 91(2), 166-174.
https://doi.org/10.1080/00223890802634290

Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., &
Willingham, D. T. (2013). Improving Students’ Learning
With Effective Learning Techniques: Promising Directions
From Cognitive and Educational Psychology.
Psychological Science in the Public Interest, 14(1), 4-58.
https://doi.org/10.1177/1529100612453266

Fredricks, J. A., Blumenfeld, P. C., & Paris, A. H. (2004).
School Engagement: Potential of the Concept, State of
Evidence. Review of Educational Research, 74(1), 59-109.
https://doi.org/10.3102/00346543074001059

Fredricks, J. A., & McColskey, W. (2012). The Measurement
of Student Engagement: A Comparative Analysis of
Various Methods and Student Self-report Instruments. In S.
L. Christenson, A. L. Reschly, & C. Wylie (Eds.),
Handbook of Research on Student Engagement (pp. 763-
782). Springer US. https://doi.org/10.1007/978-1-4614-
2018-7 37

Giannakos, M. N., Pappas, 1. O., Jaccheri, L., & Sampson, D.
G. (2017). Understanding Student Retention in Computer
Science Education: The Role of Environment, Gains,
Barriers and Usefulness. Education and Information
Technologies, 22(5), 2365-2382.
https://doi.org/10.1007/s10639-016-9538-1

Greene, B. A. (2015). Measuring Cognitive Engagement With
Self-Report Scales: Reflections From Over 20 Years of
Research. Educational Psychologist, 50(1), 14-30.
https://doi.org/10.1080/00461520.2014.989230

Gunness, A., Matanda, M. J., & Rajaguru, R. (2023). Effect of
Student Responsiveness to Instructional Innovation on
Student Engagement in Semi-Synchronous Online
Learning Environments: The Mediating Role of Personal
Technological Innovativeness and Perceived Usefulness.
Computers & Education, 205, Article 104884.
https://doi.org/10.1016/j.compedu.2023.104884

Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C.
(1995). Multivariate Data Analysis with Readings (4th ed.).
Upper Saddle River, NJ: Prentice-Hall.

Hagger, M. S., Gucciardi, D. F., & Chatzisarantis, N. L. D.
(2017). On Nomological Validity and Auxiliary
Assumptions: The Importance of Simultaneously Testing
Effects in Social Cognitive Theories Applied to Health
Behavior and Some Guidelines. Frontier in Psychology, 8,
Article 1933. https://doi.org/10.3389/fpsyg.2017.01933

Harrington, D. (2009). Confirmatory Factor Analysis. New
York, NY: Oxford University Press.
https://doi.org/10.1093/acprof:0s0/9780195339888.001.00
01

Hazzam, J., & Wilkins, S. (2023). The Influences of Lecturer
Charismatic Leadership and Technology Use on Student
Online Engagement, Learning Performance, and
Satisfaction. Computers & Education, 200, Article 104809.
https://doi.org/10.1016/j.compedu.2023.104809

409

https://doi.org/10.62273/KJKC8408
https://doi.org/10.1007/s10648-017-9406-6
https://doi.org/10.1037/0033-295X.84.2.191
https://doi.org/10.1145/3324888
https://doi.org/10.1145/2843043.2843065
https://download.boulder.ibm.com/ibmdl/pub/software/dw/library/rational/pdf/valueofmodeling.pdf
https://download.boulder.ibm.com/ibmdl/pub/software/dw/library/rational/pdf/valueofmodeling.pdf
https://doi.org/10.1207/s15516709cog0502_2
https://reports.collegeboard.org/sat-suite-program-results
https://doi.org/10.2307/249688
https://doi.org/10.1145/3319445
https://doi.org/10.1016/S0360-1315(02)00046-5
https://doi.org/10.2307/249008
https://doi.org/10.4324/9781315505732
https://doi.org/10.1037/0022-3514.92.6.1087
https://doi.org/10.1037/0022-3514.92.6.1087
https://doi.org/10.1080/00223890802634290
https://doi.org/10.1177/1529100612453266
https://doi.org/10.3102/00346543074001059
https://doi.org/10.1007/978-1-4614-2018-7_37
https://doi.org/10.1007/978-1-4614-2018-7_37
https://doi.org/10.1007/s10639-016-9538-1
https://doi.org/10.1080/00461520.2014.989230
https://doi.org/10.1016/j.compedu.2023.104884
https://doi.org/10.3389/fpsyg.2017.01933
https://doi.org/10.1093/acprof:oso/9780195339888.001.0001
https://doi.org/10.1093/acprof:oso/9780195339888.001.0001
https://doi.org/10.1016/j.compedu.2023.104809

Journal of Information Systems Education, 36(4), 400-416, Fall 2025
https.//doi.org/10.62273/KJKC8408

Hsiao, J.-C., Chen, S.-K., Chen, W., & Lin, S. S. (2022).
Developing a Plugged-in Class Observation Protocol in
High-school Blended STEM Classes: Student Engagement,
Teacher Behaviors and Student-Teacher Interaction
Patterns. Computers & Education, 178, Article 104403.
https://doi.org/10.1016/j.compedu.2021.104403

Igbaria, M. & Baroudi, J. J. (1993). A Short-Form Measure of
Career Orientations: A Psychometric Evaluation. Journal
of Management Information Systems, 10(2), 131-154.
https://doi.org/10.1080/07421222.1993.11518003

Kanaparan, G., Cullen, R., & Mason, D. (2013). Self-Efficacy
and Engagement as Predictors of Student Programming
Performance. PACIS 2013 Proceedings, Article 282.
https://aisel.aisnet.org/pacis2013/282

Kahu, E. R. (2013). Framing Student Engagement in Higher
Education. Studies in Higher Education, 38(5), 758-773.
https://doi.org/10.1080/03075079.2011.598505

Kornell, N. (2009). Optimising Learning Using Flashcards:
Spacing is More Effective Than Cramming. Applied
Cognitive Psychology, 23(9), 1297-1317.
https://doi.org/10.1002/acp.1537

Kuh, G. D. (2001). Assessing What Really Matters to Student
Learning Inside the National Survey of Student
Engagement. Change: The Magazine of Higher Learning,
33(3), 10-17. https://doi.org/10.1080/00091380109601795

Lai, H.-M. (2021). Understanding What Determines University
Students’ Behavioral Engagement in a Group-based
Flipped Learning Context. Computers & Education, 173,
Article 104290.
https://doi.org/10.1016/j.compedu.2021.104290

Leidig, P. M., & Anderson, G. (2020). Updating the
Information Systems Curriculum: The ACM/AIS 1S2020
Joint Project. Proceedings of the 2020 Computers and
People Research Conference (pp- 8-9).
https://doi.org/10.1145/3378539.3393870

Li, S., & Lajoie, S. P. (2022). Cognitive Engagement in Self-
Regulated Learning: An Integrative Model. European
Journal of Psychology of Education, 37(3), 833-852.
https://doi.org/10.1007/s10212-021-00565-x

Loras, M., Sindre, G., Treetteberg, H., & Aalberg, T. (2022).
Study Behavior in Computing Education—A Systematic
Literature Review. ACM Transactions on Computing
Education, 22(1), 1-40. https://doi.org/10.1145/3469129

Mahatanankoon, P. (2018). Exploring the Antecedents to
Computer Programming Self-Efficacy. Proceedings of the
10th International Conference on Advances in Information
Technology (pp- 1-6).
https://doi.org/10.1145/3291280.3291791

Mahatanankoon, P., & Sikolia, D. W. (2017). Intention to
Remain in a Computing Program: Exploring the Role of
Passion and Grit. AMCIS 2017 Proceedings, Article 17.
https://aisel.aisnet.org/amcis2017/ISEducation/Presentatio
ns/17

Mahatanankoon, P., & Wolf, J. (2021). Cognitive Learning
Strategies in an Introductory Computer Programming
Course. Information Systems Education Journal, 19(3), 11-
20.

Mathieson, K. (1991). Predicting User Intentions: Comparing
the Technology Acceptance Model With the Theory of
Planned Behavior, Information Systems Research, 2(3),
173-191. https://doi.org/10.1287/isre.2.3.173

Mayer, R. E. (2002). Rote Versus Meaningful Learning. Theory

Into Practice, 41(4),
https://doi.org/10.1207/s15430421tip4104 4

McClendon, C., Neugebauer, R. M., & King, A. (2017). Grit,
Growth Mindset, and Deliberate Practice in Online
Learning. Journal of Instructional Research, 6, 8-17.
https://doi.org/10.9743/JIR.2017.2

Menon, P. (2023). Teaching Tip: An Example-based
Instructional Method to Develop Students’ Problem-
Solving Efficacy in an Introductory Programming Course.
Journal of Information Systems Education, 34(1), 1-15.

Miller, R. B., Greene, B. A., Montalvo, G. P., Ravindran, B., &
Nichols, J. D. (1996). Engagement in Academic Work: The
Role of Learning Goals, Future Consequences, Pleasing
Others and Perceived Ability. Contemporary Educational
Psychology, 21(4), 388-422.
https://doi.org/10.1006/ceps.1996.0028

Morgan, M., Butler, M., Thota, N., & Sinclair, J. (2018a). How
CS Academics View Student Engagement. Proceedings of
the 23rd Annual ACM Conference on Innovation and
Technology in Computer Science Education (pp. 284-289).
https://doi.org/10.1145/3197091.3197092

Morgan, M., Sinclair, J., Butler, M., Thota, N., Fraser, J., Cross,
G., & Jackova, J. (2018b). Understanding International
Benchmarks on Student Engagement: Awareness and
Research Alignment from a Computer Science Perspective.
Proceedings of the 2017 ITiCSE Conference on Working
Group Reports (pp- 1-24).
https://doi.org/10.1145/3174781.3174782

Newman, F. M., Wehlage, G. G., Lamborn, S. D. (1992). The
Significance and Sources of Student Engagement. In: F. M.
Newman (Ed.), Student Engagement and Achievement in
American Secondary Schools (pp. 11-39). New York:
Teachers College Press.

Novak, J. D., & Canas, A. J. (2008). The Theory Underlying
Concept Maps and How to Construct and Use Them.
Technical Report. Pensacola, FL: Institute of Human and
Machine Cognition.

Nunnally, J. C. (1978). Psychometric Theory (2nd ed.). New
York: McGraw-Hill.

Obaido, G., Agbo, F. J., Alvarado, C., & Oyelere, S. S. (2023).
Analysis of Attrition Studies Within the Computer
Sciences. IEEFE Access, 11.
https://doi.org/10.1109/ACCESS.2023.3280075

Pellas, N., Zhang, H., Lin, L., Zhan, Y., & Ren, Y. (2024).
Assessing Computational Thinking, Motivation, and Grit of
Undergraduate Students Using Educational Robots, The
Impact of Teaching Presence on Online Engagement
Behaviors. Journal of Educational Computing Research,
62(2), 620-644.
https://doi.org/10.1177/07356331231210946

Pett, M. A., Lackey, N. R., & Sullivan, J. J. (2003). Making
Sense of Factor Analysis. Thousands Oak, CA: Sage
Publications, Inc. https://doi.org/10.4135/9781412984898

Rawson, K. A., & Kintsch, W. (2005). Rereading Effects
Depend on Time of Test. Journal of Educational
Psychology, 97(1), 70-80. https://doi.org/10.1037/0022-
0663.97.1.70

Renumol, V. G., Janakiram, D., & Jayaprakash, S. (2010).
Identification of Cognitive Processes of Effective and
Ineffective Students During Computer Programming. ACM
Transactions on Computing Education, 10(3), 1-21.
https://doi.org/10.1145/1821996.1821998

226-232.

410

https://doi.org/10.62273/KJKC8408
https://doi.org/10.1016/j.compedu.2021.104403
https://doi.org/10.1080/07421222.1993.11518003
https://aisel.aisnet.org/pacis2013/282
https://doi.org/10.1080/03075079.2011.598505
https://doi.org/10.1002/acp.1537
https://doi.org/10.1080/00091380109601795
https://doi.org/10.1016/j.compedu.2021.104290
https://doi.org/10.1145/3378539.3393870
https://doi.org/10.1007/s10212-021-00565-x
https://doi.org/10.1145/3469129
https://doi.org/10.1145/3291280.3291791
https://aisel.aisnet.org/amcis2017/ISEducation/Presentations/17
https://aisel.aisnet.org/amcis2017/ISEducation/Presentations/17
https://doi.org/10.1287/isre.2.3.173
https://doi.org/10.1207/s15430421tip4104_4
https://doi.org/10.9743/JIR.2017.2
https://doi.org/10.1006/ceps.1996.0028
https://doi.org/10.1145/3197091.3197092
https://doi.org/10.1145/3174781.3174782
https://doi.org/10.1109/ACCESS.2023.3280075
https://doi.org/10.1177/07356331231210946
https://doi.org/10.4135/9781412984898
https://doi.org/10.1037/0022-0663.97.1.70
https://doi.org/10.1037/0022-0663.97.1.70
https://doi.org/10.1145/1821996.1821998

Journal of Information Systems Education, 36(4), 400-416, Fall 2025
https.//doi.org/10.62273/KJKC8408

Saqr, M., Lopez-Pernas, S., Helske, S., & Hrastinski, S. (2023).
The Longitudinal Association Between Engagement and
Achievement Varies by Time, Students’ Profiles, and
Achievement State: A Full Program Study. Computers &
Education, 199, Article 104787.
https://doi.org/10.1016/j.compedu.2023.104787

Schwarz, C. & Zhu, Z. (2015). The Impact of Student
Expectations in Using Instructional Tools on Student
Engagement: A Look Through the Expectation
Disconfirmation Theory Lens. Journal of Information
Systems Education, 26(1), 47-58.

Silva, L., Mendes, A., Gomes, A., & Fortes, G. (2024). What
Learning Strategies Are Used by Programming Students?
A Qualitative Study Grounded on the Self-Regulation of
Learning Theory. ACM Transactions on Computing
Education, 24(1), 1-26. https://doi.org/10.1145/3635720

Sinclair, J., Butler, M., Morgan, M., & Kalvala, S. (2015).
Measures of Student Engagement in Computer Science.
Proceedings of the 2015 ACM Conference on Innovation
and Technology in Computer Science Education (pp. 242-
247). https://doi.org/10.1145/2729094.2742586

Straub, D., Boudreau, M-C., & Gefen, D. (2004). Validation
Guidelines for IS Positivist Research. Communications of
the AIS, 13(1), Article 24, 380-427.
https://doi.org/10.17705/1CAIS.01324

Tsai, C.-Y., Chen, Y.-A., Hsiceh, F.-P., Chuang, M.-H., & Lin,
C.-L. (2023). Effects of a Programming Course Using the
GAME Model on Undergraduates’ Self-Efficacy and Basic
Programming Concepts. Journal of Educational
Computing Research, 62(3), 1-23.
https://doi.org/10.1177/07356331231206071

Vrugt, A., & Oort, F. J. (2008). Metacognition, Achievement
Goals, Study Strategies and Academic Achievement:
Pathways to Achievement. Metacognition and Learning,
3(2), 123-146. https://doi.org/10.1007/s11409-008-9022-4

Westrick, P. A., Marini, J. P., & Shaw, E. J. (2021). Using
SAT® Scores to Inform Academic Major-Related
Decisions and Planning on Campus. College Board.
https://eric.ed.gov/?id=ED613434

Wolf, J. R., & Jia, R. (2015). The Role of Grit in Predicting
Student Performance in Introductory Programming
Courses: An Exploratory Study. SAIS 2015 Proceedings,
Article 21. https://aisel.aisnet.org/sais2015/21/

Wolf-Wendel, L., Ward, K., & Kinzie, J. (2009). A Tangled
Web of Terms: The Overlap and Unique Contribution of
Involvement, Engagement, and Integration to
Understanding College Student Success. Journal of College
Student Development, 50(4), 407-428.
https://doi.org/10.1353/csd.0.0077

Wong, Z. Y., & Liem, G. A. D. (2022). Student Engagement:
Current State of the Construct, Conceptual Refinement, and
Future Research Directions. FEducational Psychology
Review, 34(1), 107-138. https://doi.org/10.1007/s10648-
021-09628-3

Yu, Z., Gao, M., & Wang, L. (2021). The Effect of Educational
Games on Learning Outcomes, Student Motivation,
Engagement and Satisfaction. Journal of Educational
Computing Research, 59(3), 522-546.
https://doi.org/10.1177/0735633120969214

Zhang, H., Lin, L., Zhan, Y., & Ren, Y. (2016). The Impact of
Teaching Presence on Online Engagement Behaviors.
Journal of Educational Computing Research, 54(7), 8877-

900. https://doi.org/10.1177/0735633116648171

Zhang, X., Crabtree, J. D., Terwilliger, M. G., & Jenkins, J. T.
(2020). Teaching Tip: Teaching Introductory Programming
from A to Z: Twenty-Six Tips From the Trenches. Journal
of Information Systems Education, 31(2), 106-118.

Zhong, L. (2023). Investigating Students’ Engagement Patterns
and Supporting Game Features in a Personalized
Computerized Role-Playing Game Environment. Journal
of Educational Computing Research, 61(3), 578-604.
https://doi.org/10.1177/07356331221125946

AUTHOR BIOGRAPHIES

Pruthikrai Mahatanankoon is a professor of information
systems in the School of Information
Technology at Illinois State
University. He teaches various
information systems courses,
including systems analysis and
design. His research interests include
IT education, mobile commerce, and
workplace IT adoption. His research
often integrates psychological and
educational theories with information systems and has been
published in various academic journals and conferences.

James R. Wolf is a professor of information systems in the
School of Information Technology at
Illinois State University. His
research interests include ethical Al,
Al in human decision making,
technology-enhanced education, and
student engagement. His broader
scholarly interests include Al
applications in healthcare, neural
diversity in IT, and blockchain
governance frameworks.

411

https://doi.org/10.62273/KJKC8408
https://doi.org/10.1016/j.compedu.2023.104787
https://doi.org/10.1145/3635720
https://doi.org/10.1145/2729094.2742586
https://doi.org/10.17705/1CAIS.01324
https://doi.org/10.1177/07356331231206071
https://doi.org/10.1007/s11409-008-9022-4
https://eric.ed.gov/?id=ED613434
https://aisel.aisnet.org/sais2015/21/
https://doi.org/10.1353/csd.0.0077
https://doi.org/10.1007/s10648-021-09628-3
https://doi.org/10.1007/s10648-021-09628-3
https://doi.org/10.1177/0735633120969214
https://doi.org/10.1177/0735633116648171
https://doi.org/10.1177/07356331221125946

Journal of Information Systems Education, 36(4), 400-416, Fall 2025
https://doi.org/10.62273/KJKC8408

APPENDICES

Appendix A. Original Cognitive Programming Engagement (CPE) Scale

Please read the following statements, and for each, select the answer that best represents your learning strategies in your most recent
programming class. /=not like me at all, 2=not much like me, 3=somewhat like me, 4=mostly like me, 5=very much like me

Shallow Learning Strategies

SL1: I try to memorize the steps for solving programming problems presented in the text or in the lecture. (dropped; CFA)
SL2: When I study for the tests I review my class notes and look at solved programming problems.

SL3: When I study for tests I used solved programming problems in my notes or in the book to help me memorize the
“programming” steps involved.

SL4: 1 find reviewing previously solved programming problems to be a good way to study for a test.

SLS: In order for me to understand what technical terms meant, I memorized the textbook definitions. (dropped)

Deep Learning Strategies

DL1: When studying, I try to combine different pieces of information from course material in new ways. (dropped; PCA)
DL2: I draw pictures or diagrams to help me solve some programming problems.

DL3: I work on several programming examples of the same type of problems when studying this class so I can understand the
problems better.

DL4: 1 practice programming problems to check my understanding of new concepts or rules.

DLS5: I examine example programming problems that have already been worked to help me figure out how to do similar “coding”
problems on my own. (dropped; PCA)

DL6: I classify programming problems into categories before I begin to work them. (dropped; PCA)

DL7: When I work a programming problem, I analyze it to see if there is more than one way to get the right solution.

DLS: While learning new programming concepts, I try to think of practical applications.

DLO: I put together programming ideas or concepts and draw conclusions that were not directly stated in course materials.
DL10: I work on practice programming questions/problems to check my understanding of new concepts or rules.

DL11: When I finish my programming practice questions/problems I check my solution for syntax errors (dropped; PCA)
DL12: Some “programming” problems can be visualized using diagrams or models.

DL13: I develop models or pictures to help me visualize how programming work.

DL14: I model different program modules or functions using some diagramming techniques.

DLI15: I use some diagramming techniques to understand how programming work (dropped; CFA).

DL16: When I finish my programming practice questions/problems I check my solution for semantic errors. (dropped; CFA)

412

https://doi.org/10.62273/KJKC8408

Journal of Information Systems Education, 36(4), 400-416, Fall 2025
https://doi.org/10.62273/KJKC8408

Appendix B. Final Cognitive Programming Engagement (CPE) Dimensions
Cognitive Programming Engagement (CPE)

Shallow-CPE (cpe-S, o =.821)
e When I study for the tests, I review my class notes and look at solved programming problems.
e When I study for tests, I used solved programming problems in my notes or in the book to help me memorize the
“programming” steps involved.
e [find reviewing previously solved programming problems to be a good way to study for a test.

Practical-CPE (cpe-P, o. =.809)
e [work on several programming examples of the same type of problems when studying this class so I can understand
the problems better.
e [practice programming problems to check my understanding of new concepts or rules.
e [work on practice programming questions/problems to check my understanding of new concepts or rules.

Analytical-CPE (cpe-A, a. =.782)
e When I work on a programming problem, I analyze it to see if there is more than one way to get the right solution.
e While learning new programming concepts, I try to think of practical applications.
e [put together programming ideas or concepts and draw conclusions that were not directly stated in course materials.

Visual-CPE (cpe-V, o. =.881)
e I draw pictures or diagrams to help me solve some programming problems.
e Some “programming” problems can be visualized using diagrams or models.
e I develop models or pictures to help me visualize how programming works.
e I model different program modules or functions using some diagramming techniques.
e [use some diagramming techniques to understand how programming works.

Nomological Validity Constructs

Coding Self-Efficacy (CSE, o =.869)
e Compared to others in my programming class, I am confident in my programming skills.
e Compared to others in my programming class, I am confident of my technical skills.
e I have faith in my ability to learn new programming skills constantly.
e Compared to others in my programming class, I am confident of my programming techniques.

Coding Grit (CGR, see Mahatanankoon & Sikolia, 2017, adapted from Duckworth et al., 2007; Duckworth & Quinn, 2009)

413

https://doi.org/10.62273/KJKC8408

Appendix C. Correlation Matrix

Journal of Information Systems Education, 36(4), 400-416, Fall 2025

https.//doi.org/10.62273/KJKC8408

AV | SD | SL1 |SL2 | SL3 |SL4 |SLS |DL1 | DL2 | DL3 | DL4 | DLS | DL6 | DL7 | DL8 | DL9 | DL DL DL DL | DL DL DL
10 11 12 13 14 15 16
SL1 3.04 1 1.05 | 1.00 | .434 | .551 | .376 | .238 | .304 | .099 | .152 | .116 | -.004 | .109 | .098 | -.022 | -.187 | -.059 | .219 | .162 | .115 | .162 220 | .123
SL2 3.70 | 1.08 1.00 | .621 | .641 | .206 | .367 | .135 | .224 | .245 | .173 | .183 | .171 | .150 | .032 | .151 | .121 | .243 | .068 | .034 102] .217
SL3 331 | 1.22 1.00 | .561 | .260 | .204 | .079 | .125 | .078 | .063 | .208 | .150 | -.018 | -.150 | .038 | .174 | .090 | -.03 | .072 160 | .192
SL4 3.67 | 1.10 1.00 | .282 | .195 | -.074 | -.014 | -.005 | .289 | .152 | .014 | -022 | -.188 | .115 | .208 | .053 | .038 | .025 .088 | .083
SL5 2.41 | 1.01 1.00 | .120 | .093 | .150 | .096 | .112 | .191 | -.042 | -.202 | -.189 | .091 | .026 | -.018 | .047 | .077 136 | .021
DL1 3.21 | 1.03 1.00 | .251 | .480 | .414 | .187 | .282 | .242 | .337 | .310 | .331 | .102 | .284 | .120 | .281 252 | .269
DL2 2.69 | 1.26 1.00 | .319 | .254 | .080 | .211 | .012 | .211 | .157 | .233 | -.057 | .532 | .631 | .599 615 | .159
DL3 3.00 | 1.11 1.00 | .619 | .259 | .325 | .305 | .220 | .197 | .541 | .176 | .180 | .299 | .381 271 | .283
DL4 3.23 | 1.09 1.00 | .256 | .261 | .285 | .331 | .191 | .599 | .125 | .224 | .119 | .210 183 | .236
DLS 3.89 | 0.99 1.00 | .130 | .260 | .230 | .157 | .240 | .038 | .067 | .099 | .106 .149 | .082
DL6 2.55 | 1.05 1.00 | .226 | .231 | .214 | .248 | .147 | .076 | .244 | .340 320 | .247
DL7 338 | 1.07 1.00 | .526 | .463 | .225 | .326 | .223 | .029 | .159 141 | .426
DLS 3.78 | 1.03 1.00 | .648 | .228 | .173 | .347 | .067 | .217 250 | .320
DL9 3.26 | 1.04 1.00 | .259 | .082 | .296 | .055 | .180 226 | .299
DL10 | 3.21 | 1.04 1.00 | .146 | .225 | .225 | .318 233 | .163
DL11 | 3.80 | 1.21 1.00 | .270 | .115 | .106 .087 | .638
DL12 | 3.33 | 1.06 1.00 | .527 | .512 534 | .385
DL13 | 2.73 | 1.07 1.00 | .739 654 | .234
DL14 | 2.50 | 0.92 1.00 J59 | 272
DL15S | 2.63 | 0.98 1.00 | .283
DL16 | 3.78 | 1.05 1.00

Bolded correlation values signify significant relationships of at least .05, one-tailed.

414

https://doi.org/10.62273/KJKC8408

Journal of Information Systems Education, 36(4), 400-416, Fall 2025

Appendix D. Factor Loadings

https.//doi.org/10.62273/KJKC8408

CPE Dimensions

CPE Factor 1: | Factor 2: | Factor 3: | Factor 4: Factor 5: a

Items Shallow Visual Practical | Analytical | Compiling | (if deleted)
SL1 .687 .821
SL2 .843 748
SL3 .851 739
SL4 .806 776
DL2 .805 .864
DL12 .673 .880
DL13 .867 .844
DL14 .853 .844
DL15 .847 .846
DL3 .810 749
DL4 .845 .701
DL10 .803 765
DL7 .651 787
DL8 .855 .633
DL9 .850 .689
DL11 910 NA
DL16 785 NA

Reliability .820 .881 .809 782 174

o

*Factor loadings more than 0.4 are shown. NA = Fewer than three items.

415

https://doi.org/10.62273/KJKC8408

Journal of Information Systems Education, 36(4), 400-416, Fall 2025
https://doi.org/10.62273/KJKC8408

Appendix E. Intercorrelations: Factor-Based Scales of Computer Programming Engagement (CPE) (N=120)

Dimension Mean S.D. Shallow | Practical | Analytical Visual AVE Composite
Reliability

Shallow 3.56 973 1 .144 .021 .100 .610 .821
(SL2-SL4)
Practical 3.17 918 1 351 347%% .590 .809
(DL3, DL4, DL10)
Analytical 3.47 .874 1 243 %% .561 782
(DL7-DL9)
Visual 2.78 .875 1 .617 .881
(DL2, DL12-DL15)

**p <.001

416

https://doi.org/10.62273/KJKC8408

INFORMATION SYSTEMS & COMPUTING ACADEMIC PROFESSIONALS

ISCap

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2025 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital or
hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is required
to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to the Editor-
in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN: 2574-3872 (Online) 1055-3096 (Print)

	JISE 2025 36(4) 400-416 First Page
	g-2411132 Final-TCS-LAM-XPZ.pdf
	3.2.3 Step 3: Evaluating and Interpreting the Factors. The remaining items produced a five-factor solution with an eigenvalue above 1.0. Eigenvalues indicate the total variance accounted for by each factor (Hair et al., 1995). The five-factor solution...
	4.3 Dimension 3: Analytical-CPE
	4.4 Dimension 4: Visual-CPE
	5.1 Coding Grit
	5.2 Coding Self-Efficacy
	5.3 Results
	6.1 Implications for Educators and Researchers

	JISE 2025 36(4) Copyright ISSN

