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ABSTRACT

Although e-learning is considered one of the leading teaching methods in higher education, both learners and instructors face
significant challenges owing to reduced social interaction compared with traditional classroom learning. In this study, we explore
the leveraging of recent developments in generative artificial intelligence (Al) and create a custom chatbot using retrieval-
augmented generation. A research model combining the technology acceptance model and the interactive-constructive-active-
passive theory was developed and used to investigate how the chatbot affects students’ perceptions and perceived learning outcomes
in online and blended classes. This study provides empirical evidence indicating that custom chatbots can be integrated into higher
education to enhance students’ e-learning experiences, and through interacting with chatbots, students’ behaviors shift from passive
to interactive engagement. The findings shed light on how generative Al helps to improve e-learning experience, highlighting the
effectiveness of such technology in support of social interaction and emotional engagement in higher education. The study also
demonstrates the feasibility of deploying custom Al chatbots in college classes and provides practical recommendations.

Keywords: Chatbot, e-Learning, Generative Al in teaching, Higher education, Online learning

1. INTRODUCTION business and research communities to streamline processes and

increase operational efficiency (Adamopoulou & Moussiades,

A chatbot is an artificial intelligence (Al) system that employs ~ 2020). With the recent revolutionary development of generative
anthropomorphic design to simulate human-like interaction Al and large language models (LLMs), such as OpenAl’s
with users. There have been growing applications of chatbots in ~ ChatGPT, Google’s Gemini, and DeepSeek, chatbots present
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many opportunities for developing new applications in areas
besides e-learning, such as customer service, mental healthcare,
and content generation (Zhong & Kim, 2024).

When used interchangeably, e-learning or online learning
can be broadly defined as the bridge between teachers and
students through the use of web-based technologies (Miller et
al., 2017). In a narrower sense, e-learning is a type of learning
environment where learners interact with technological
platforms and engage in self-directed and independent learning
(Santhanam et al., 2008). In this study, we adopt the broad
definition of e-learning and use it interchangeably with online
learning and online education (Singh & Thurman, 2019).

E-learning has gained significant popularity in the last two
decades because of its potential to provide flexible access to
content and instruction at any time and from anywhere (Castro
& Tumibay, 2021). According to the National Center for
Education Statistics (n.d.), 61% of college students in the
United States had taken at least one class online in the fall of
2021, and 28% of undergraduate students took online classes
exclusively in 2021. Online classes are classes that use the
Internet in some way to facilitate or enhance the interaction
between instructors and students (Curtain, 2002). In online
classes, instructional delivery and interaction may be supported
by asynchronous communication tools (e.g., email, discussion
boards, learning platforms), synchronous technologies (e.g.,
videoconferencing tools, chatrooms), or a combination of
asynchronous and synchronous forms. Another recent trend in
higher education is offering classes partially online and partially
face-to-face, which is referred to as blended learning (Jackson
& Helms, 2008). Blended classes integrate e-learning with
traditional classroom instruction, providing potential benefits,
such as increased flexibility, resources for learning, and
leverage of instructional technology (Tayebinik & Puteh, 2013).
Despite the popularity of e-learning, both learners and
instructors face challenges owing to reduced social interaction
compared with traditional classroom learning (Wragg, 2019).
Previous studies suggest that the lack of support and reduced
engagement are the major obstacles to effective e-learning
(Crockett et al., 2017; Essel et al., 2022).

In this research, we explored how recent developments in
generative Al can be leveraged to enhance e-learning. We
created and tested a custom AI chatbot powered by a
transformer-based deep learning model (OpenAl’s GPT-4) in
four asynchronous online and one blended undergraduate
business classes. We equipped the chatbot with advanced
natural language processing (NLP) and understanding
capabilities that can potentially help to improve student
engagement, learner-content interaction, and perceived learning
outcomes. The chatbot acts as a virtual assistant that helps
students locate course materials and answers general course-
related questions as well as specific questions about
assignments and projects. As a pretrained augmented model, it
can also answer subject-related questions and directs students
to various resources as needed.

This research contributes to the growing community of
online education, enriches existing literature on technology-
enhanced e-learning, and adds to innovative pedagogical
practices. Specifically, it makes the following theoretical and
pedagogical contributions.

First, this study extends the literature on e-learning with an
empirically evaluated framework that integrates the technology
acceptance model (TAM) and the interactive-constructive-

active-passive (ICAP) theory. TAM, along with its many
versions, is a leading theoretical model for assessing
technological deployments in different educational contexts,
including e-learning (Gong et al., 2004; Grani¢ & Marangunic,
2019). ICAP is a well-established theory about the processes of
how students learn through their physical and cognitive
behaviors (Chi & Wylie, 2014). Combining the two models in
this study, we shed light on how a custom chatbot can help
improve learning experience and perceived learning outcomes,
highlighting the effectiveness of Al in support of social
interaction and emotional engagement.

Second, we provide recommendations from a practical
perspective for designing and implementing generative Al in
higher education. For educators who are interested in
incorporating similar technologies in their own courses, we
included in this paper details of the development, such as the
system  components, technological platform, costs,
development time, and alternative options.

This paper is organized as follows. In the next section, we
review related work and develop a research framework. We
then present the research design followed by data analysis and
results. We also discuss the findings, implications, and
limitations of this study and then share our conclusion.

2. THEORETICAL FOUNDATIONS

2.1 Chatbots for Higher Education

Since its introduction by OpenAl, ChatGPT has received
significant public attention and started an intense debate among
educators, students, and practitioners on the transformative
effects of Al-based chatbots on education. ChatGPT is an
anthropomorphic Al system that can answer a wide variety of
questions in human-like dialogues. According to an article on
the ChatGPT website (OpenAl, 2022), “the dialogue format
makes it possible for ChatGPT to answer follow-up questions,
admit its mistakes, challenge incorrect premises, and reject
inappropriate requests.” Based on advanced deep learning
algorithms and NLP techniques, ChatGPT can generate human-
like answers to user queries that are coherent, orderly, and
informative (Hien et al., 2018; Zhong & Kim, 2024). Despite
the concerns for potential misuse of Al-generated content that
may jeopardize the integrity and fairness of academic
assessments, educational institutions can benefit from using Al
chatbots to support instructional design, inclusive learning,
personalized learning, and online education (Bilquise et al.,
2024; Gupta & Chen, 2022).

Although ChatGPT is a relatively new platform, chatbot
technology has been studied and integrated into education for
many years. As early as in the 1990s, chatbots were developed
to moderate online chatrooms. These bots looked for certain
text patterns submitted by chatroom participants and reacted
with automated actions (Ait Baha et al., 2024; Colace et al.,
2018). Farhan et al. (2012) designed a chatbot using the
Pandorabot platform (https://home.pandorabots.com), an
online chatbot development and hosting service. This web-
based chatbot stored questions and answers in an XML-style
format and automatically replied to students’ queries in e-
learning environments. Nenkov et al. (2016) proposed an
intelligent agent in the form of a chatbot to automate the
interaction between a student and a teacher within the
framework of the Moodle learning management system. The
chatbot was developed using the IBM Watson platform and
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implemented through Facebook Messenger. In addition,
researchers have created chatbot-based learning systems to
provide learning support and tutoring services to university
students in computer science and programming courses (Colace
et al., 2018; Hobert, 2019). Previous researchers also studied
chatbots that can generate quizzes or interview questions based
on built-in knowledge. For example, Sreelakshmi et al. (2019)
proposed a question-answering and quiz-generation chatbot
that took an uploaded pdf document as input and enabled
students to ask questions from the text or request quiz questions.
Gupta and Chen (2022) developed an interview chatbot using
Juji Studio, a commercial platform for building custom chatbots.
The chatbot was used as an experimental platform to investigate
the design opportunities of using chatbots for inclusive learning.

Prior research has mainly focused on implementing
chatbots that help to improve skill development, efficiency of
education, students’ motivation, and availability of education
(Wollny et al., 2021). Most of these chatbots were developed
using NLP, machine learning, and domain ontologies. Despite
extensive research efforts, the application and use of chatbots
in education have been limited owing to the difficulties of
overcoming several key challenges, including the NLP lexical
gap, context awareness, and linguistic ambiguity (Chen et al.,
2020; Fryer et al., 2017; Savin-Baden et al., 2015). To fill this
gap, in this study we focused on custom chatbots empowered
by cutting-edge technologies to provide one-on-one educational
support to business students. We aimed to investigate the
opportunities and effectiveness of using the chatbot to improve
student engagement and assess user acceptance of generative
Al in online and blended classes where students spend a
significant amount of time interacting with e-learning systems
(Santhanam et al., 2008).

Table 1 shows the representative publications related to
chatbot applications in higher education from 2015 to 2024.

2.2 Technology Acceptance Model (TAM)

TAM was developed to elucidate the factors influencing users’
adoption of emerging information technologies and associated
applications (Davis, 1989). According to the TAM, two core
beliefs—perceived ease of use and perceived usefulness—serve
as principal determinants in shaping users’ dispositions toward
embracing a novel technology and their attitudes toward using
it (Davis et al., 1989). Perceived ease of use refers to individuals
convictions that using a new technology will entail minimal
effort. Perceived usefulness denotes individuals’ subjective
assessment of the likelihood that employing new technology
will enhance their attitudes toward using it. According to
existing literature, perceived usefulness emerges as a robust
precursor elucidating students’ attitudes toward employing
chatbots (Al-Abdullatif, 2023) and their intentions to adopt
chatbot technology (Bilquise et al., 2024; Chen et al., 2020).
Previous studies suggested that researchers attempted to
develop effective chatbots that can understand the context of
students’ queries, emulate human dialogs, create social support,
and provide accurate and timely answers (Liu et al., 2022; Rapp
etal., 2021). Consequently, TAM has been used as a preeminent
framework for investigating the decision-making process
behind students’ adoption and acceptance of specific learning
technologies related to generative Al (Saif et al., 2024). Thus,
we hypothesize that when students perceive the chatbot as an
easy-to-use, useful tool that can effectively facilitate their
academic tasks, they are more likely to develop a positive

El

attitude toward using it. Basing our focus on the TAM, we
propose our first three hypotheses:
e Hla: Students’ perceived ease of use of the chatbot has
a positive relationship with their perceived usefulness
of'it.
e H1b: Students’ perceived ease of use of the chatbot has
a positive relationship with their attitudes toward using
it.
e Hlc: Students’ perceived usefulness of the chatbot has
a positive relationship with their attitudes toward using
it.

2.3 Interactive-Constructive-Active-Passive (ICAP)

The ICAP framework (Chi & Wylie, 2014), designed to
enhance students’ learning experiences from the pedagogy and
curriculum design perspective, has become a popular model
guiding course design in higher education. In this model, four
modes of learning activities are defined based on students’
engagement behaviors: interactive, constructive, active, and
passive (Chi, 2009). These learning modes are commonly used
in the cognitive science of learning to describe and assess
learners’ activities. In the passive mode, a student receives
information from the instructional materials without doing
anything else related to learning. When a form of action or
manipulation (e.g., repeating, copying, highlighting) is
undertaken, the student is engaged in active learning. If the
student produces additional output (e.g., taking notes or asking
questions in their own words) beyond what is given in the
learning materials, then they exhibit constructive behaviors. In
the interactive mode, the student engages in conversation with
a partner who can be a fellow student, a teacher, or a computer
agent. It is worth noting that interactive activities are likely to
be better than the other three modes (Chi & Wylie, 2014).

In education, students’ attitudes toward using chatbots have
been well examined (Fryer et al., 2017). The educational sphere
consistently embraces the integration of innovative
technologies to enhance students’ interaction and engagement
(Grani¢ & Maranguni¢, 2019). Hobert (2019) suggested that
students’ attitudes toward using educational chatbots (i.e.,
active mode) could lead to the knowledge-changing process in
their actual user experiences (i.e., constructive activities).
Researchers have also found that students’ attitudes contribute
to their engagement and interaction in online learning
environments (Martin & Bolliger, 2018; Miao & Ma, 2022).
The measures for emotional engagement and interaction
include fun to use, enjoyable use, favorable feeling of use, and
the stimulation of interests (Kuo et al., 2014; Martin & Rimm-
Kaufman, 2015). Thus, students’ attitudes toward the chatbot
directly influence their user experiences, interaction, and
engagement with the chatbot (Hobert, 2023). Consistent with
this perspective, we propose the following three hypotheses:

e H2a: Students’ attitudes toward using the chatbot have
a positive relationship with their actual user experiences.

e H2b: Students’ attitudes toward using the chatbot have
a positive relationship with their learner-content
interactions.

e H2c: Students’ attitudes toward using the chatbot have
a positive relationship with their emotional engagement.
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Authors Methods

Research focus

Savin-Baden et al. (2015) Literature review

Students’ emotional engagement and interactions with
chatbots are vital to enhance online learning.

Pereira (2016) Case study

Designing and evaluating a Telegram bot regarding
students’ engagement with course quizzes.

Fryer et al. (2017) Experiment

Examining the effect of chatbot’s novelty.

Experiments, fuzzy

Crockett et al. (2017) decision trees

Building a series of fuzzy predictive models to predict
accurate learning styles.

FIT-EBot provides administrative and learning support to

Hien et al. (2018) Experiment students.

Meckie & Narayan (2019) Case study The hbr.ary chatbot has the potential to improve students
academic research experience.

Hobert (2019, 2023) ICAP theory Testing the ICAP theory for chatbot learning systems in

programming education.

The writing chatbot contributes to students’ writing

Lin & Chang (2020) Mixed classroom study .

achievement.
Chatterjee & Bhattacharjee Theory of acceptance . . . .
(2020) and use of technology Increasing acceptance and adoption of chatbots in India.

Rapp et al. (2021) Literature review

Highlighting the importance of emotions and humanness in
interaction with chatbots.

Shumanov & Johnson (2021) Content analysis

Suggesting that matched consumer-chatbot personality
improves sales and engagement.

Quasi-experimental,

Essel et al. (2022) focus groups

Students interacting with chatbots performed better
academically compared with those with the instructor.

Chatbots increase interactive learning experience in a

Ayanwale & Ndlovu (2024) theory of innovation

Liu et al. (2022) Concept mapping nonlinear environment.
Chatbots create a supportive environment, encourage good
Ait Baha et al. (2024) Experiment interactions with students, allow learners to be more
engaged, and achieve better academic objectives.
Aloqayli & Abdelhafez (2023) Case study Chatbots can be efficiently used for college admission.
Expanded diffusion No direct relationships between perceived usefulness,

perceived ease of use, and behavioral intention to use
chatbots.

Wu & Yu (2024) Meta-analysis

Chatbots have a large effect on students’ learning outcomes
with a short intervention duration.

Technology acceptance
model and self-
determination theory

Bilquise et al. (2024)

Examining factors that impact the willingness of students to
accept chatbots.

Note. ICAP = interactive-constructive-active-passive.

Table 1. Studies of Educational Chatbots in Higher Education

The literature suggests that students’ self-assessment of
their learning experiences, known as perceived learning
outcomes, can reflect their cognitive, behavioral, and affective
learning processes (Alavi et al., 2002; Chen et al., 2015). In this
paper we adopted Paechter et al.’s (2010) measurement scale,
including students’ self-reported grades, engagement, support,
and satisfaction. Observing students’ actual user experiences,
social interactions, and emotional engagement is relatively easy
in a face-to-face learning environment with experienced
instructors (e.g., Holladay, 2017). However, in an online or
blended learning environment, interacting with and engaging
students are challenging (Wragg, 2019). Technological
innovations such as the custom Al chatbot developed in this
research can help improve student engagement and facilitate the
transition of learning from passive to interactive for online
learners (Essel et al., 2022; Lin & Chang, 2020). In the
interactive mode, students’ learner-content interactions and

emotional engagement with the chatbot could enhance their
perceived learning outcomes. Therefore, we propose the
following three hypotheses:

e H3: Students’ actual user experiences with the chatbot
have a positive relationship with their perceived
learning outcomes.

e H4: Students’ learner-content interactions with the
chatbot have a positive relationship with their perceived
learning outcomes.

e HS5: Students’ emotional engagement with the chatbot
has a positive relationship with their perceived learning
outcomes.
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Figure 1. Conceptual Framework of Chatbot Enhanced Learning
2.4 Research Model this API, developers can create applications that send requests

As generative Al technologies have been increasingly adopted
in the educational context, we see a solid ground to integrate
ICAP and TAM to study students’ learning experiences
involving generative Al In particular, we propose key variables
in the TAM model, such as perceived ease of use and perceived
usefulness, that could shift learning from the passive mode to
the active mode and consequently help catalyze a number of
positive learning outcomes.

TAM is a well-established model commonly used to
examine users’ behavior intention in the context of technology-
based tools adoption. Prior research has proven the predictive
validity of TAM and its many variations for the assessment of
diverse technological deployments in an educational context
(Grani¢ & Maranguni¢, 2019). The ICAP hypothesis predicts
that as students become more engaged with learning materials,
from passive to active to constructive to interactive, their
learning experiences increase (Chi & Wylie, 2014). According
to Holbert (2019), students’ perceived ease of use of the chatbot
and perceived usefulness fall into the passive mode, and their
attitudes toward using turn in favor of the active mode. As a
good proxy, their user experiences serve as constructive
activities (Holbert, 2023). In this study, students’ learner-
content interactions and emotional engagement can be
operationalized as the interactive mode. To better present the
research framework, Figure 1 visualizes the conceptual model
of the chatbot-enhanced perceived learning outcomes with
seven factors and nine proposed hypotheses.

3. RESEARCH DESIGN

3.1 Custom AI Chatbot

To test the proposed research model, we developed a custom
chatbot (Figure 2) for online and blended classes using
OpenAl’s application programming interface (API) and
Llamalndex, an open-source data framework. An API contains
a set of rules or protocols that enable two software applications
to communicate with each other to exchange data, features, and
functionality. OpenAl’'s API (https:/platform.openai.com)
provides an interface that allows developers to integrate
OpenAl’s technologies with their own Al applications. Using

to OpenAI’s models and receive information in return. The Al
models that are currently supported by the OpenAl API include
GPT-4, GPT-4 Turbo, GPT-3.5 Turbo, DALL-E, TTS, and
Whisper (OpenAl Platform, n.d.-a).

&) o0
| ] Query g Augmented query Y
- @op)
Students
en . L J
atbot service
OpenAl

moderation
endpoint

Filtered
query

©

OpenAl GPT
model

Output
Relevant
results

1

D_ E\<l>—'

Chunking and
embedding

Storage

Course context

documents
Domain-specific knowledge base

Figure 2. System Architecture of a Custom Artificial
Intelligence Chatbot

Because OpenAl’s GPT models are pretrained on a large
amount of publicly available content from the Internet, they
support only general requests to which the answers are
commonly found in public online sources, including websites,
blogs, forums, and news articles. For information in a specific
context or domain, such as an ongoing course offered at a
university or internal policies of a company, a knowledge base
that contains domain-specific data needs to be created. In this
study, we use Llamalndex (https:/www.llamaindex.ai/), a data
framework with extensive retrieval-augmented generation
(RAG) capabilities, to create custom knowledge bases and
connect them to LLMs such as OpenAl’s GPT models. RAG is
a process that allows pretrained LLMs to retrieve information
from an external knowledge base and combine it with their
internal representation of information for language generation
(Lewis et al., 2020). Llamalndex supports a variety of data
formats including text, pdf, Microsoft Word, Microsoft
PowerPoint, JPEG images, MP3 audio, and MP4 video files
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(Llamalndex, n.d.). Any data in the allowed formats and
relevant to the specific domain or context can be used for
building the knowledge base. For this study, we created several
knowledge bases using course-specific content, including
course syllabi, schedules, assignment instructions, project
descriptions, and examples.

Llamalndex employs two key strategies to process
documents and create knowledge bases for LLMs. First, it
chunks documents into smaller contexts in the form of
sentences or paragraphs; these chunks of data are referred to as
nodes. These nodes can be efficiently processed by language
models. Second, Llamalndex indexes these nodes using vector
embeddings, enabling fast and semantic search. An embedding
is a vector representation of a piece of data (e.g., a text fragment)
that is meant to preserve aspects of its content and/or its
meaning (Almeida & Xexéo, 2019). Chunks of data that are
similar in some way will tend to have embeddings that are
closer together than unrelated data. After chunking and
embedding, the content is then stored in the JSON format,
creating a domain-specific knowledge base for the GPT model
and can be queried by the chatbot.

As shown in Figure 3, students can access the chatbot
through a web interface. Once a request is sent to the chatbot, it
will first be examined by OpenAl’s moderation endpoint. The
moderation endpoint (OpenAl Platform, n.d.-b) is a tool in
OpenAl’s API that developers can use to check whether an
input text contains harmful content and take actions as needed.
The model classifies several harmful categories including hate,
harassment, self-harm, sexuality, and violence (OpenAl
Platform, n.d.-b). If a request is flagged as potentially harmful,
then the request will be rejected, and the user will receive an
error message. On the other hand, an unflagged request will be
forwarded to the OpenAl GPT model, and the user will receive
aresponse. Depending on the nature of the request, the response
may be generated based on the domain-specific knowledge base
or the general Internet content that are used to train the GPT
models. Figure 3 shows the web interface of the chatbot for one
of the participating courses.

Al Assistant

learning assistant designed for MIS course (Beta version 2.0, powered by GPT-4). Note: Chatbot can make mistakes. Please double-check important

Clear Submit
Note. MIS = management information systems.

Figure 3. Web Interface of Custom Artificial
Intelligence Chatbot

3.2 Participants

The chatbot was made available to 308 students enrolled in five
business undergraduate classes offered at a major midwestern
university in the United States during the spring and summer
semesters of 2024. Of the five classes, two management
information systems and two marketing classes were offered
online asynchronously. One business class was offered in a
blended format (75% online and 25% face-to-face). All are
fundamental courses for undergraduate students in the business

school. Table 2 summarizes information about the five classes
participating in this study.

Course Title Semester | Delivery Format
MIS xxx: Spring Asynchronous
Management 2024 online
Information Systems

MIS xxx: Summer Asynchronous
Management 2024 online
Information Systems

BUSN xxx: Business Spring Blended
Analytics 2024

MRKT xxx: Spring Asynchronous
Foundations of 2024 online
Marketing

MRKT xxx: Spring Asynchronous
Consumer Behavior 2024 online

Note. BUSN = business; MIS = management
information systems; MRKT = marketing.

Table 2. List of Participating Classes

After using the chatbot for approximately two weeks,
students were asked to complete a survey. A total of 255
responses were collected (a response rate of 82.79%). Out of
the 255 respondents, 247 completed the entire survey, and
among them, 206 students reported that they used the chatbot at
least once. Consequently, these 206 valid samples were used in
the analysis (a valid response rate of 80.78%). As a general
guideline, a sample size exceeding 200, with 10 to 15 indicators
per variable, is considered sufficient for structural equation
monitoring (Kline, 2023). Table 3 shows the demographic and
the chatbot using information from the survey respondents.

4. DATA ANALYSIS AND RESULTS

4.1 Common Method Bias

The common method bias (CMB) test has been widely used to
determine whether samples are influenced by bias. This study
adopts Harman’s single-factor test using IBM SPSS Statistics
29 to examine CMB in the data. We included all the items
measuring the constructs and set 1 as the fixed number of
factors. If one factor accounts for more than 50% of the total
variance extracted, it suggests the presence of CMB in the study.
In our data, the total variance extracted by one factor is 45.49%
(<50%), indicating that there is no statistically significant CMB
in the study.

4.2 Importance-Performance Analysis

As a graphical tool developed by Martilla and James (1977),
importance-performance analysis has been a popular approach
for decades to examine the strengths and weaknesses of
products and services (Baek, 2021). It has been widely used in
educational evaluations to identify the underperformed and
over-performed teaching elements (Chen et al., 2022;
Sumampouw et al., 2024). In this research, we measured
perceived ease of use, perceived usefulness, attitude toward
using, and actual user experience by adapting the scales of
Masrom (2007) because it is one of the first studies that
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examined the TAM’s influencing factors in e-learning contexts.
The detailed value of both importance and performance for the
factors with 11 corresponding items can be found in Appendix
A. There are three major aspects with high importance, but
relatively low performance that we should concentrate on: (1)
improving the chatbot’s perceived ease of use, specifically its
integration with the course (PE_2); (2) improving the chatbot’s
perceived usefulness, especially the learning effectiveness
(PU_4); and (3) improving the chatbot’s actual user experience,
particularly by providing answers precisely (AE_3). Notably,
more than half of the items (6 out of 11) have received high
values in both importance and performance, indicating that our
chatbot has performed well and fits the students’ needs (Figure
4). Only two items (improve course performance and increase
course productivity) related to perceived usefulness (PU_1 and
PU_3) have low importance and performance, indicating that
these items are not critical issues with high priority, but they
could be the focus of future work.

Variable [ No. [ %
Age

18-19 31 15.05
20-22 157 76.21
23-29 14 6.80
>30 4 1.94
Gender

Male 113 54.85
Female 92 44.66
Prefer not to respond 1 0.49
Prior Experience

Used in other courses 34 16.51
Not used 159 77.18
Maybe (unsure or can’t 13 6.31
remember)

Using frequency

1-2 times 158 76.70
3-4 times 26 12.62
5 or more times 22 10.68
Using minutes

1-4 minutes 26 12.62
5-10 minutes 117 59.80
11-20 minutes 40 19.42
21-30 minutes 13 6.31
>31 minutes 10 4.85
Using purpose

To find general information 21 10.19
about the course.

Information about projects, 38 18.45
assignments, and/or tests.

To better learn the content 20 9.71
covered in the course.

All of the above 88 42.72
No specific purpose, my 39 18.93
professor asked me to use it.

Table 3. Survey Respondents’ Demographic and Chatbot
Usage Information

Importance

Performance

Note. AE = actual user experience; PE = perceived ease of
use; PU = perceived usefulness.

Figure 4. Evaluation Quadrant of Importance-
Performance Analysis

4.3 Confirmatory Factor Analysis

To test the construct reliability, we carried out confirmatory
factor analysis on the 206 samples. According to Hair et al.
(2006), confirmatory factor analysis must have acceptable
model fit indices including chi-square/degrees of freedom
(x2/df) < 3.00, comparative fit index (CFI) > 0.90, normed fit
index (NFI) > 0.90, relative fit index (RFI) > 0.90, incremental
fit index (IFI) > 0.90, and root mean square error of
approximation (RMSEA) < 0.06.

Given the modest sample size, we decided to remove some
items with relatively low factor loading (< 0.60) to avoid
overfitting the measurement model. Based on the analysis
results, two items were dropped to further improve the model
fit. The item “it provides very useful course information”
(factor loading = 0.50) was removed from perceived usefulness,
and “the chatbot answers queries quickly” (factor loading =
0.51) was removed from actual user experience. In perceived
usefulness, the other three remaining items (i.e., “The chatbot
improves my course performance,” “It helps increase my course
productivity,” and “It helps enhance my enhance learning
experience”) are more specific types of usefulness. Regarding
actual user experience, quickness is unlikely to be a user
concern because the course chatbot usually replies to students
within a few seconds. Therefore, the other three items (“The
chatbot answers queries completely,” “It answers queries
precisely,” and “It provides answers that are easy to extract”)
with higher factor loading remain. Afterward, seven factors
with 22 items remain in the model. The measurement model
shows very good model fit criteria, with acceptable model fit
indices (y2/df = 1.70, CFI = 0.97, NFI = 0.92, Tucker-Lewis
Index = 0.96, IF1 = 0.97, and RMSEA = 0.05) and satisfactory
values of the average variance extracted (AVE; > 0.50) and
composite reliability (CR; > 0.70) in all factors. All the 22 items
are retained for structural equation modeling. Table 4 shows the
related estimates.

Regarding the extent of dissimilarity between different
factors, AVE was used to measure discriminant validity. The
square root of the AVE also needs to exceed the inter-construct
correlations (Hair et al., 2006). The square root of each
construct’s AVE has a greater value than the inter-construct
correlations, indicating good discriminant validity. More details
are included in Appendix B.
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Factors and items St. F.L. AVE CR. P
Perceived ease of use (PE) 0.57 0.80

The chatbot is easy to use (PE_1) 0.71 ok
It is well-integrated with the course (PE _2) 0.77 ok
It is interacted with understandably (PE_3) 0.79 ok
Perceived usefulness (PU) 0.75 0.90

The chatbot improves my course performance (PU 1) 0.83 ok
It helps increase my course productivity (PU_3) 0.88 ok
It helps enhance my learning effectiveness (PU_4) 0.89 ok
Actual user experience (AE) 0.68 0.86

The chatbot answers queries completely (AE_2) 0.85 oAk
It answers queries precisely (AE_3) 0.87 ok
It provides answers that are easy to extract (AE_4) 0.75 ok
Attitude toward using (AU) 0.80 0.92

I like the idea of using the chatbot in the course (AU 1) 0.88 ok
I have a generally favorable attitude toward using chatbot (AU_2) 0.89 ok
It is a good idea to use the chatbot to engage with course activities 0.90 ok
(AU _3)

Learner-content interaction (LI) 0.66 0.85

The chatbot stimulates my interest in this course (LI 1) 0.72 ok
It helps me understand better the class content (LI2 ) 0.85 oAk
It helps with new concepts or new knowledge in the course (LI 3) 0.85 ok
Emotional engagement (EE) 0.80 0.92

The chatbot is fun to use (EE 1) 0.83 ok
I enjoy using the chatbot in the course (EE _2) 0.93 ok
I like the feeling of using the chatbot in the course (EE_3) 0.92 oAk
Perceived learning outcomes (PO) 0.72 0.91

I am more confident in getting a higher grade (PO _1) 0.75

I am more engaged with the course after using the chatbot (PO_2) 0.88 ok
I feel more support in the course after using the chatbot (PO_3) 0.83 ok
I am more satisfied with the course after using the chatbot (PO_4) 0.92 ok

Note. St. F. L= Standardized factor loading; AVE= average variance extracted; C.R.=composite reliability.

% < (.001.

Table 4. The Estimates of CFA

4.4 Path Modeling

Using Amos 29.0, we performed partial least squares path
modeling (also known as partial least squares structural
equation modeling) to further investigate the relationships
between the factors. Path modeling is usually preferable for a
modest sample size because it can predict relationships with
limited data better than other methods (Hair et al., 2012). The
indices of the partial least squares structural equation modeling
model are acceptable, with x*/df = 1.83, RMSEA = 0.05, NFI =
0.91, TLI=0.95, IFI = 0.96, and CFI = 0.96. The results reveal
that perceived ease of use has a positive and statistically
significant influence on perceived usefulness and attitude
toward using, so hypotheses Hla and Hlb are supported.
Perceived usefulness has a positive and statistically significant
influence on attitude toward using, thus supporting hypothesis
Hlc. Attitude toward using has positive and statistically
significant influences on the actual user experience, learner-
content interaction, and emotional engagement, lending full
support to hypotheses H2a, H2b, and H2¢c. However, actual user
experience does not have a statistically significant effect on
perceived learning outcomes; therefore, hypothesis H3 is
rejected. This weak relationship may be caused by the relatively

low performance of actual user experience, and in particular,
the IPA revealed that answering queries precisely (AE_3) can
be improved. Lastly, both learner-content interaction and
emotional engagement have positive and statistically
significant effects on perceived learning outcomes. Therefore,
hypotheses H4 and H5 are supported. Figure 5 presents the
research model with path coefficients and their corresponding
significant level at 0.1%.

4.5 Content Analysis

In addition to hypothesis testing, we conducted an ad hoc
analysis of responses to the open-ended question about overall
chatbot perception and desired future capabilities. Using a
script created with R version 4.3.0, we performed content
analysis on the textual data and applied lexicon-based sentiment
analysis to identify sentiment-carrying words and derive the
emotion and sentiment scores. The National Research Council
Canada word-emotion association lexicon (Mohammad &
Turney, 2010) was used to extract emotion words. Figure 6
presents a word cloud of the most frequent words, where size
indicates frequency or importance.
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LI: Learner-content

H2b: 0.95%%%

Note. R2 = coefficient of determination.
**% p <0.001.

PE: Pexcelved interaction R = 0.90
s rerceive
ease of use 1b: 0.36%%*
H4: 0.57%%*
Hia: 0.70%** AU: A(;ﬁt'fde H2a: AE: Actual H3: 0.01 PO: Perceived
tog:l : Ou;;ng **: user experience *| learning outcomes
=0u. 067 R2 = 0_45 Rz = 0.81
A
PU: Perceived Lc: 0.59%=% /ﬁq 0.37%**
usefulness EE: Emotional
R*=0.49 H2c: 0.87%*% engagement R?2=0.75

Figure 5. Standardized Results of Path Modeling

Although the word cloud offers some insights into the most
frequent concepts derived from user responses, these findings
are preliminary. Therefore, cross-checking the results by
reviewing the responses to validate the insights reported was
essential. After we reviewed both the results from the word
cloud and the user comments, the key terms identified in the
word cloud apparently suggested that, in the next version of the
chatbot, students expect the chatbot to provide more specific
answers to their questions, especially those related to course
information, course schedule, and assignments. These findings
provide supporting evidence for specific chatbot features that
can enhance its usefulness, which could subsequently foster
students’ positive attitudes toward using the chatbot, as
suggested in the proposed research model.
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Figure 6. Graphic Results of the Word Cloud

We also conducted sentiment analysis to analyze the
emotions and sentiments expressed in the responses to the
survey’s open-ended questions. Figure 7 displays the average
scores of emotions and sentiments contained in the comments.
The results suggest that most of the respondents had a positive
overall experience with the chatbot. Trust received the highest
average score (0.174), whereas disgust and anger both received
the lowest scores (0.005). We also examined sentiment polarity

with regard to whether a comment was positive, negative, or
neutral. For each comment, we determined a sentiment polarity
score, and, ranging from 0 to 1, the results show that the mean
value of positive emotion is 0.301, and the mean value of
negative emotion is 0.019. These data clearly indicate that the
students generally had positive attitudes toward the chatbot and
perceived it as trustworthy. These results can be used as
guidelines to further customize the features of the chatbot to
improve the effectiveness of the educational chatbot in the
future.
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Figure 7. Average Emotion Scores

5. DISCUSSION

5.1 Summary of the Findings

Based on the TAM and ICAP theories, this research extends the
previous studies by developing and examining the influences of
an educational chatbot on students’ perceptions and responses.
The results reveal that perceived ease of use increases perceived
usefulness, and both contribute to attitude toward using. Our
findings also suggest that attitude toward using increases actual
user experience, emotional engagement, and learner-content
interaction. Notably, learning content interaction and emotional
engagement have statistically significant and positive
contributions (the standard coefficients are 0.57*** and
0.37***_respectively) to perceived learning outcomes. Except
for the statistically insignificant relationship between actual
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user experience and perceived learning outcomes, all the other

proposed hypotheses are supported at the 0.1% significant level.

Sentiment analysis was further conducted on the students’
comments in the survey. The results reveal that students
generally used the chatbot to find information about the course,
schedule, and assignments. Emotions and sentiments extracted
from the comments indicate that students expressed interest and
positive emotions toward the chatbot. Students reported that
they enjoyed using the chatbot and considered the chatbot
trustworthy. These findings shed light on the effectiveness and
opportunities of incorporating Al technologies into higher
education.

5.2 Theoretical Contributions

This research contributes to the advancement of pedagogical
and psychological learning theories related to Al chatbots in
higher education. This study proposes a research model that
integrates and extends the TAM and ICAP theories to e-learning
environments in online business education. Our findings
confirm results of prior research that perceived ease of use and
perceived usefulness are two key antecedents that affect the
acceptance of technology in e-learning. These results add to the
development of the TAM theory in technology-enhanced
modern education.

Guided by the ICAP framework, we provide evidence of the
positive effects of user acceptance and user experience on
interaction and emotional engagement with new technology.
Our findings reveal that, as students seek help from the chatbot
for course information and learning materials, their learning
engagement moves from the passive mode (e.g., reading
textbooks or watching lecture videos without doing anything
else) to the interactive mode (e.g., interacting with the chatbot
on course-related questions). Subsequently, students’ attitudes
toward using the chatbot change positively, the actual user
experience is enhanced, and as a result, perceived learning
outcomes are improved. More specifically, generative Al
chatbots present opportunities for online students not only to
passively receive instructional materials but also actively
manipulate information and engage in constructive and
interactive dialog with chatbots. To use chatbots designed for
their classes, students need to formulate questions in their own
words (constructive mode) if not copied from instructor-
provided content (active mode). Therefore, students’ actual user
experiences correspond to enhanced learning, but have
statistically insignificant effects on perceived learning
outcomes. This finding suggests that, in the context of chatbot-
assisted e-learning, the actual user experience may not have
impacts on perceived learning outcomes as direct and
significant as expected. In comparison, emotional engagement
and learner-content interaction are important factors to improve
students’ perceived learning outcomes. It also implies that
additional factors may be added to the research framework to
further explore the complex theoretical dynamics in an e-
learning environment.

5.3 Practical Implications

From a practical perspective, this research provides some
implications for online education. Our findings shed light on
how generative Al technology helps improve the e-learning
experience, highlighting the effectiveness of such technology in
support of social interaction and emotional engagement in
higher education. Because the students participating in this

study were either enrolled in online classes or blended classes
with a significant online learning component, the instructor-
student and student-student interactions were very limited. For
example, we observed that, in one of the online MIS classes,
less than 25% of the students had at least one contact with the
instructor either by email or meeting during the instructor’s
office hours. For this class, four discussion forums were created
during the semester, and the students were encouraged to
contribute to the discussions and earn bonus points. However,
62 of 103 students (60%) never participated in any of the
discussion forums. The data show that most students in the class
were reluctant to interact with the instructor or other students in
the same class. On the other hand, 72 of 103 students (70%)
used the chatbot at least once and participated in the chatbot
survey. We believe that a well-trained Al chatbot can fill the
interaction gap and work as a virtual assistant/learning
companion to online students, interacting with them whenever
needed, contributing to their problem solving, and improving
their emotional engagement in learning.

To the best of our knowledge, this is one of the first studies
that developed and tested an Al chatbot for e-learning based on
the RAG framework. This study demonstrates the feasibility
and practicality of implementing and deploying such
technologies. We developed the chatbot described in this paper
using Llamalndex, an open-source RAG framework. The total
development time including testing was approximately 2
months, and the programs were written in Python and hosted on
Hugging Face, a public machine learning and data science
community platform (https://huggingface.co/). The pretrained
LLM model underlying the current version of the chatbot is
OpenAl’s GPT-4. There is a small fee associated with using the
model through the OpenAl API, but the cost is minimum for
class use (OpenAl, n.d.). Because Llamalndex integrates with
many popular LLMs, instructors or developers who wish to test
different LLM models for their Al agents can easily switch to
other models, such as Gemini and Claude. Instructors can also
opt for no-code options to develop their custom chatbots. For
example, users can create their own chatbots using OpenAl
GPT  builder (https://chatgpt.com/gpts), a  graphical
development environment where custom chatbots can be built
with a few simple steps. Microsoft Copilot Studio
(https://www.microsoft.com/en-us/microsoft-
copilot/microsoft-copilot-studio) has similar capabilities.

This research contributes to a better understanding of the
roles of Al chatbots in affecting students’ perceptions and
responses; this improved understanding can help instructors
develop pedagogical approaches that enhance the e-learning
experience and perceived learning outcomes. Our findings also
suggest the importance of two aspects, ease of use and
usefulness, in affecting attitudes toward chatbots. The empirical
findings indicate that Al chatbots are favorably perceived by
students, which might be conditioned by the chatbots’ ease of
use and usefulness. Poorly designed chatbots may generate a
less favorable outcome. Results from our importance-
performance analysis indicate that users regard the following
features of a chatbot as highly important: being easy to use,
interacting in an understandable way, providing useful course
information, responding quickly, and providing answers that are
easy to extract. When designing a custom chatbot for specific
classes and learners, instructors should pay attention to not only
domain-specific content but also the user interface and
performance of the chatbot. Human-computer interaction
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concepts such as usability design can be used to improve or
customize the chatbot to increase its ease of use and usefulness.
Furthermore, according to the results of the sentiment analysis,
chatbot designers can implement user experience design
concepts (e.g., Hassenzahl, 2013) to improve the chatbot’s
anthropomorphic characteristics, which can subsequently
promote trust and positive emotions.

5.4 Limitations and Future Work

This study has several limitations that underline the need for
future research. As suggested by previous research, technology
platforms may have different impacts on student learning and
faculty teaching. Although the chatbot designed for this
research was well received by the participants, it is important to
note that we focused on only online and blended classes in this
study. It is unclear whether students in traditional face-to-face
classes will derive similar benefits from using Al chatbots.
Furthermore, college classes vary in teaching styles, formats,
and subject areas. Students enrolled in different types of classes
(e.g., lecture, seminar, and hands-on) in various disciplines may
benefit from such platforms differently. Future studies should
examine the factors that influence student involvement and use
of Al agents to increase the effectiveness of such technology in
e-learning and traditional classroom learning. In future research,
multidisciplinary studies should be conducted to investigate
how students use custom chatbots in classes taught in different
formats and disciplines.

We speculate that our findings might be influenced by data
and technical limitations—a common issue in empirical studies.
Students’ written comments further suggest aspects for future
improvement, including the chatbot’s integration with courses,
learning effectiveness, and precise answers. The current version
of the chatbot is adept at answering user queries and
summarizing documents, but it falls short of initiating
conversations or leading discussions. Future development of
the chatbot should focus on improving its knowledge base and
conversation skills, as well as developing capabilities for
adaptive learning.

In addition, in this study we conducted content analysis on
only the written feedback provided by the participants in the
survey and did not collect the complete use data of the chatbot.
For future work, we will continue to improve the conversional
capabilities of the chatbot and collect and analyze interactions
between users and the chatbot. Such data can be used for in-
depth content and sentiment analysis to examine the
relationships between specific chatbot features and user
experience and emotions. Longitudinal studies on how students
perceive the chatbot at different stages of the learning
experience could also be beneficial, shedding light on potential
changes in students’ perception and attitude toward Al chatbots
and the possible changing effects on their perceived learning
outcomes. Finally, this research investigates the benefits and
opportunities of Al chatbots only from the learners’ perspective.
It would be interesting to collect feedback and input from
course instructors who may have different viewpoints through
their experiences with the Al chatbots.

6. CONCLUSIONS
The transformation from the traditional classroom to the e-

learning environment is not only challenging for educators but
also for students. Integrating a custom educational chatbot into

online and blended classes, we combined in this study the TAM
and ICAP theories to investigate the complex dynamics in e-
learning and how Al chatbots can help facilitate constructive
and interactive learning. The study sheds light on the
effectiveness and opportunities of incorporating generative Al
into higher education.
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APPENDICES

Appendix A. Descriptive Statistics of Importance-Performance Analysis

Importance Performance
Dimensions and items Mean Std. dev. Mean Std. dev.
Perceived ease of use (PE)
The chatbot is easy to use (PE 1). 4.47 0.69 4.40 0.69
It is well integrated with the course (PE 2). 4.22 0.87 4.04 0.95
It is interacted with understandably (PE_3). 4.40 0.73 4.23 0.83
Perceived usefulness (PU)
The chatbot improves my course performance (PU_1). 3.91 0.98 3.85 0.99
It provides very useful course information (PU_2). 4.40 0.78 4.24 0.88
It helps increase my course productivity (PU_3). 3.93 0.96 3.81 1.02
It helps enhance my learning effectiveness (PU 4). 4.08 0.91 3.92 0.95
Actual user experience (AE)
The chatbot answers queries quickly (AE 1). 4.48 0.69 4.39 0.81
It answers queries completely (AE 2). 4.37 0.78 4.16 0.87
It answers queries precisely (AE 3). 4.32 0.83 4.08 0.90
It provides answers that are easy to extract (AE 4). 4.46 0.73 4.21 0.80

Note. Std. dev. = standard deviation.
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Appendix B. Discriminant Validity Matrix for the Measurement Model

PE PU AE AU LI EE PO
PE 0.76
PU 0.66 0.87
AE 0.72 0.54 0.82
AU 0.62 0.57 0.57 0.89
LI 0.64 0.84 0.59 0.73 0.81
EE 0.65 0.70 0.50 0.72 0.77 0.89
PO 0.58 0.76 0.56 0.69 0.75 0.83 0.85

Note. PE = perceived ease of use; PU = perceived usefulness; AE = actual user experience; AU = attitude toward using; LI =

learner-content interaction; EE = emotional engagement; PO = perceived learning outcomes.
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