

Journal of
Information
Systems
Education

Volume 36

Issue 3
Summer 2025

Teaching Tip

Adventure RPG: A Text Adventure Game for an
Introductory Java Programming Course

Seth J. Kinnett, Tatum Shinedling, and Ben Sunset

Recommended Citation: Kinnett, S. J., Shinedling, T., & Sunset, B. (2025).
Teaching Tip: Adventure RPG: A Text Adventure Game for an Introductory Java
Programming Course. Journal of Information Systems Education, 36(3), 209-223.
https://doi.org/10.62273/ASHE6341

Article Link: https://jise.org/Volume36/n3/JISE2025v36n3pp209-223.html

Received: September 9, 2024
First Decision: December 11, 2024
Accepted: March 14, 2025
Published: September 15, 2025

Find archived papers, submission instructions, terms of use, and much more at the JISE website:

https://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

https://doi.org/10.62273/ASHE6341
https://jise.org/Volume36/n3/JISE2025v36n3pp209-223.html
https://jise.org/

Journal of Information Systems Education, 36(3), 209-223, Summer 2025
https://doi.org/10.62273/ASHE6341

209

Teaching Tip
Adventure RPG: A Text Adventure Game for an Introductory

Java Programming Course

Seth J. Kinnett
Tatum Shinedling

Ben Sunset
College of Business

Colorado State University
Fort Collins, CO 80523, USA

seth.kinnett@colostate.edu, tatum.shinedling@colostate.edu,
ben.sunset24@alumni.colostate.edu

ABSTRACT

Engaging students in rudimentary programming concepts is challenging when code examples do not yield practical payoff or are
otherwise uninteresting. The purpose of Adventure RPG is to enable students to utilize first-semester object-oriented programming
concepts to build a text adventure game. In this paper, we describe the incremental development and modular deployment that
characterize the game’s introduction into the course curriculum. In its earliest stages, the game welcomes players and asks them to
select a lineage for their heroes. In its final stage, it is a fully functioning text adventure game utilizing selection statements, loops,
methods, classes, objects, arrays, and file input/output. A survey of 60 students revealed that a majority of students scored the
activity as highly valuable and self-reported high scores for positivity and participation in the Adventure RPG live-coding activities,
while also reporting low levels of perceived distraction. The project provides ample opportunities for co-creation and incorporation
of student-sourced enhancement ideas. Given the importance of live coding in delivering content in programming courses, this
teaching tip provides student-supported content to refresh instructors’ live coding exercises and enhance curriculum in introductory
Java programming courses.

Keywords: Computer programming, Teaching tip, Code demonstrations, Computing curriculum

1. INTRODUCTION

An introductory programming course is one of the
fundamentals of an information systems education. Despite its
importance, these courses are often regarded as overly complex
and disengaging. In fact, many students in information
technology (IT) related majors find introductory programming
courses difficult (Ali & Smith, 2014). Furthermore, many
students find traditional programming courses to be dull
(Lippert & Granger, 1997). Successfully learning to code
requires students to fully grasp and apply the concepts to the
correct contexts. Traditional education methods, such as slide
decks, are generally discouraged in programming pedagogy as
they promote a passive approach to learning (Ferreira et al.,
2018). Live coding has emerged among the leading strategies
for content delivery in programming courses (Selvaraj et al.,
2021). In particular, incremental exercises spread over longer
time horizons allow students to easily retain information while
also being able to go back and refine the work they have
previously done (González‐Pérez & Ramírez‐Montoya, 2022).
When students are directly involved in the development of
digital assets that represent a complete unit of learning, or
learning object, their education improves significantly
(Williams et al., 2020). Accordingly, educators must find

innovative ways to make learning interactive, engaging, and
applicable to real-life scenarios by using live coding techniques
over an extended period.

The purpose of this paper is to outline the incremental
development of a Java-based text adventure game, Adventure
RPG, which was implemented via live coding lectures
throughout a 16-week introductory Java programming course.
Adventure RPG addresses the issues outlined by providing a
fun, active-learning experience for students in an introductory
programming course. Adventure RPG incorporates core
programming concepts into its development to provide a real-
life use of code written in class. According to Journal of
Information Systems Education guidelines, this Teaching Tip
qualifies as a recommended teaching practice, given that it
introduces a new teaching method or technique (Lending &
Vician, 2012).

The remainder of this Teaching Tip is structured as follows:
First, we provide practical justification using the theories of
constructivism and active learning. Next, we explain the
pedagogical importance of active learning, incorporating fun
into course design and games. We then ground the innovation
in the context of Education 4.0, the World Economic Forum’s
framework for higher education in the emergent Fourth
Industrial Revolution (4IR). After that, we briefly review the

https://doi.org/10.62273/ASHE6341
mailto:seth.kinnett@colostate.edu
mailto:tatum.shinedling@colostate.edu
mailto:ben.sunset24@alumni.colostate.edu

Journal of Information Systems Education, 36(3), 209-223, Summer 2025
https://doi.org/10.62273/ASHE6341

210

existing literature surrounding the pedagogy of computer
programming. To articulate our approach, we then present a
narrative surrounding the incremental development of
Adventure RPG throughout a 16-week semester.

For brevity, the entire source code is not included in this
paper, but we invite instructors to request the full source code
so they can better understand the comprehensive structure and
gameplay mechanics. Throughout this paper, we describe some
of the most prominent lecture content, referencing specific code
examples that we have included as an appendix. We next
present results from a student survey, a collection of student
feedback on the exercises, and recommendations for instructors
interested in implementing Adventure RPG in their
programming courses. We conclude with a plan to survey future
students and a forecast for future enhancements to the
application.

2. BACKGROUND

2.1 Theoretical Foundation: Constructivism
Adventure RPG is a live coding exercise: a technique that
leverages the tenets of active learning. Active learning is an
instructional strategy that is theoretically grounded in the
constructivist learning paradigm. Constructivism is generally
attributed to Dewey, who believed that we learn by acquainting
ourselves with objects through frequent use (Dewey, 2018).
This principle of learning by doing (Kivinen & Ristelä, 2003)
depicts the learner as an active participant in the creation of
knowledge: a paradigm that accounts for part of its pedagogical
popularity (Jones & Brader-Araje, 2002). Piaget, whose
conceptualizations of constructivism are seminal, noted that
“… all knowledge is tied to action, and knowing an object or an
event is to use it by assimilating it to an action scheme…”
(Piaget, 1966, pp. 14-15). Key principles of constructivism
emphasize that learning is an individual, active, and evolving
process (Anthony, 1996).

2.2 Active Learning
While constructivism provides a valuable theoretical
framework for how students successfully gain knowledge,
active learning serves as its classic operationalization. Active
learning is defined by Bonwell and Eison (1991) as any
teaching strategy that “involves students in doing things and
thinking about the things they are doing” (Bonwell & Eison,
1991, p. 19). Active learning allows students to be involved in
their education, reducing the risk of passive content
consumption. Examples of active learning strategies in an
introductory programming course include project-based
learning, class discussion, and field activities (Močinić, 2012).
Previous research has shown that employing active learning in
the classroom improved student performance, reduced failure
rates, and had a greater impact on mastery of cognitive skills
(Freeman et al., 2014). Furthermore, active learning aligns with
the emergent concept of Education 4.0, the World Economic
Forum’s framework for curriculum and student experiences to
thrive in the emergent 4IR (Elhussein et al., 2023). We
developed the Adventure RPG application with the goals of
Education 4.0 in mind. Digital skills and programming,
discipline-specific knowledge, communication, and critical
thinking are all elements of Adventure RPG that align with the
Education 4.0 taxonomy.

2.3 Live Coding
A powerful strategy to integrate active learning in introductory
programming education is live coding. Live coding is when the
instructor designs and implements a program for the class to
follow along and has been found to be significantly more
effective than slide decks used during lectures (Rubin, 2013).
This strategy fosters engagement within the curriculum and
facilitates a hands-on learning experience during class, greatly
improving students’ chances of success (Menon, 2023; Rubin,
2013). Additionally, Menon (2023) found that students can
learn adequate problem-solving skills following an instructor’s
example.

Live coding enables students to be engaged, actively
participate, discuss questions, and gain hands-on experience. It
also accommodates students’ various levels of coding
knowledge; students with more advanced coding skills can
assist their peers, resulting in more student engagement. The
effectiveness of live coding is shown by student feedback
expressing enthusiasm for the live coding exercises (Rubin,
2013). Given the importance of live-coding in the teaching of
programming (Raj et al., 2018), the necessity of high-quality
live-coding exercises cannot be overstated. Many curricular
enhancements are important, but in programming, the literature
is especially clear on the importance of live coding to student
success (Raj et al., 2018; Rubin, 2013; Selvaraj et al., 2021).
However, live coding is only useful if students are engaged in
the exercise. Even the best live coding practices can be
unsuccessful if students become distracted. It is thus implicitly
clear that instructors should endeavor to make their live coding
exercises as fun as possible.

2.4 Pedagogical Value of Fun and Games
Using fun in education has been a strategy to engage students
and strengthen learning for many years. Research suggests that
fun is not a superficial aspect of education; rather, it is essential
to incorporate to fight distraction and enhance learning. Fun
methods of instruction make learning interesting and engaging
for students, resulting in improved concentration and
knowledge retention (Mokhtar et al., 2023). Furthermore, fun
in the classroom has a significant indirect effect on student
attitudes about the subject matter and significant total effect on
learning (Tisza, 2021). These findings show how fun can
increase student learning while fighting distraction. An
important aspect of fun is the positive emotions that are
expressed as a result. These positive emotions have a
constructive effect on learning, while sadness, anger, and stress
negatively affect learning (Tisza et al., 2022). Overall, fun in
the classroom makes learning more enjoyable and fights student
distraction (Purinton & Burke, 2019), making it an invaluable
strategy to incorporate in traditionally difficult subject matters.

One notable way to incorporate fun in an introductory
programming course is with games. Games can be considered a
classic pedagogy and have consistently been used to teach
words, shapes, colors, and basic information throughout
childhood (Barber, 2021). Yet, using games in learning has
academic merits for all ages. Seethamraju (2011) found the
implementation of a business simulation game effective in
engaging students. Feedback revealed students enjoy the
interactive nature of the simulation and its academic value,
which they perceived as more enriching than traditional
teaching methods (Seethamraju, 2011). Similarly, game-based
learning exercises foster student engagement and in-depth

https://doi.org/10.62273/ASHE6341

Journal of Information Systems Education, 36(3), 209-223, Summer 2025
https://doi.org/10.62273/ASHE6341

211

learning (Hartt et al., 2020). It also allows for students to have
a deeper understanding of topics that they find challenging
(Farkas et al., 2022). Games can be great digital learning tools
that support meaningful leaning (Shute & Ke, 2012).
Additionally, the development of Adventure RPG aims to
replicate the high levels of motivation and engagement
typically found in gaming for educational purposes (Cheong et
al., 2024).

Games appear to be particularly timely interventions today,
as instructors seek to improve their classroom experiences for
Generation Z students. This generation is especially familiar
with digital games and derive a high level of engagement from
the social, emotional, and cognitive motivation they experience
(Maulana, 2024). Because of this motivation, Generation Z
students are very comfortable with games. Generation Z
students crave the fun, kinesthetic aspects of games and desire
them in learning (Mendoza, 2019).

2.5 The Pedagogy of Computer Programming
The importance of introductory programming courses does not
go unnoticed; most information systems programs require at
least one programming course (Babb et al., 2014). Although
these courses are both important and still prevalent in
Information Systems (IS) education, teaching coding efficiently
is seen as a challenge. Prior teaching tips do not underestimate
the uphill battle that teaching first-time programmers
effectively can be. These courses are the foundation for
information systems education, and if concepts are not grasped
early, students struggle in the long-run when they are enrolled
in more advanced computing courses (Zhang et al., 2020). Java
is one of the most popular programming languages to use in the
information systems curriculum (Smith & Jones, 2021),
showing the need for proper introductory Java education.

The reputation of teaching these courses has enabled
instructors to explore different and engaging teaching strategies
to find what is most successful. Prior literature has warned
against the use of traditional lectures leveraging slide decks in
programming courses, which can lead to students zoning out
(Zhang et al., 2020). The adverse effects of traditional lecture
methods highlight the need for more effective teaching
strategies to emerge. Prior Journal of Information Systems
Education Teaching Tips surrounding programming courses
have made a range of valuable contributions to the information
systems curriculum. Sengupta (2009) provided an excellent
scaffolding for coding instruction using comment first coding.
Other Teaching Tips (e.g., Cavaiani, 2006; Menon, 2023;
Sharma et al., 2020; Zhang et al., 2020) have likewise
explored—along with making other valuable contributions—
the many merits of live coding in detail and how to implement
such techniques in programming courses. This paper extends
this strong foundation by offering a comprehensive and
interactive semester-long live coding activity.

In a meta-analysis of teaching and learning computer
programming, many factors of successful programming
instruction were tested. It was found that instructors can shape
their teaching to fit the needs of their classes without sacrificing
efficiency. Additionally, trying new and effective teaching
practices does not obstruct student learning (Scherer et al.,
2020). This both recognizes the need for innovative teaching
methods and displays the importance of meeting student-
specific needs. This approach provides a unique and effective
way to teach fundamental introductory programming

principles. Overall, programming pedagogy continues to be ripe
for innovation and benefits from the use of new and creative
teaching practices. Our answer to this call for engaging course
content comes in a text adventure game: Adventure RPG.

3. THE TEACHING PROCESS

3.1 Introduction to Teaching Adventure RPG
Adventure RPG is a Java-based text adventure game that is
developed throughout the semester in an introductory Java
programming class for information systems students. The
topics taught in class are incrementally added to Adventure
RPG such that students will implement an object-oriented text
adventure game by the end of the semester, utilizing solutions
native to the modules taught in class (see Table 1). Further,
Adventure RPG uses incremental development, which aligns
with Agile methodologies. Our legacy lecture content largely
consisted of comparatively bite-sized, stand-alone exercises.
Adventure RPG, on the other hand, is built throughout the entire
semester, which we suggest provides a sense of continuity and
anchors various course concepts in a way that independent
exercises do not.

Module Topic Summary
1 Course Overview, History of Programming

Languages
2 Java Fundamentals (data typing, variables,

constants)
3 Selection Statements (if/else/else if/switch)
4 Loops (while, do-while, for)
5 Methods & Method Overloading
6 Arrays (one and two-dimensional)
7 Classes & Objects (data encapsulation,

constructors, accessors & mutators)
8 Advanced String Manipulation & File I/O

Table 1. Curriculum Summary

The decision to build the game as lecture material as a live

coding exercise—rather than as a series of graded
assignments—emerged from a blunt assessment of the course’s
needs. The lecture content was ripe for expansion and
enhancement, and we sensed that this was the greatest
immediate priority. Instructors should feel empowered to use
some or all of Adventure RPG as assignments, quizzes, or
exams, or otherwise modify our content and approach as their
course needs dictate. We now summarize the implementation
of the game as taught incrementally through the eight course
modules.

Student participation is a key feature of Adventure RPG.
During live coding exercises, students actively contribute by
typing along with the instructor, participating in discussions the
instructor facilitates during the activity, and debugging their
code if they have an error. In addition to choosing their own
output messages, many students collaborated with one another
if they missed something. Students are also encouraged to
create their own code with Adventure RPG. Common student-
driven customizations we observed include customization of
messaging, additional or custom lineages, new hero roles, and
extensions to either Hero or Monster class definitions.

https://doi.org/10.62273/ASHE6341

Journal of Information Systems Education, 36(3), 209-223, Summer 2025
https://doi.org/10.62273/ASHE6341

212

3.2 Programming Basics, Variables, Constants, Primitive
Data Types, and Input/Output (I/O)
In the module following course introductions, Adventure RPG
is briefly introduced along with code surrounding basic variable
and constant declarations and program I/O statements,
providing students an opportunity to think about unique
applications of coding basics. The introduction of input/output
commands, including declaration and instantiation of the
Scanner class and the suite of output statements related to
System.out.print(), provides early opportunities to develop
messaging and elicit basic inputs to begin the game.

We implement the concept of hero lineage — 1: ELF, 2:
ORC, 3: HUMAN — as one collection of game start-up
prompts, followed by the elicitation of the hero’s role — 1:
FIGHTER, 2: MAGE, 3: ROGUE. Soon after the scanner and
data types are introduced, Adventure RPG’s code begins (see
Figure 1; all figures are provided in the Appendix). The
instructor explains importing and creating a Scanner. Next, the
instructor demonstrates the declaration of variables and
constants for the name and lineage of the hero. Furthermore, the
instructor discusses System.out.println() to display a message
prompting the user to give the hero’s name. The instructor
discusses the process of getting an integer input from the user
by utilizing the assignment statement intLineage =
scr.nextInt(). Subsequently, selection statements can utilize the
constants for more intuitive implementation.

3.3 Selection Statements and Basic Error Catching
After the introduction of selection statements, a natural
opportunity exists to extend the basic elicitations from the prior
module and implement if/else if ladders to the code by using the
previously declared constants ELF, ORC, and HUMAN as the
parameters for the if/else if block. The instructor explains that
the integer intLineage relies on user input, and with if/else if
statements, the code can be manipulated to select the lineage
that coincides with user input. Figure 2 contains an example of
the if/else statements that coincide with the user input to select
the hero’s lineage. The instructor may also use this as an
opportunity to explain tests for equality compared to
assignment statements. Demonstrating (intLineage == ORC) as
the correct notation and showing the adverse result from using
(intLineage = ORC) are important dimensions of this code
presentation. This allows for a deeper understanding of these
concepts while also preventing a common error made by
students when first learning if/else statements: misconstruing
the appropriate use cases for = and ==. To encourage class
participation, the instructor can survey the class to suggest the
text response to players after a lineage is selected. This
approach provides students with a personal touch in the code
written, which may not always occur in introductory
programming assignments.

3.4 Loops
The select lineage process can be enhanced with error handling
when loops are introduced to the course. Specifically, students
enhance the lineage selection process from only using if/else
and System.exit(0) statements to prompting the user via a loop
and continuing to prompt the user until a correct selection is
obtained. This is an opportune time to deploy a do/while loop.
Students see how the loop serves as built-in error checking by
preventing the game from advancing until the user makes a
proper selection. To demonstrate a do/while loop, we declare a

new integer, intRole. Then, we encapsulate prior selection
statements within a do/while loop.

As seen in Figure 3, the do/while loop is established to
continue looping if the input does not equal FIGHTER, MAGE,
or ROUGE. Inside the loop is the prompt for the user to select
a fighter type, and an if/else if block that outputs different
statements based on what fighter type is chosen by the user. The
output statements provide an opportunity to gather input from
the class, as well as a creative output when a fighter type is
chosen. This can boost participation and allow students own
creativity to personalize Adventure RPG. We also replicate this
loop structure to enhance the lineage selection process. This is
an opportune time to add error handling with try/catch
structures.

3.5 Methods
The code is around 50 lines at this point, so the module on
Methods is a good time to clean up the main() method and
“outsource” functionality to other methods in the main RPG
class. Creating three new methods: void startStory(), String
startHeroName(), and int startHeroLineage() allows for
cleaner code and streamlines the process while also providing
examples of both void and non-void methods. To illustrate a
void method, we implement void startStory(). This method
provides a customizable introduction to the context of the game.
The use of the method illustrates how some functionality can be
packaged and modularized even if there are no return values to
be obtained. In our implementation, we print a game title,
introduction, and story context: A kingdom in need of a hero.
To emphasize what makes a void method unique, the instructor
stresses the absence of a return value. In contrast, the method
String startHeroName() illustrates a non-void method. The
method uses the process previously written in the code to obtain
the hero’s name based on user input. To emphasize what makes
a non-void method unique, the instructor highlights how a
String variable needs to be returned. The instructor
demonstrates the specific return type of the method and how it
requires a return statement with the same data type. Replacing
the code previously written with this method shows how
methods can be used to simplify code to make it neater while
accomplishing the same goal.

As shown in Figure 4, we create the non-void method, int
startHeroLineage(). Similarly to the method startHeroName(),
this method contains code that is already written but is now
stored in its own method, which reduces the quantity of code
remaining in the main method. We demonstrate how to replace
the existing main method code with a call to
startHeroLineage(). It returns an integer that corresponds to the
hero lineage. In addition to the lineage selection process, we
also encapsulate the hero’s role selection in a non-void method
startHeroRole(). This method assigns the hero’s role based on
user input. The user input correlates with a constant (i.e., 1:
FIGHTER, 2: MAGE, 3: ROGUE). Overall, the different
methods highlighted in Adventure RPG provide several
examples of both void and non-void methods.

3.6 Arrays
Our implementation of an array centers upon the game’s map,
and we utilize a void method that receives a 2D integer array to
create a map for the hero to traverse. The method is created
using void printMap(int[][] map). Because classes and objects
have not yet been formally introduced, and due to the

https://doi.org/10.62273/ASHE6341

Journal of Information Systems Education, 36(3), 209-223, Summer 2025
https://doi.org/10.62273/ASHE6341

213

complexity of building arrays of objects, we opted to use the
primitive data type of integer as the foundation for the 2D array.
Inside the array, a legend occupies the space. This can include
different locations, monsters, and treasure. By assigning the
indexes different numbers, the programmer can input different
objects to achieve different outcomes.

Integers, while suitable for the base of the map, are less
compelling when printed, so we implemented a translation logic
to use characters, as outlined in the void method printMap(),
which accepts a 2D integer array as a parameter and prints the
map. The main loop of the game requires reprinting the map
numerous times. As seen in Figure 5, this method prints a visual
representation of the array to the console, providing a map for
Adventure RPG players. Every constant declared in the array
corresponds with a different component of the map, such as
MONSTER, HERO, CASTLE, and OBSTACLE. This code
also allows for different symbols and colors to represent the
different game elements. Setting up the map with constants as
the foundation allows it to be customizable in the future and
gives students another chance to be creative.

3.7 Classes and Objects
At this point in the code, there are many methods initialized to
play Adventure RPG. We next add the use of classes and objects
to the gameplay through the creation of two new classes. They
each accomplish different tasks and provide insight on the
different functions of classes. Hero (see Figure 6) and Monster
(see Figure 7) classes are initialized to create hero and monster
objects. The Hero class begins by defining a public class named
“Hero” as well as static constants to represent the three different
lineages. This code enables reiteration of the importance of the
contrast between static and instance variables. Following the
initialization of variables, the hero constructor needs to be
created. This constructor establishes the initial values for
selected class variables—name, lineage, and role—along with
assigning varying combinations of health and damage of the
hero based on the lineage selected by the player. Each lineage
has different advantages and disadvantages; for example, the
Elf lineage has the most health but does the least amount of
damage, while the Orc lineage has the least amount of health
but does the most damage.

The Monster class is created to introduce enemies to the
game for more exciting gameplay. Figure 7 demonstrates the
creation of the Monster class. It starts with the definition of a
public class called “Monster” and declares static constants for
monster health and type. Instance variables are then created for
the characteristics of a monster. The constructor then sets the
Boolean variable isAlive to true and initializes monsterType. It
also sets the damage and health of the monster based on the
type. For example, a Goblin has a health of 10 and a damage of
15. This constructor allows for different monsters to be created
that have varying health and damage capabilities.

3.8 File Input/Output
The final module in the course introduces students to basic file
input and output using console and graphical user interface
solutions. To incorporate this functionality to Adventure RPG,
we introduce the ability to load different maps from .txt files.
This functionality replaces the original hard-coded map and
introduces the loadMap() method and related functionality. The
.txt file can also be altered to showcase important game design
elements. For instance, if a student were to make the .txt file the

only integer that corresponds with obstacles, the game would
not be functional. Additionally, altering the .txt file to include
more Monsters than the original map would make the game
more difficult for players looking for a challenge. Using .txt
files provides exciting opportunities to enhance the gameplay
of Adventure RPG.

To perform file input, a method must be implemented into
the code. The method buildMap() accepts zero parameters and
returns a 2D integer array. We utilize the JFileChooser class to
read the files. The buildMap() method creates a 10 x 10 map
from the input file chosen (see Figure 8).

First, the method initializes the key components of the
method, such as the 2D integer array, a File object,
JFileChooser, a scanner, and primitive data types. The method
prompts the user for the file using
fileChooser.showOpenDialog(null) and incorporates an if/else
if to approve or cancel the selection. The method then reads the
file and prints an error message if it is not found. Additionally,
we create a Scanner object to read and parse the data from the
file. The next section of the method reads data from the file and
converts it into a 2D integer array. To keep track of the current
row and column numbers, the integers col and row are
initialized. The delimiter is set, and values are read as the data
is parsed. A catch is thrown for NumberFormatException to
ensure the file input is always numeric. Finally, the method
returns the map array to create the map to be traversed by the
player.

3.9 Additional Methods
The most significant portion of functionality needed to “stitch
the game together” is possible only after the introduction of
classes and arrays. Accordingly, this collection of coding
exercises could become larger than feasible for live coding
within the time allotted; this was the case with our
implementation of the game. We propose instructors may
address this by posting certain supplemental code snippets on a
learning management system and advising students how to add
them to their existing code. Methods including battle(),
handleMove(), and the main method’s core game-driving logic
(see Figure 9) all fall into this category. We would like to
allocate more class time to incorporating these methods as live-
coding exercises in future iterations of this course. Because
game maps can be created at random or read from files,
eliminating the file loading portion would be the natural choice
if an instructor wanted to devote more time to the advanced
methods that are available after Module 7.

The driver of the gameplay consists of a loop that prompts
users to select a direction to move, a decision which causes
some variation of a call to the handleMove() method which tests
the player’s intended location against the map, determining
whether the space is empty, occupied by a monster, or contains
the castle the hero seeks. If a player enters a monster-occupied
space, the battle() method uses random number generation,
along with the character’s lineage and role, to determine
outcomes against monsters. Ultimately, the player wins when
all monsters are defeated, and the player reaches the castle
square.

4. EVIDENCE

Following the guidance of Lending and Vician (2012), we
sought to measure the impact of the pedagogical innovation.

https://doi.org/10.62273/ASHE6341

Journal of Information Systems Education, 36(3), 209-223, Summer 2025
https://doi.org/10.62273/ASHE6341

214

We chose to evaluate student perceptions of the Adventure RPG
live-coding activities and overall course quality. The Student
Response to Instructional Practices (StRIP) instrument,
developed by DeMonbrun et al. (2017), is grounded in
constructivist theory and measures constructs surrounding
student responses to instructional practices. While
constructivism provides the theoretical foundation, the StRIP
provides practical justification to gauge student reactions to
course interventions like Adventure RPG. In particular, the
StRIP instrument measures the relationship between student
perceptions about active instruction interventions and
perceptions of the overall course in which they occurred.
DeMonbrun et al. (2017) define active instruction “as occurring
when students are engaged with the course content in any
individual activity” (p. 276). To measure student-perceived
engagement with the instruction, the instrument evaluates five
dimensions: value, positivity, participation, distraction, and
evaluation of the overall course.

DeMonbrun et al. (2017) describe value as the extent to
how students see an activity as worthwhile. It determines
whether students found benefit in the activity, saw value in the
activity, and if they felt their effort was worth it. A high value
score indicates that students saw value in the activity, the time
spent, and the effort involved. The low end of this factor means
students disagree that they saw value in the activity, the time
spent, and the effort they put in. Positivity includes the positive
or negative feelings students have about the activity and
classroom environment. A high positivity score shows students
feel positively about the activity, instructor, and classroom
environment, while a lower positivity score displays the
opposite.

Participation measures the degree of student participation
or resistance. A high participation score exhibits students
showed the positive parts of behavioral engagement,
participated actively, and put effort into the activity. A low
participation score displays students showing open resistance,
passive nonverbal resistance, or partial compliance. Open
resistance includes student objection in ways that are not
constructive. Passive nonverbal resistance are any activities
where students are appearing to engage but are doing something
else. Partial compliance occurs when students complete a task
with minimal effort or while being preoccupied with the
structural details. Distraction occurs when students distract
themselves or others during learning. A high distraction
signifies students are focused and avoid other activities. Yet, a
low distraction score indicates students are engaging in
distracting behaviors. The last term, evaluation, reflects how
students rate the course or instructor at the end of the semester.
If the evaluation score is higher, students rate the course and
instructor highly while a low evaluation score means students
rate the course and instructor poorly (DeMonbrun et al., 2017).

We modified DeMonbrun et al.’s (2017) questionnaire to
fit the context and goals of our study. Namely, it was
impractical to include the full bank of survey questions
originally used by DeMonbrun et al. which would necessitate a
very high sample size for our survey threshold. Although the
literature varies on recommendations for respondent size versus
number of survey items, Pett et al. (2003) recommend 10-15
respondents per survey item. Therefore, utilizing the original
survey would, at minimum, require 170 respondents;
considering that our classes rarely exceed 20-30 students, we
selected a single question from each construct.

Throughout this reduction, we were mindful to preserve the
original construct of measure even when only a single question
is used. Namely, we asked: Is there a risk that the question
might actually measure a different construct? In the scale at
hand, these are not concerns. For example, for the Value
dimension, we used the survey item: “I saw the value in the
Adventure RPG exercises.” We suggest that it is reasonable to
conclude that the omission of multiple questions surrounding
this construct could hardly lead to the conclusion that this item
is not a good faith attempt to measure the construct Value. Such
considerations are standard when adapting a scale to a unique
scenario. The resultant five-question survey asks students to
rate how much they agree with each statement by selecting from
a Likert scale of 1 (Strongly Disagree) to 5 (Strongly Agree).
Table 2 outlines the five factors measured, associated survey
questions, and the mean & standard deviation of the responses.
Each question was leveraged directly from the general scale
proposed by DeMonbrun et al. (2017).

Factor Survey Question Results
Value I saw the value in the

Adventure RPG exercises.
M = 4.37,
SD = 0.69

Positivity I enjoyed developing the
Adventure RPG game.

M = 4.17,
SD = 0.81

Participation I participated actively (or
attempted to) in the
Adventure RPG game
development.

M = 4.38,
SD = 0.72

Distraction I surfed the internet, checked
social media, or did
something else instead of
building out Adventure RPG.

M = 1.68,
SD = 0.91

Evaluation Overall, this was an
excellent course.

M = 4.17,
SD = 0.85

Table 2. Survey Findings

A total of 60 students completed the survey (N = 60). As

shown in Table 2, students generally reported strong agreement
with the value of the exercises, their perceptions of positivity,
self-assessment of participation of the exercises, and low levels
of distraction during the exercise. Students generally agreed the
course overall was excellent. 92% of respondents agreed or
strongly agreed they saw value in the Adventure RPG exercises.
78% agreed or strongly agreed that they enjoyed developing the
game. 90% agreed or strongly agreed in their active
participation in the exercises. Only 5% reported any agreement
with our questions about distraction. Most students reported
low levels of distraction and did not agree with statements about
multi-tasking or simply ignoring the Adventure RPG live-
coding exercises. Finally, 80% of students agreed or strongly
agreed with our question about overall course excellence.

All of the positive factors exceeded the mean value for
student perception of overall course excellence. It is likely that
the game improved overall course perception scores, and
students’ perceived value, positivity, and participation
exceeded the degree to which they favor the course overall.
More work remains to be done to ensure the course overall is
perceived highly, but the relative popularity of the Adventure
RPG live coding exercises suggests it is a worthy compendium
to programming course curriculum. Student support of the
activities was generally strong and was found in both course

https://doi.org/10.62273/ASHE6341

Journal of Information Systems Education, 36(3), 209-223, Summer 2025
https://doi.org/10.62273/ASHE6341

215

evaluations, verbal ad-hoc communications, and even a
nomination of the instructor for a university-wide teaching
award. Selected feedback from these students is shown in Table
3.

The responses display the effectiveness of the project in
teaching an introductory programming course. Notably, many
students highlight how they felt Adventure RPG was more
beneficial than traditional exercises. Students felt Adventure
RPG deepened their understanding of the topic, increased their
participation, had a real-world purpose, and allowed them to
retain the material better. The student perception to Adventure
RPG shows students found the tool both beneficial and fun in
the learning environment. Collectively, Adventure RPG is an
endeavor students view as valuable, perceive positively,
actively participate in, and engage with minimal distraction.
Anecdotal student feedback is positive.

The RPG example he constantly uses and updates
throughout the semester has been a far better way to learn
the material for me. I actually understand the difficult
content better using his project than I do with the book.

I found myself referencing the RPG all the time to help
learn concepts and figure out all the working parts in one
place. I felt the RPG example was easier to understand and
better than some of the quick Java projects we did during
lecture.

Building the Java RPG brought the concepts from class to
life in a way that was both engaging and practical. When
paired with Zybook assignments, it created a well-rounded
learning experience that made the material stick better
than traditional homework.

I really liked that it was a universal use case, used lots of
different variables and methods, was comprehensive
amongst basic Java topics, and that it was group-led but
individually driven.

The Adventure RPG deepened my understanding of Java in
a fun and engaging way. Utilizing different methods to
create different aspects of a game was a good way to show
real world application of the concepts we were learning,
heightening the enjoyment of Java programming.

Compared to the typical practice exercises, the Adventure
RPG kept me captivated and helped to bring all content in
the course together. I still use that project whenever I need
a reference and reminder of all the needed basics in Java!

[The RPG game] was helpful to see each piece of criteria
we learned throughout the semester come into one piece of
code. It helped see how all the components work together
and is a good piece to look back at to see all the basics of
Java we learned.

One of the most rewarding projects that we did in [the
course] was the RPG game. At first it seemed daunting, but
the way it was formatted (learn new topic in class, apply it
to normal code, apply it to RPG) made it more fun to learn!

Adventure RPG was my favorite part of the course. When
we switched from the regular lecture to Adventure RPG, I
felt like I knew the concepts better. It was so exciting to
learn something fun that had a tangible outcome. Learning
to code in Java was definitely a hard process, but
Adventure RPG made it fun and easier!

Adventure RPG was a great way to learn and made a
difficult course more enjoyable!

I really liked that Adventure RPG was introduced at the
beginning of the semester and as we learned more the
game became more complex. It helped my learning, and I
paid more attention to it because it was interesting.

Table 3. Student Feedback

5. DISCUSSION AND TEACHING SUGGESTIONS

Reflecting on the game’s implementation in our course, we
observed substantial positive feedback from students. We did
not observe much non-engagement during the coding sessions,
similar to the survey findings. The biggest challenge that
occurred during the game’s implementation was finding
sufficient time to cover every code snippet during class. We
tended to favor using Adventure RPG as one of several
examples during each module. In some cases, more advanced
topics (e.g., arrays) needed to be introduced first with simpler
examples prior to moving to the Adventure RPG exercise. This
led us to post some of the Adventure RPG code on the course
learning management system rather than covering every single
line in class. Therefore, our advice to instructors is to consider
whether there are opportunities to entirely replace prior lecture
content, which we did for certain modules earlier in the game’s
development, or whether the game content is to be added on top
of other examples. Similarly, instructors could consider—as we
continue to—making more structural changes in the course to
provide even more time to focus on Adventure RPG.

So far, Adventure RPG has been incorporated primarily as
live-coding lecture content and not directly as graded
assignments. This allowed the game to address our greatest
need: fresh lecture content to engage students in core concepts.
At the time, we were not lacking in assignment content, which
drove some of our decisions. We believe there are several
avenues that instructors could pursue to leverage Adventure
RPG for their own course needs. Some examples include
leveraging the code base to develop graded assignments,
including aspects of Adventure RPG on quizzes and exams, and
crowd-sourcing extensions, revisions, and enhancements. The
latter activity was the driver behind our first extension to the
lecture content, specifically eliciting student enhancements and
extensions to the game as end-of-semester extra credit. Students
have submitted a variety of collateral material as extra credit
ranging: from minor tweaks to class definitions to new suites of
functionality (e.g., an item inventory management scheme) to
map enhancements incorporating terrain (e.g., forest, desert) to
comprehensive rebuilds using dialog boxes (i.e., leveraging the
JOptionPane class methods).

Developing graded components of the game or requiring
students to submit their version of the code from lecture, may
be advantageous in further reducing the already small amount
of student-reported distraction during the exercises. Ultimately,

https://doi.org/10.62273/ASHE6341

Journal of Information Systems Education, 36(3), 209-223, Summer 2025
https://doi.org/10.62273/ASHE6341

216

however, we believe that students should be supplied any
missed source code following assignment due dates, so every
student has the opportunity to construct a fully functional game
by the end of the semester. If critical aspects of the game are
purely graded assignments, whereby students are 100%
responsible for the code, the ultimate effect may not ultimately
be advantageous since it will introduce substantial variation in
each student’s code, especially as the course content becomes
more advanced near the end of the term. Providing the code
immediately after lecture also allows for students to revise and
refine their code if they missed something during live coding.

While Adventure RPG is effective in providing an
innovative teaching solution that enhances student learning and
participation, enhancements can be made. For example, as
currently implemented, Adventure RPG does not require any
skill to play the game. It determines the outcome of battles
based on a random number and the user has limited input that
can influence the game’s outcome. A solution to this could be
to implement a way for the user to input a number, and if that
number is guessed correctly, or matches the integer generated
randomly, they win the battle. On the other hand, the game’s
relative simplicity, both to develop and to play, can also be
viewed as one of its strengths.

Another improvement that could be made based on user
skill during the battle sequence is if the user strikes a certain
key quickly enough, they deal more attack damage. Leveling up
characters and deploying upgrades based on experience points
is another avenue that instructors could pursue, as long as the
intent is to deploy the program in an introductory course;
however, we were apprehensive about increasing complexity
and recommend instructors reserve too many enhancements for
upper-level programming courses. We also invite instructors to
re-create our code in other languages to fit their own needs and
modify it to align with their selected curriculum where
applicable.

6. CONCLUSIONS

Not all live-coding exercises are created equal. There are
individual differences in every live-coding exercise that
influence constructs surrounding a student’s intention to engage
with the activity via dimensions such as perceived value and
perceived positivity. An effective activity evokes a positive
student response to instructional practices, reflected in higher
levels of these variables. Adventure RPG appears to be a useful
addition to lecture live coding content in an introductory Java
programming course. It may also function well as input for
student programming assignments.

The results of our sample of 60 students indicate high
agreement with perceptions of the Adventure RPG game’s
value, associated feelings of positivity and participation, while
also demonstrating low levels of distraction. Students also rated
the course overall with high marks, though they had higher
perceptions of factors evaluating Adventure RPG than of the
course overall. Students have offered substantial qualitative
feedback, much of which favorably compares the RPG
exercises to legacy exercises or underscores the importance of
RPG as a supplement to textbook readings and exercises.

We invite other instructors to evolve and enhance the code
as they see fit. This paper contributes to IS education by
providing a collection of source code and guidance to enhance
the live coding portion of programming course lectures. Given

the importance of live coding in programming pedagogy, this
paper expands available course material to enhance this aspect
of curriculum. Moreover, the game has piqued student interest.
In the competitive landscape characterizing today’s higher
education institutions, providing exciting and positive
experiences may be ever more necessary to recruit and retain
students in IS programs.

7. ACKNOWLEDGEMENTS

The authors would like to thank James Beattie Jr. for his
contributions to this project.

8. REFERENCES

Ali, A., & Smith, D. (2014). Teaching an Introductory
Programming Language in a General Education Course.
Journal of Information Technology Education: Innovations
in Practice, 13, 57-67. https://doi.org/10.28945/1992

Anthony, G. (1996). Active Learning in a Constructivist
Framework. Educational Studies in Mathematics, 31(4),
349-369. https://doi.org/10.1007/BF00369153

Babb, J., Longenecker, H. E., Baugh, J., & Feinstein, D. (2014).
Confronting the Issues of Programming in Information
Systems Curricula: The Goal is Success. Information
Systems Education Journal, 12(1), 42-72.

Barber, C. S. (2021). When Students Are Players: Toward a
Theory of Student-Centric Edu-Gamification Systems.
Journal of Information Systems Education, 32(1), 53-64.
https://doi.org/10.1287/isre.2020.0968

Bonwell, C., & Eison, J. (1991). Active Learning: Creating
Excitement in the Classroom (Vol. 1). Association for the
Study of Higher Education.

Cavaiani, T. P. (2006). Object-Oriented Programming
Principles and the Java Class Library. Journal of
Information Systems Education, 17(4), 365-368.

Cheong, C., Filippou, J., & Cheong, F. (2024). Towards the
Gamification of Learning: Investigating Student
Perceptions of Game Elements. Journal of Information
Systems Education, 25(3), 233-244.

DeMonbrun, M., Finelli, C. J., Prince, M., Borrego, M.,
Shekhar, P., Henderson, C., & Waters, C. (2017). Creating
an Instrument to Measure Student Response to Instructional
Practices. Journal of Engineering Education, 106(2), 273-
298. https://doi.org/10.1002/jee.20162

Dewey, J. (2018). Democracy and Education. Myers Education
Press.

Elhussein, G., Leopold, T., Silva, A., & Zahidi, S. (2023).
Defining Education 4.0: A Taxonomy for the Future of
Learning [White Paper]. World Economic Forum.
https://www3.weforum.org/docs/WEF_Defining_Educatio
n_4.0_2023.pdf

Farkas, B., Shang, Y., & Alhourani, F. (2022). Teaching Tip:
Teaching Business Process Concepts in an Introductory
Information Systems Class: A Multi-Level Game-Based
Learning Approach. Journal of Information Systems
Education, 33(4), 306-323.

Ferreira, C. M., Santos, A. I., & Serpa, S. (2018). Electronic
Slideshow Presentations in the Higher Education Teaching
and Learning Process. Journal of Education and Training
Studies, 6(2), 120. https://doi.org/10.11114/jets.v6i2.2818

https://doi.org/10.62273/ASHE6341
https://doi.org/10.28945/1992
https://doi.org/10.1007/BF00369153
https://doi.org/10.1287/isre.2020.0968
https://doi.org/10.1002/jee.20162
https://www3.weforum.org/docs/WEF_Defining_Education_4.0_2023.pdf
https://www3.weforum.org/docs/WEF_Defining_Education_4.0_2023.pdf
https://doi.org/10.11114/jets.v6i2.2818

Journal of Information Systems Education, 36(3), 209-223, Summer 2025
https://doi.org/10.62273/ASHE6341

217

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K.,
Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014).
Active Learning Increases Student Performance in Science,
Engineering, and Mathematics. Proceedings of the
National Academy of Sciences of the United States of
America, 111(23), 8410-8415.
https://doi.org/10.1073/pnas.1319030111

González‐Pérez, L. I., & Ramírez‐Montoya, M. S. (2022).
Components of Education 4.0 in 21st Century Skills
Frameworks: Systematic Review. Sustainability, 14(3), 1-
32. https://doi.org/10.3390/su14031493

Hartt, M., Hosseini, H., & Mostafapour, M. (2020). Game On:
Exploring the Effectiveness of Game-Based Learning.
Planning Practice and Research, 35(5), 589-604.
https://doi.org/10.1080/02697459.2020.1778859

Jones, M. G., & Brader-Araje, L. (2002). The Impact of
Constructivism on Education: Language, Discourse, and
Meaning. American Communication Journal, 5(3), 1-9.

Kivinen, O., & Ristelä, P. (2003). From Constructivism to a
Pragmatist Conception of Learning. Oxford Review of
Education, 29(3), 363-375.
https://doi.org/10.1080/03054980307442

Lending, D., & Vician, C. (2012). Writing IS Teaching Tips:
Guidelines for JISE Submission. Journal of Information
Systems Education, 23(1), 11-18.

Lippert, S., & Granger, M. (1997). Peer Learning in an
Introductory Programming Course. Proceedings of the 12th
Annual Conference of the International Academy for
Information Management (pp. 123-130).

Maulana, M. R. (2024). Exploring Game Playing Motivation in
Generation Z: An Ethnographic Approach. Journal of
Informatics and Computer, 1(2), 15-23.

Mendoza, K. (2019). Engaging Generation Z: A Case Study on
Motivating the Post-Millennial Traditional College Student
in the Classroom. US-China Foreign Language, 17(4), 157-
166. https://doi.org/10.17265/1539-8080/2019.04.002

Menon, P. (2023). Teaching Tip: An Example-Based
Instructional Method to Develop Students’ Problem-
Solving Efficacy in an Introductory Programming Course.
Journal of Information Systems Education, 34(1), 1-15.

Močinić, S. N. (2010). Active Teaching Strategies in Higher
Education. Metodički Obzori, 7(2), 97-105.
https://doi.org/10.32728/mo.07.2.2012.08

Mokhtar, N., Xuan, L. Z., Lokman, H. F., & Mat, N. H. C.
(2023). Theory, Literature Review, and Fun Learning
Method Effectiveness in Teaching and Learning.
International Journal of Social Science and Education
Research Studies, 3(8), 1738-1744.
https://doi.org/10.55677/ijssers/V03I8Y2023-30

Pett, M. A., Lackey, N. R., & Sullivan, J. J. (2003). Making
Sense of Factor Analysis. SAGE Publications.
https://doi.org/10.4135/9781412984898

Piaget, J. (1966). Biologie et connaissance. Diogène, 54, 3.
Purinton, E. F., & Burke, M. M. (2019). Student Engagement

and Fun: Evidence from the Field. Business Education
Innovation Journal, 11(2), 133-140.

Raj, A., Richard, H., Patel, J. M., & Erica, H. (2018). Role of
Live-Coding in Learning Introductory Programming.
Proceedings of the 18th Koli Calling International
Conference on Computing Education Research (pp. 1-8).
https://doi.org/10.1145/3279720.3279725

Rubin, M. J. (2013). The Effectiveness of Live-Coding to Teach
Introductory Programming. Proceeding of the 44th ACM
Technical Symposium on Computer Science Education (pp.
651-656). https://doi.org/10.1145/2445196.2445388

Scherer, R., Siddiq, F., & Sánchez Viveros, B. (2020). A Meta-
Analysis of Teaching and Learning Computer
Programming: Effective Instructional Approaches and
Conditions. Computers in Human Behavior, 109, 1-18.
https://doi.org/10.1016/j.chb.2020.106349

Seethamraju, R. (2011). Enhancing Student Learning of
Enterprise Integration and Business Process Orientation
Through an ERP Business Simulation Game. Journal of
Information Systems Education, 22(1), 19-29.

Selvaraj, A., Zhang, E., Porter, L., & Soosai Raj, A. G. (2021).
Live Coding: A Review of the Literature. Annual
Conference on Innovation and Technology in Computer
Science Education (pp. 164-170).
https://doi.org/10.1145/3430665.3456382

Sengupta, A. (2009). Teaching Tip: CFC (Comment-First-
Coding): A Simple Yet Effective Method for Teaching
Programming to Information Systems Students. Journal of
Information Systems Education, 20(4), 393-400.

Sharma, M., Biros, D., Ayyalasomayajula, S., & Dalal, N.
(2020). Teaching Tip: Teaching Programming to the Post-
Millennial Generation: Pedagogic Considerations for an IS
Course. Journal of Information Systems Education, 31(2),
96-105.

Shute, V. J., & Ke, F. (2012). Games, Learning, and
Assessment. In Assessment in Game-Based Learning:
Foundations, Innovations, and Perspectives (pp. 43-58).
Springer New York. https://doi.org/10.1007/978-1-4614-
3546-4_4

Smith, T. C., & Jones, L. (2021). First Course Programming
Languages Within US Business College MIS Curricula.
Journal of Information Systems Education, 32(4), 283-293.

Tisza, G. (2021). The Role of Fun in Learning. Extended
Abstracts of the 2021 Annual Symposium on Computer-
Human Interaction in Play (pp. 391-393).
https://doi.org/doi.org/10.1145/3450337.3483513

Tisza, G., Sharma, K., Papavlasopoulou, S., Markopoulos, P.,
& Giannakos, M. (2022). Understanding Fun in Learning to
Code: A Multi-Modal Data Approach. Proceedings of
Interaction Design and Children (pp. 274-287).
https://doi.org/10.1145/3501712.3529716

Williams, A. R., Windle, R., & Wharrad, H. (2020). How Will
Education 4.0 Influence Learning in Higher Education?
Journal of Learning Development in Higher Education, 17,
1-18. https://doi.org/10.47408/jldhe.vi17.572

Zhang, X., Crabtree, J. D., Terwilliger, M. G., & Jenkins, J. T.
(2020). Teaching Tip: Teaching Introductory Programming
From A to Z: Twenty-Six Tips From the Trenches. Journal
of Information Systems Education, 31(2), 106-118.

https://doi.org/10.62273/ASHE6341
https://doi.org/10.1073/pnas.1319030111
https://doi.org/10.3390/su14031493
https://doi.org/10.1080/02697459.2020.1778859
https://doi.org/10.1080/03054980307442
https://doi.org/10.17265/1539-8080/2019.04.002
https://doi.org/10.32728/mo.07.2.2012.08
https://doi.org/10.55677/ijssers/V03I8Y2023-30
https://doi.org/10.4135/9781412984898
https://doi.org/10.1145/3279720.3279725
https://doi.org/10.1145/2445196.2445388
https://doi.org/10.1016/j.chb.2020.106349
https://doi.org/10.1145/3430665.3456382
https://doi.org/10.1007/978-1-4614-3546-4_4
https://doi.org/10.1007/978-1-4614-3546-4_4
https://doi.org/doi.org/10.1145/3450337.3483513
https://doi.org/10.1145/3501712.3529716
https://doi.org/10.47408/jldhe.vi17.572

Journal of Information Systems Education, 36(3), 209-223, Summer 2025
https://doi.org/10.62273/ASHE6341

218

AUTHOR BIOGRAPHIES

Seth J. Kinnett is a clinical professor of computer information

systems in the College of Business at
Colorado State University. He
earned a Ph.D. in Computer &
Information Sciences from the
Eugene P. Jarvis College of
Computing and Digital Media at
DePaul University in Chicago.

Tatum Shinedling is a junior undergraduate honors student

pursuing a Bachelor of Science in
Business Administration with dual
concentrations of Computer
Information Systems and
Accounting in the College of
Business at Colorado State
University.

Ben Sunset earned a Bachelor of Science in Business

Administration with a concentration
in Computer Information Systems
from Colorado State University’s
College of Business. He is currently
a Product Cybersecurity Engineer at
Woodward, Inc., Fort Collins,
Colorado.

https://doi.org/10.62273/ASHE6341

Journal of Information Systems Education, 36(3), 209-223, Summer 2025
https://doi.org/10.62273/ASHE6341

219

APPENDIX

Code Samples

Scanner scanner = new Scanner(System.in);

String strHeroName;

int lineage, role; //see constants for translation

final int ELF = 1;

final int ORC = 2;

final int HUMAN = 3;
Figure 1. Preliminary Variable & Constant Declarations

if (intLineage == ELF) {
 System.out.println("The Elf, a wise choice. The elves have been cunning
 magicians for centuries");
 }
 else if (intLineage == ORC) {
 System.out.println("The Orc. Often misunderstood, the Orcs are formidable
 warriors");
 }
 else if (intLineage == HUMAN) {
 System.out.println("The Human. A balanced hero with modest attack and magic.");
 }
 else { //catch all for anything beyond 1, 2, or 3
 System.out.println("Error, please select 1, 2, or 3.");
 System.exit(0);
 }

Figure 2. Selection Statements in Adventure RPG

do {
 try{
 System.out.println("Enter hero role: 1:FIGHTER, 2:MAGE, 3:ROGUE");
 strRole = scr.next()
 intRole = Integer.parseInt(strRole);
 if (intRole == FIGHTER) {
 System.out.println("I'm shaking in my boots");
 }
 else if (intRole == MAGE) {
 System.out.println("Oh, got ourselves a brainiac I see");
 }
 else if (intRole == ROGUE) {
 System.out.println("Don't pick my pocket :/");
 }
 else {
 System.out.println("Not a quick study, I see. Try again.");
 }
 } catch(NumberFormatException ex) {
 //error handling when converting int to String
 }
} while ((intRole!=FIGHTER) && (intRole!=MAGE) && (intRole!=ROGUE));

Figure 3. do/while Loop for Selecting Hero Role

https://doi.org/10.62273/ASHE6341

Journal of Information Systems Education, 36(3), 209-223, Summer 2025
https://doi.org/10.62273/ASHE6341

220

public static int startHeroLineage(Scanner scr, String strHeroName) {
 final int ELF = 1 , ORC = 2, HUMAN = 3;
 int intLineage=0;
 String strLineage;
 do {
 try {

 System.out.println("What is"+strHeroName+"'s lineage?\n1:ELF\n2:ORC\n3:HUMAN");
 strLineage = scr.next();
 intLineage = Integer.parseInt(strLineage);

 //customize user message
 if (intLineage == ELF) {
 System.out.println("The Elf, a wise choice. The elves have been cunning
 magicians for centuries");
 }
 else if (intLineage == ORC) {
 System.out.println("The Orc. Often misunderstood, the Orcs are
 formidable warriors");
 }
 else if (intLineage == HUMAN) {
 System.out.println("The Human. A balanced hero with modest attack and
 magic.");
 }
 else { //catch all for anything beyond 1, 2, or 3
 System.out.println("Error, please select 1, 2, or 3.");
 }
 } catch (NumberFormatException ex) {
 //error handling when converting int to String
 }
 } while ((intLineage < 1)||(intLineage > 3)); //only loop if we get invalid values

 return intLineage;
}

Figure 4. Hero Lineage Selection as a Method

public static void printMap(int[][] map) {
// Loop through each square, print depending on what's in the square
 for (int i = 0; i < map.length; i++) {
 for (int j = 0; j < map[i].length; j++) {
 if (map[i][j] == EMPTY) { // Empty - Blank spot
 System.out.print(ANSI_BLACK + "- " + ANSI_RESET);
 } else if (map[i][j] == CASTLE) { // Castle - Win condition!
 System.out.print(ANSI_PURPLE + "E " + ANSI_RESET);
 } else if (map[i][j] == OBSTACLE) { // Obstacle
 System.out.print(ANSI_GREEN + "O " + ANSI_RESET);
 } else if (map[i][j] == HERO) { // That's us - Hero
 System.out.print(ANSI_YELLOW + "H " + ANSI_RESET);
 } else if (map[i][j] == MONSTER) { // Monster Position
 System.out.print(ANSI_RED + "M " + ANSI_RESET);
 }
 } // End Nested For Loop
 System.out.println(); // Spacing
 } // End For Loop
} // End printMap

Figure 5. Code Snippet on Map/Array Implementation

https://doi.org/10.62273/ASHE6341

Journal of Information Systems Education, 36(3), 209-223, Summer 2025
https://doi.org/10.62273/ASHE6341

221

public class Hero {
 public static final int ELF = 1;
 public static final int ORC = 2;
 public static final int HUMAN = 3;
 String name;
 int health;
 int damage;
 static int wins = 0;

 boolean isAlive = true;
 int lineage;
 int role;

 public Hero(String name, int lineage, int role) {
 this.name = name;
 this.lineage = lineage; //elf, orc, human
 this.role = role; //Rogue,Mage,Fighter

 // Set health and damage based on lineage.
 if (this.lineage == ELF) {
 health = 70;
 damage = 15;
 } else if (this.lineage == ORC) {
 health = 55;
 damage = 20;
 } else if (this.lineage == HUMAN) {
 health = 80;
 damage = 10;
 }

Figure 6. Partial Hero Class Definition

public class Monster {
 final static int MIN_HEALTH = 0;
 //Base Damage and Base Health
 public static final int GOBLIN=1;
 public static final int SKELETON=2;
 public static final int GUARDIAN=3;
 int monsterType;
 int health;
 int damage;
 boolean isAlive;

 //constructor
 public Monster(int monsterType) {
 isAlive = true;
 this.monsterType = monsterType;
 // Set damage and health depending on type
 if (monsterType == GOBLIN) {
 health = 10;
 damage = 15;
 } else if (monsterType == SKELETON) {
 health = 15;
 damage = 10;
 } else if (monsterType == GUARDIAN) {
 health = 20;
 damage = 5;
 }
}

Figure 7. Partial Monster Class Definition

https://doi.org/10.62273/ASHE6341

Journal of Information Systems Education, 36(3), 209-223, Summer 2025
https://doi.org/10.62273/ASHE6341

222

public static int[][] buildMap() {
 int[][] map = new int[10][10];
 File file = null;
 JFileChooser fileChooser = new JFileChooser();
 Scanner input = null;
 String strValue; // String verion of place value being read in
 int selection,value;
 // Selection is approve/cancel, value is the integer value being read in

 // Prompt user for file to use
 selection = fileChooser.showOpenDialog(null);
 if (selection == JFileChooser.APPROVE_OPTION) {
 file = fileChooser.getSelectedFile();
 } else if (selection == JFileChooser.CANCEL_OPTION) {
 System.out.println("User hit cancel");
 System.exit(0);
 }

 // Create scanner in file
 try {
 input = new Scanner(file);
 } catch (FileNotFoundException ex) {
 System.out.println("Didn't find file");
 System.exit(0);
 }

 // Read data from file into a 2D int array
 // Declaring variables
 int col = 0, row = 0;
 // Initialize a counter to keep track of the current row and column number

 try {
 input.useDelimiter(",|\n"); // Use delimiters of , AND \n
 while (input.hasNext() && row < 10) {//Keep within bounds, and loop through map.
 strValue = input.next(); // Get next value
 strValue = strValue.trim(); // Trim it
. value = Integer.parseInt(strValue); // Get the integer value
 map[row][col] = value; // Set value to location in array
 col++; // Increment place value
 if (col == 10) { // Like a typewriter, done with this column? Next row.
 col = 0;
 row++;
 }
 }
 }catch (NumberFormatException e) {
 System.out.println("Invalid file. Non-numeric characters cannot be in the
 map.");
 System.exit(0);
 }
// */
 return map;
 }

Figure 8. buildMap() Method

https://doi.org/10.62273/ASHE6341

Journal of Information Systems Education, 36(3), 209-223, Summer 2025
https://doi.org/10.62273/ASHE6341

223

 while (hero.isAlive) { // Game loop - While Alive
 String move = scanner.nextLine();// Get input, store as string
 switch (move) { // What are we doing next?
 case "a": // Left
 handleMove(hero, map, heroX - 1, heroY);
 // Modify position, and pass location, hero, and map down to update.
 break;
 case "d": // Right
 handleMove(hero, map, heroX + 1, heroY);
 break;
 case "w": // Up
 handleMove(hero, map, heroX, heroY - 1);
 break;
 case "s": // Down
 handleMove(hero, map, heroX, heroY + 1);
 break;
 }
 printMap(map);
 System.out.println("Enter move (a for left, d for right, w for up, s for down):");
}

Figure 9. Core Logic Prompting User to Enter a Direction and Looping Back

https://doi.org/10.62273/ASHE6341

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2025 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital or
hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is required
to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to the Editor-
in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN: 2574-3872 (Online) 1055-3096 (Print)

	JISE 2025 36(3) 209-223 First Page.pdf
	a-2409097TT Final-JWB-LAM.pdf
	JISE 2025 36(3) Copyright ISSN.pdf

