

Journal of
Information
Systems
Education

Volume 35

Issue 4
Fall 2024

Teaching Tip

Scaffolding in Business Analytics Education: Using Python
for Web Scraping

Anand Jeyaraj

Recommended Citation: Jeyaraj, A. (2024). Teaching Tip: Scaffolding in Business
Analytics Education: Using Python for Web Scraping. Journal of Information Systems
Education, 35(4), 438-450. https://doi.org/10.62273/QPEA8450

Article Link: https://jise.org/Volume35/n4/JISE2024v35n4pp438-450.html

Received: March 31, 2024
First Decision: June 17, 2024
Accepted: August 3, 2024
Published: December 15, 2024

Find archived papers, submission instructions, terms of use, and much more at the JISE website:

https://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

https://doi.org/10.62273/QPEA8450
https://jise.org/Volume35/n4/JISE2024v35n4pp438-450.html
https://jise.org/

Journal of Information Systems Education, 35(4), 438-450, Fall 2024
https://doi.org/10.62273/QPEA8450

438

Teaching Tip
Scaffolding in Business Analytics Education: Using Python

for Web Scraping

Anand Jeyaraj
Raj Soin College of Business

Wright State University
Dayton, OH 45435, USA
anand.jeyaraj@wright.edu

ABSTRACT

A significant activity in the business analytics process is enrichment, which deals with acquiring and combining data from external
sources. While different strategies for enrichment are possible, it can be accomplished more efficiently through automation using
Python scripts. Since business students may not be immersed in technology skills and may be new to coding activities, instructional
scaffolding may be of considerable importance. This paper describes the use of a mixed scaffolding approach involving piecewise
integration and progressive integration to help students learn web scraping using Python in the limited amount of time available.
Specifically, piecewise integration enables students to learn different chunks of knowledge separately and selectively integrate
them as required. In contrast, progressive integration enables students to begin with the first chunk of knowledge and expand it
with related chunks of knowledge. Based on performance in a segment-ending assignment and knowledge transfer to other settings,
the scaffolding approach seems effective in imparting the necessary knowledge and skills to students.

Keywords: Business analytics, Scaffolding, Web scraping, Python

1. INTRODUCTION

Recent developments and advances in business analytics have
raised the stakes for business professionals in virtually all
domains to exploit information systems (IS) to gain greater
insights into business operations and data-driven decision-
making (Choi et al., 2017; Radovilsky & Hedge, 2022). A
variety of IS tools and environments with different capabilities
may be used to acquire, prepare, manipulate, analyze, and
visualize data to facilitate business analytics activities. A
significant consideration in the overall process is data
enrichment, which relates to acquiring and combining data from
external or third-party sources that may fill gaps in existing
data, enable deeper analysis, and generate richer insights
(Dahiya et al., 2023). Since enrichment activities using manual
methods may be time consuming, it may be useful to develop
and deploy Python scripts to automate data acquisition for
enrichment (Mazilu, 2022). If equipped to handle such IS
capabilities in business analytics, business students may be
empowered in their future careers as business professionals.

To gain such knowledge and skills, students need an
understanding of business analytics from two perspectives.
First, they need to develop a high-level understanding of the
business analytics process and how IS tools may be used to
enable the process. For instance, students may be shown a) the
various stages in the process, such as cleansing, analyzing, and
visualizing the data, b) how different tools may support the
different stages (e.g., Microsoft Excel can serve as a repository
for transformed data vs. Python can help data acquisition and
data processing), and c) the relative merits and demerits of IS

tools for specific purposes. Students may be shown this high-
level perspective through frameworks of the business analytics
process, discussions of how the IS tools may be gainfully
employed, and successful business cases of IS appropriation
(Jaggia et al., 2020; Jeyaraj, 2019; Khan et al., 2019; Zhang et
al., 2020).

Second, students need an understanding of the low-level
details, including the process steps and how to manipulate IS
tools for business decision-making successfully. This may help
students understand: a) the specific steps, for instance, in
cleansing data, including the types of cleansing that may be
necessary for the given dataset (e.g., transforming data into a
consistent format, handling missing data), b) the features and
capabilities of the IS tools that could be used for specific steps
(e.g., splitting an address field into street, city, state, and zip
code fields using LEFT, MID, and RIGHT functions in
Microsoft Excel, loading data into a Python list and apply string
manipulation operators), and c) the ways to automate tasks
(e.g., develop Python scripts to handle data). These require
experiential learning, learning-by-doing, or hands-on activities
that demonstrate how IS tools can be used for specific purposes
(Kolb & Kolb, 2005; Malik & Zhu, 2023; Niiranen, 2021).

Within the context of experiential or hands-on activities,
however, students may need scaffolds such as instructions,
guidelines, and demonstrations for learning (Belland et al.,
2022). This is particularly true when students are engaged in
learning new concepts they have not encountered before or
learning to apply old concepts in new ways. In the context of
using Python for business analytics, students first need
guidance on the features, statements, and libraries such that they

https://doi.org/10.62273/QPEA8450
mailto:anand.jeyaraj@wright.edu

Journal of Information Systems Education, 35(4), 438-450, Fall 2024
https://doi.org/10.62273/QPEA8450

439

can understand the environment and later need instruction on
how to develop scripts for specific needs. These can be best
accomplished using scaffolds that enable students to get started
with the Python environment and which can be faded or
eliminated as they gain greater experience and the ability to
transfer their learning to different contexts (Janson et al., 2020;
Sharma & Hannafin, 2007). Identifying ways to help students
quickly grasp new concepts along with the ability to
independently apply such concepts is crucial for their growth
and effectiveness in professional settings dealing with business
analytics.

This paper presents a scaffolding approach that has helped
business students grasp and apply concepts and techniques of
web scraping using the Python environment. The remaining
sections of the paper provide a review of prior literature on
scaffolding, an overview of the instructional scaffolding
approach to enable student learning of web scraping, a
discussion highlighting student performance including a critical
reflection of the scaffolding approach, and a conclusion that
motivates technology instruction for business students.

2. PRIOR LITERATURE

Scaffolding is one of the common mechanisms by which
students can be given support to facilitate their learning
(Memmert et al., 2023). It is generally accepted that scaffolding
enables students to solve problems, complete specific tasks, or
achieve goals that may be beyond their unassisted efforts
(Wood et al., 1976). The scaffolding process relies on
knowledgeable experts such as teachers or peers who can
provide necessary support for student learning (Kim &
Hannafin, 2011; Vygotsky, 1978). Technologies can be used at
times in place of experts to facilitate learning (Guthrie, 2010;
Memmert et al., 2023). Scaffolding methods have been applied
to impart learning in a variety of technology contexts including
design science, database, projects, and information search
(Bunch, 2009; Guthrie, 2010; Memmert et al., 2023; Raes et al.,
2012).

Scaffolds may help communicate and illustrate the
concepts, principles, and techniques that enable student
learning. Different kinds of scaffolds, such as procedural
guidelines, learning materials, checklists, assessment questions,
student-teacher interactions, structured mentoring, worked-out
examples, progressive practice, collaborative discussions,
interim deliverables, and in-class learning to acquire specific
skills have been proposed (Anand & Mitchell, 2022; Bunch,
2009; Guthrie, 2010). Scaffolds can be static or dynamic as
necessary—static scaffolds may be pre-planned to some extent
based on typical obstacles or challenges in the learning process
whereas dynamic scaffolds are somewhat emergent based on
actual difficulties students encounter during the learning
process (Brush & Saye, 2002). A mix of both approaches may
be needed since static structured task steps may be appropriate
in the context of rudimentary skills acquisition, but dynamic
approaches would be necessary in contexts involving high-
order cognitive skills since learning needs are emergent
(Rosenshine & Meister, 1992; Yelland & Masters, 2007).

Regardless of the different approaches, a significant aspect
of scaffolding is to select a suitable learning task that can
sustain the learning interests of students and describe how
learning activities can be broken up into smaller chunks to
enable student learning (Winkler et al., 2021; Yelland &

Masters, 2007). Students can be taken through the different
chunks to enable their learning and mastery of content. As
shown in this paper, it is possible to design chunks and sequence
them in at least two ways. In the first approach, termed as
piecewise integration, students may first learn the different
chunks separately and then selectively integrate learning from
the separate chunks to accomplish specific tasks. In the second
approach, termed progressive integration, students could begin
with the first chunk and gradually build on it to expand the
capabilities by incorporating learning from other related
chunks. This paper describes a mixed approach in which both
piecewise integration and progressive integration were used to
enable student learning of web scraping with Python.

3. INSTRUCTIONAL SCAFFOLDING

3.1 Learning Context
The instructional scaffolding approach was applied in an
introductory course on business analytics taken by
undergraduate students in a business school at a public
university located in the Midwestern United States. Students are
typically in their junior or senior years of college when taking
the course, which introduces them to various principles and
techniques for data acquisition, data preparation and
transformation, data analysis, and data visualization (Jeyaraj,
2019; Zhang et al., 2020). In preparing the data for analysis,
enrichment can be accomplished using purely manual methods
(e.g., using a browser to visit a website and key in the desired
data into an Excel worksheet), semi-automated methods (e.g.,
downloading a public dataset into an Excel workbook and use
VLOOKUP or similar function to extract the necessary data
into the analysis worksheet), or fully automated methods (e.g.,
use a Python script to visit a web page, extract the relevant data,
and save into an Excel worksheet) (e.g., Mazilu, 2022). Hence,
one of the major learning modules in the course is the
development and use of Python scripts to gather publicly-
available data from third-party websites.

Since the course is open to students from all business
disciplines, it is not possible to make assumptions about their
existing knowledge of Python programming. IS students
entering the course may have been exposed to programming
principles and techniques in entry-level programming courses
that introduced languages such as VB.NET while finance
students may have used specific capabilities (e.g., lookup stock
market indices using Yahoo Finance API) using Python. But the
vast majority of students from various disciplines including
marketing, accounting, management, economics, and supply
chain management do not possess prior knowledge of coding
and have not used Python. Thus, in the limited time available
during a typical semester (since the course also introduces other
content related to business analytics such as data analysis and
data visualization), students will have to be introduced to the
coding fundamentals of Python, the use of different libraries
relevant for data handling, and the methods for scraping data
from web sites.

3.2 Python Instruction
Table 1 depicts the major Python topics introduced in class. The
stated goal on the syllabus was to accomplish Python
instruction in 8 to 10 sessions, each lasting approximately an
hour and 20 minutes. Most of these sessions included both
theoretical discussions and hands-on activities for students to

https://doi.org/10.62273/QPEA8450

Journal of Information Systems Education, 35(4), 438-450, Fall 2024
https://doi.org/10.62273/QPEA8450

440

understand the content. For instance, students were introduced
to the Python data types (e.g., int, float) and their
relevance, the reserved words or commands (e.g., import,
for) and their purposes, the general-purpose operators (e.g., +,
*, !=, <, or) and functions (e.g., len, max), the operators and
methods associated with data types (e.g., [] operator and append
method for the list data type), and the Python libraries (e.g.,
pandas, json, numpy) in the theoretical discussions.
Further, students learned about the inner workings of the
assignment, conditional, and iterative statements as well as
other capabilities such as named (i.e., def) and unnamed (i.e.,
lambda) functions, syntax rules (e.g., # for comments, : for
command block), and identifying the appropriate and necessary
libraries for data handling.

The Python Integrated Development and Learning
Environment (IDLE) was adopted for the hands-on activities.
Students were shown how and when to use the Shell window
and the Editor window. The Shell window was used first to
demonstrate Python capabilities including how to initialize
variables and data structures (i.e., list, set, tuple, and
dictionary), apply operators and methods, write to and read
from data files, populate data from files into different structures
such as lists, use pre-defined and user-defined functions, import

libraries and examine methods in such libraries, setup different
control structures (i.e., if, for, while), and verify
intermediate results or status of variables. For instance, students
can begin with a Python list such as: languages =
[‘French’,‘English’,‘German’] and learn how to
add a new item to the list using: languages.append
(‘Spanish’), arrange the list items in order using:
languages.sort(), or extract items from the list using:
languages[1:2]. Students can define a named function to
compute simple interest using: def si(p,n,r): return
p*n*r/100, create a list of random numbers that represent
principal values using: principals =
random.sample(range(0, 10000), 20) after
importing the random library, and compute the simple interest
for 5 years at 3% annual interest rate through list
comprehension using: interests = list(map(lambda
x: si(x, 5, 3), principals). The computations can
be accomplished with iterative structures using: for ctr in
range(0,len(principals)):print(si(princip
als[ctr], 5, 3)) as well.

Topic Specifics Goals
Data structures Variables: Number, String, Boolean

Collections: list, set, tuple, dictionary
 Understand the differences between data types
 Understand the capabilities of the different

collections
 Apply data types and collections as

appropriate
Operations Arithmetic, comparison, logical operators

Slice, range slice operators
Membership operators: in
Assignment operators
String methods: find, split, strip, upper
List methods: append, count, sort
Set methods: add, union, intersection
Tuple methods: count
Dictionary methods: keys, values
Assignment statement

 Identify operators for different tasks
 Identify methods for different data types and

structures
 Apply operators and methods as necessary
 Specify arithmetic, relational, and logical

expressions

Functions Pre-defined numeric functions: round, range
Pre-defined collection functions: len, sum, map, zip
Predefined conversion functions: str, list, set
Pre-defined input/output functions: print, input
User-defined (named) functions: def
Unnamed functions: lambda

 Identify and use pre-defined functions
 Develop user-defined functions for reuse
 Apply unnamed functions

Control
structures

Conditional statements: if, match
Iterative statements: for, while
Special statements: break, continue
Exception statements: with, try

 Alter typical sequence of script execution
using conditional and iterative statements

Libraries Installation of libraries: pip install
Including libraries in script: import, from
Visiting web sites: requests
Parsing web page content: BeautifulSoup
Handling data: pandas
Introducing delays: time

 Identify, install, and use libraries
 Apply methods available in libraries

Table 1. Python Content for In-Class Instruction

https://doi.org/10.62273/QPEA8450

Journal of Information Systems Education, 35(4), 438-450, Fall 2024
https://doi.org/10.62273/QPEA8450

441

The Editor window was used later to demonstrate how .PY
script files with a collection of instructions can be developed,
saved and archived for future use, and executed to obtain
results. Table 2 describes and the Appendix illustrates the
Python scripts shown in class consistent with the mixed
approach of piecewise integration and progressive integration
introduced earlier. Specifically, script A uses piecewise
integration by incorporating Python capabilities introduced
using the Shell window to students. These capabilities include

reading data from files, defining functions, manipulating data
on lists, using arithmetic operations, and writing data to files.
Also, scripts B and C follow progressive integration since the
functionality for gathering data from one web page was
developed first (in script B) and the functionality for gathering
data from multiple web pages was developed next (in script C
by building on the fundamentals in script B). Script D also
followed progressive integration.

Script Description Features
(A) Ohio income
tax

Goal: Compute the income
tax for taxable non-business
income in the state of Ohio,
USA. Script should include:
1) user-defined function to

compute income tax
2) read collection of taxable

non-business income
from a .CSV file

3) save incomes and taxes
to a .CSV file

 def statement to define function
 return statement for function to return the computed result
 if…elif…else statement to check income tiers
 arithmetic operators and assignment statement for tax computations
 round function to handle rounding of computed taxes
 pandas library (and read_csv and to_csv methods) for file

data handling
 map function for list comprehension
 lambda function to specify transformation for each item on list
 zip function for stitching data across multiple lists

(B) Ohio national
parks

Goal: Gather (scrape)
names, locations, and types
of national parks in Ohio as
found in:
https://www.nps.gov/index.
htm

Two separate scripts may
be developed:
1) to fetch the web page for

Ohio parks and save as a
.HTML file to local
device, and

2) to scrape the necessary
data from the .HTML file
and save results to a
.CSV file

 import statement for including libraries
 identifying the URL or address of the web page to be fetched
 requests library to visit web site and get method to fetch web

page
 saving web page as a text file in HTML format using open and write

methods
 reading text file in HTML format using open and read methods
 BeautifulSoup library to parse HTML content
 findAll method to gather all data in specific tags (h3) or tag

classes (“subtitle” class in p tag)
 map function for list comprehension
 lambda function to specify transformation for each item on list
 zip function for stitching data across multiple lists
 pandas library (and to_csv method) to save results in .CSV file

(C) National parks
for four states

Goal: Gather (scrape)
names, locations, and types
of national parks in four
states (Utah, New Mexico,
Arizona, Colorado) as
found in:
https://www.nps.gov/index.
htm

Two separate scripts may
be developed:
1) to fetch the web pages

for the four different
states and save as a
.HTML files to local
device, and

2) to scrape the necessary
data from the .HTML
files and save results to a
single .CSV file

 import statement for including libraries
 identifying the URL or address of the web pages to be fetched,

including patterns that can be used for repetition
 requests library to visit web site and get method to fetch web

page
 define list of states for repetition
 for statement to repeat steps for each state
 saving web page as a text file in HTML format using open and
write methods

 reading text file in HTML format using open and read methods
 BeautifulSoup library to parse HTML content
 examining Page Source of HTML pages to identify tag and data

structures
 findAll method to gather all data in specific tags (h3) or tag

classes (“subtitle” class in p tag)
 map function for list comprehension
 lambda function to specify transformation for each item on list
 zip function for stitching data across multiple lists
 define list to hold intermediate results and append method to

handle new intermediate results
 sum function to flatten list of intermediate results
 pandas library (and to_csv method) to save results in .CSV file

https://doi.org/10.62273/QPEA8450
https://www.nps.gov/index.htm
https://www.nps.gov/index.htm
https://www.nps.gov/index.htm
https://www.nps.gov/index.htm

Journal of Information Systems Education, 35(4), 438-450, Fall 2024
https://doi.org/10.62273/QPEA8450

442

(D) Historical stock
prices

Goal: Gather (scrape)
historical stock prices
available at:
https://www.marketwatch.c
om/tools/quotes/historical.a
sp

Three separate scripts may
be developed:
1) fetch price for one date

(e.g., 2021) for one ticker
(e.g., MSFT)

2) fetch prices for multiple
dates (e.g., 2019-2021)
for one ticker (e.g.,
MSFT), and

3) fetch prices for multiple
dates (e.g., 2019-2021)
for multiple tickers (e.g.,
MSFT, AAPL, ORCL)
and save results to .CSV
file

 import statement for including libraries
 identifying the URL or address of the web pages to be fetched,

including patterns that can be used for repetition
 requests library to visit web site and get method to fetch web

page
 define list of dates and tickers for repetition
 for statement to repeat steps for each date and state, including

nested for statements
 BeautifulSoup library to parse HTML content
 examining Page Source of HTML pages to identify tag and data

structures
 time library to delay accessing web sites to mimic browsing

activity by humans
 findAll method to gather all data in specific tags (td)
 range slice operators to extract specific value from list
 define list to hold intermediate results and append method to

handle new intermediate results
 pandas library (and to_csv method) to save results in .CSV file

Table 2. Python Hands-on Activities in Class

3.3 Scaffolding Elements
Figure 1 shows a framework introduced in class for students to
assess their specific needs, identify which Python capabilities
are appropriate, and complete the necessary steps by applying
various principles and techniques. The discussion included
different types of data sources (e.g., internal vs. external) and
formats (i.e., structured data in table or row and column format,
semi-structured data in JSON and XML, and unstructured data
in freeform text). The goal was to be able to acquire data from
one or more sources that may exist in different formats and
capture them in structured formats typically in Excel. Two
significant considerations underlie the data transition from
sources to targets: a) the use of Python variables and other
structures such as list, set, tuple, and dictionary to handle the
data, and b) the use of Python libraries to move data from
different sources into Python structures (e.g.,
BeautifulSoup to parse HTML pages and load data into a
List) or from Python structures into the different targets (e.g.,
pandas to transform a list into a dataframe to facilitate storage

in Excel). Such generalized thinking enables students to easily
and effectively transfer knowledge and skills to different
settings and requirements.

The framework was used prior to each hands-on scripting
activity shown in Table 2. When introducing the scenario
before developing Python scripts, students were asked to reflect
on the framework and share their thoughts on the libraries and
techniques that may be employed in developing the scripts.
Since they had already been introduced to libraries as shown in
Table 1, students brainstormed and identified appropriate
libraries and useful strategies for finishing the scripts.
Depending on the need, appropriate libraries such as
requests and pandas were installed and imported into the
scripts. Over time, the identification of libraries and methods
(such as read_csv and to_csv) to be applied became the
responsibility of students.

Figure 1. Framework for General Python Thinking

https://doi.org/10.62273/QPEA8450
https://bigcharts.marketwatch.com/historical/
https://bigcharts.marketwatch.com/historical/
https://bigcharts.marketwatch.com/historical/

Journal of Information Systems Education, 35(4), 438-450, Fall 2024
https://doi.org/10.62273/QPEA8450

443

A basic requirement in web scraping is the need to identify
the URL (uniform resource locator) or HTTP (hypertext
transfer protocol) web address that needs to be accessed for
fetching the web page to extract necessary data. In the Ohio
parks activity described in Table 2, it was initially introduced
to students through the use of a web browser. For instance,
using https://www.nps.gov/index.htm to visit the home page of
the National Park Service web site and choosing the state of
Ohio from the dropdown list changes the URL to:
https://www.nps.gov/state/oh/index.htm, which represents the
specific page for Ohio parks. When starting work on the parks
pages for the four states described in Table 2, students were
asked to examine the URLs for the four states and determine
patterns that may be helpful in designing the script. Figure 2
presents the URLs for the web pages of parks for four states:
Utah, Arizona, New Mexico, and Colorado. Students
determined that the URLs were generally similar except for the
two-letter state code values that differed between the web
addresses. It allowed the opportunity for students to reflect on
how the URL can be repeatedly constructed such that it can be
included in a repetitive loop structure in the Python script.
Students eventually suggested state codes be held in a Python
List, the URL be placed inside a for loop, and state codes
substituted each time the loop is repeated. This resulted in the
code block in Appendix (Script C1) as:
states = ['UT','AZ','NM','CO']
for s in states:
 url =
'https://www.nps.gov/state/'+s+'/index.htm'

Figure 2. URL Patterns for Park Web Pages Across

States

This learning of the combination of the Python list and the
for structure was crystallized in later scripts C2, C3, D2, and
D3 shown in the Appendix. As before, students progressively
took greater responsibility for identifying the different elements
that needed attention in developing Python scripts.

Another requirement in web scraping is the need to identify
how the data displayed on a web page are actually represented
in the underlying HTML (hypertext markup language) format.
This requires an examination of the page source for the web
page. Figure 3 shows the visual display of the first park of the
Ohio parks on the left and the corresponding segment of the
HTML page source on the right. This analysis shows that the
park name (i.e., Charles Young Buffalo Soldiers) is embedded
within <h3> and </h3> tags while the park type and park
location are embedded within <p> and </p> tags. Further, the
analysis reveals that different classes of <p> tags (i.e.,
list_left__kicker and list_left__subtitle
classes) are used for embedding data on park type and park
location. These observations enabled the use of findAll
method within scripts B2 and C2 shown in the Appendix.

Students were able to use the learning on HTML tags and
patterns as they grappled with subsequent requirements such as
scraping stock prices (scripts D1, D2, and D3). Figure 4 shows
the web page for MSFT stock price on the left and the
corresponding HTML page source on the right. Students gained
greater confidence in exploring the HTML page source and
identifying the elements that embedded the desired data. For
instance, Figure 4 shows that the stock prices were embedded
within <td> and </td> tags, which they used in the
findAll method.

Moreover, during the hands-on sessions in class, students
were allowed time to examine the URLs, web pages, and page
source documents and plan out their own solutions. When
switching to more advanced scripts (e.g., from script C1 to C2),
students were first instructed to develop their own Python
scripts by modifying or extending the scripts they had just
completed based on in-class instruction. This allowed another
level of independence for students to assess their own learning
and reapply their learning in different or advanced settings.

Figure 3. Ohio Parks Web Page (on Left) and HTML Page Source (on Right)

https://doi.org/10.62273/QPEA8450
https://www.nps.gov/index.htm
https://www.nps.gov/state/oh/index.htm

Journal of Information Systems Education, 35(4), 438-450, Fall 2024
https://doi.org/10.62273/QPEA8450

444

Figure 4. MSFT Stock Price Web Page (on Left) and Page Source (on Right)

4. DISCUSSION

4.1 Student Performance
The course requirements for the semester needed the students
to complete an individual assignment on web scraping using
Python based on the principles and techniques discussed and
shown in class. The assignment had certain requirements such
as 100 “cases” (e.g., tickers, cars, cities) and “multiple”
attributes (e.g., different years, different characteristics) for
each case, but students had considerable latitude in choosing the
contexts for scraping depending on their interests, work, or
discipline. The assignment also required students to conduct an
analysis of the scraped data. The requirements for data analysis
are not described here, but it was important for students to
successfully develop Python scripts and scrape the data
necessary for analysis.

Students earned an average grade percentage of nearly 93%
(with a standard deviation slightly below 7%) on the
assignment, which represents excellent performance especially
since it was their first coding experience, and they had been
exposed to it only for a short time during the course. Figure 5
depicts student performance across semesters (represented by
years since the course is offered once a year) and the primary
disciplines of students. There were no significant differences

across semesters or disciplines, which suggests effective
learning and instructional scaffolding methods.

4.2 Knowledge Transfer
The framework was used prior to each hands-on scripting
activity shown in Table 2. When introducing the scenario
before developing Python scripts, students were asked to reflect
on the framework and share their thoughts on the libraries and
techniques that may be employed in developing the scripts.
Since they had already been introduced to libraries as shown in
Table 1, students brainstormed and identified appropriate
libraries and useful strategies for finishing the scripts.

Students had incorporated new features or combined known
features in their Python scripts to extend their learning. For
instance, following the Python list for states learned in scripts
C2 and C3 and similar extensions for tickers and dates seen in
scripts D2 and D3, students created .TXT or .CSV files to hold
“cases” (e.g., tickers, cities, movies) and incorporated
capabilities in their scripts to read the data from files and
populate the relevant Lists. An example of their attempt is
shown below:
countries=[]
with open('AsianCountries.txt','r') as file:
 countries = file.read().splitlines()

Average grade % by semester (on left) and by students’ primary discipline (on right)
ACC: Accountancy; ECON: Economics; FIN: Finance and Financial Services; MGT: Management and International
Business; MIS: Management Information Systems; MKT: Marketing; SCM: Supply Chain Management

Figure 5. Student Performance in Python Assignment

https://doi.org/10.62273/QPEA8450

Journal of Information Systems Education, 35(4), 438-450, Fall 2024
https://doi.org/10.62273/QPEA8450

445

They also experimented with pandas and datetime libraries
(not introduced in class) to generate special dates such as the
last business day for different years. Rather than specifying the
dates—which would require them to manually check a calendar
and pick the last business days—students found ways to
automate the identification of such dates. They found ways to
load those dates into Python lists to facilitate iterations. This
approach also made data files redundant and served as an
extension to their learning in scripts D2 and D3. An example of
their attempt is shown below:
import pandas as pd
import datetime as dt
#obtain last business days of year in a range
lbdates =
pd.date_range('1/1/2010',periods=12,freq='BY')
#extract the dates from the previous output
lbdates = list(lbdates.date)
#convert the dates into mm/dd/yyyy format
lbdates = list(map(lambda x:
dt.date.strftime(x,'%m/%d/%Y'),lbdates))

Students became adept at recognizing and handling data

issues. For instance, the stock ticker scripts D1, D2, and D3
assume that the dates provided are actual business days in
which trading was conducted such that the stock price was
actually available and been captured. However, they found that
stock prices were not always available (see Figure 6 for an
example). After examining the page source and finding that the
relevant page did not contain the necessary information, they
incorporated exceptions into their scripts. An example of their
attempt is shown below:
alltd = soup.findAll('td')
if len(alltd) != 0:
 row.append(alltd[3].text)
else:
 row.append('')

Figure 6. Non-Availability of Stock Price Data

4.3 Critical Reflection
Based on student performance on the independent Python
assignment and the ways in which students transferred their
knowledge to settings different from those demonstrated in
class, it is possible to conclude that the teaching approach based
on scaffolding was largely successful. While student
performance and the diversity of contexts in the Python
assignments can serve as reasonable indicators, an empirical
research study involving an experiment may yield a stronger
test of the effectiveness of the scaffolding approaches.

In the limited in-class time available for introducing Python
to business students who are typically untrained in technology
aspects, especially coding, the scaffolding of Python content
demonstrated in the various hands-on activities using the Shell
and Editor windows followed by the four scenarios for
developing .PY scripts enabled effective student learning.

Piecewise integration was a good choice for script A since
it was really the first scenario in which students learned how to
bring all the chunks of Python knowledge they had learned
using the Shell window. Due to the interactive nature of the
Shell window, it was possible to introduce various Python
capabilities separately. However, an integration of the disparate
capabilities was crucial in enabling student learning because it
demonstrated how to effectively combine different capabilities
in developing scripts for specific scenarios.

Progressive integration was a good choice for scripts B and
C as well as D since it enabled student learning to identify a
pattern for completing a specific activity (e.g., fetch web page
and extract necessary data from one website) and to build a
repetitive structure to repeat the pattern for extending the
activity (e.g., fetch web page and extract necessary data from
multiple web pages).

The use of these scaffolding approaches needs careful
planning to identify relevant chunks of knowledge that can be
integrated using piecewise or progressive integration
approaches. Consider the requirements for script A in Table 2
and the code shown in the Appendix that incorporate several
chunks of knowledge. These activities were planned by
considering the competencies to be introduced in class. For
instance, students need to learn how to define named functions.
Choosing a real-world scenario of computing the state income
tax for taxable non-business income automatically provides the
opportunity for students to practice assignment statements,
arithmetic expressions, and conditional statements. Requiring
the actual computation of income tax using the named function
introduces students to the complexities of data gathering from
files, calling the function using an unnamed function embedded
in a list comprehension, and saving data to files. A well-
constructed scenario such as script A enables the students to
engage in significant learning that can be repeated as necessary
in other scenarios.

Additional elements (e.g., the framework in Figure 1, the
patterns in Figure 2, and the necessary data in Figures 3 and 4)
that offer broad perspectives for students to use as anchors in
their learning processes are also helpful in realizing the power
of scaffolding activities based on how students were able to
transfer their knowledge to other settings.

5. CONCLUSION

This paper contributes to the literature on instructional
scaffolding by introducing and applying piecewise integration
and progressive integration approaches to facilitate learning.
While the approaches were applied in the context of business
students learning how to use Python for web scraping activities,
they can be extended to other contexts such as applications
development, database modeling, and statistical analysis using
Python or even other programming languages such as Java,
VB.NET, or C#. Moreover, it is likely that these scaffolding
approaches may be appropriate in other contexts in which
students need to learn and apply new content in a limited
amount of time.

https://doi.org/10.62273/QPEA8450

Journal of Information Systems Education, 35(4), 438-450, Fall 2024
https://doi.org/10.62273/QPEA8450

446

6. REFERENCES

Anand, T., & Mitchell, D. (2022). Objectives and Curriculum

for a Graduate Business Analytics Capstone: Reflections
from Practice. Decision Sciences Journal of Innovative
Education, 20(4), 235-245.
https://doi.org/10.1111/dsji.12272

Belland, B. R., Lee, E., Zhang, A. Y., & Kim, C. (2022).
Characterizing the Most Effective Scaffolding Approaches
in Engineering and Technology Education: A Clustering
Approach. Computer Applications in Engineering
Education, 30(6), 1795-1812.
https://doi.org/10.1002/cae.22556

Brush, T., & Saye, J. W. (2002). A Summary of Research
Exploring Hard and Soft Scaffolding for Teachers and
Students Using a Multimedia Supported Learning
Environment Journal of Interactive Online Learning, 1(2),
1-12.

Bunch, J. M. (2009). An Approach to Reducing Cognitive Load
in the Teaching of Introductory Database Concepts.
Journal of Information Systems Education, 20(3), 269-275.

Choi, H. Y., Chun, S. G., & Chung, D. (2017). An Explanatory
Study on the Business Analytics Program in the US
Universities. Issues in Information Systems, 18(2), 1-8.

Dahiya, M., Malik, N., & Rana, S. (2023). Essentials of Data
Wrangling. In M. Niranjanmurthy, L. Sheoran, G. Dhand,
& P. Kaur (Eds.), Data Wrangling: Concepts, Applications,
and Tools (pp. 71-90). Scrivener Publishing.
https://doi.org/10.1002/9781119879862.ch4

Guthrie, C. (2010). Towards Greater Learner Control: Web
Supported Project-Based Learning. Journal of Information
Systems Education, 21(1), 121-130.

Jaggia, S., Kelly, A., Lertwachara, K., & Chen, L. (2020).
Applying the CRISP-DM Framework for Teaching
Business Analytics. Decision Sciences Journal of
Innovative Education, 18(4), 612-634.
https://doi.org/10.1111/dsji.12222

Janson, A., Söllner, M., & Leimeister, J. M. (2020). Ladders for
Learning: Is Scaffolding the Key to Teaching Problem-
Solving in Technology-Mediated Learning Contexts?
Academy of Management Learning and Education, 19(4),
439-368. https://doi.org/10.5465/amle.2018.0078

Jeyaraj, A. (2019). Pedagogy for Business Analytics Courses.
Journal of Information Systems Education, 30(2), 67-83.

Khan, R. A., Nadeem, A., & Ali, A. (2019). Business Analytics:
A Framework. International Journal of Computer
Technology & Applications, 10(2), 102-108.

Kim, M. C., & Hannafin, M. J. (2011). Scaffolding Problem
Solving in Technology-Enhanced Learning Environments
(TELEs): Bridging Research and Theory With Practice.
Computers & Education, 56(2), 403-417.
https://doi.org/10.1016/j.compedu.2010.08.024

Kolb, A. Y., & Kolb, D. A. (2005). Learning Styles and
Learning Spaces: Enhancing Experiential Learning in
Higher Education. Academy of Management Learning and
Education, 4(2), 193-212.
https://doi.org/10.5465/amle.2005.17268566

Malik, K. M., & Zhu, M. (2023). Do Project‑Based Learning,
Hands‑on Activities, and Flipped Teaching Enhance
Student’s Learning of Introductory Theoretical Computing
Classes? Education and Information Technologies, 28,
3581-3604. https://doi.org/10.1007/s10639-022-11350-8

Mazilu, M. C. (2022). Web Scraping and Ethics in Automated
Data Collection. In C. Ciurea, C. Boja, P. Pocatilu, & M.
Doinea (Eds.), Education, Research and Business
Technologies (pp. 285-294). Springer Nature.

Memmert, L., Tavanapour, N., & Bittner, E. (2023). Learning
by Doing: Educators’ Perspective on an Illustrative Tool for
AI-Generated Scaffolding for Students in Conceptualizing
Design Science Research Studies. Journal of Information
Systems Education, 34(3), 279-292.

Niiranen, S. (2021). Supporting the Development of Students’
Technological Understanding in Craft and Technology
Education via the Learning‑by‑Doing Approach.
International Journal of Technology and Design
Education, 31, 81-93. https://doi.org/10.1007/s10798-019-
09546-0

Radovilsky, Z., & Hegde, V. (2022). Contents and Skills of
Data Mining Courses in Analytics Programs. Journal of
Information Systems Education, 33(2), 182-194.

Raes, A., Schellens, T., De Wever, B., & Vanderhoven, E.
(2012). Scaffolding Information Problem Solving in Web-
Based Collaborative Inquiry Learning. Computers &
Education, 59, 82-94.
https://doi.org/10.1016/j.compedu.2011.11.010

Rosenshine, B., & Meister, C. (1992). The Use of Scaffolds for
Teaching Higher-Level Cognitive Strategies. Educational
Leadership, 49(7), 26-33.

Sharma, P., & Hannafin, M. J. (2007). Scaffolding in
Technology-Enhanced Learning Environments. Interactive
Learning Environments, 15(1), 27-46.
https://doi.org/10.1080/10494820600996972

Vygotsky, L. S. (1978). Mind in Society: The Development of
Higher Psychological Processes. Harvard University Press.

Winkler, R., Söllner, M., & Leimeister, J. M. (2021). Enhancing
Problem-Solving Skills With Smart Personal Assistant
Technology. Computers & Education, 165, 104148.
https://doi.org/10.1016/j.compedu.2021.104148

Wood, D., Bruner, J., & Ross, G. (1976). The Role of Tutoring
in Problem Solving. Journal of Child Psychology and
Psychiatry and Allied Disciplines, 17, 89-100.
https://doi.org/10.1111/j.1469-7610.1976.tb00381.x

Yelland, N., & Masters, J. (2007). Rethinking Scaffolding in
the Information Age. Computers & Education, 48, 362-382.
https://doi.org/10.1016/j.compedu.2005.01.010

Zhang, L., Chen, F., & Wei, W. (2020). A Foundation Course
in Business Analytics: Design and Implementation at Two
Universities. Journal of Information Systems Education,
31(4), 244-259.

AUTHOR BIOGRAPHY

Anand Jeyaraj is a professor of information systems at the Raj

Soin College of Business of Wright
State University. He has been an
instructor for 20+ years and has
taught a variety of information
systems courses including
programming, applications
development, geographic
information systems, business
analytics, and data visualization. He

has employed learner-centered teaching and active learning
techniques in his classes and received multiple teaching awards.

https://doi.org/10.62273/QPEA8450
https://doi.org/10.1111/dsji.12272
https://doi.org/10.1002/cae.22556
https://doi.org/10.1002/9781119879862.ch4
https://doi.org/10.1111/dsji.12222
https://doi.org/10.5465/amle.2018.0078
https://doi.org/10.1016/j.compedu.2010.08.024
https://doi.org/10.5465/amle.2005.17268566
https://doi.org/10.1007/s10639-022-11350-8
https://doi.org/10.1007/s10798-019-09546-0
https://doi.org/10.1007/s10798-019-09546-0
https://doi.org/10.1016/j.compedu.2011.11.010
https://doi.org/10.1080/10494820600996972
https://doi.org/10.1016/j.compedu.2021.104148
https://doi.org/10.1111/j.1469-7610.1976.tb00381.x
https://doi.org/10.1016/j.compedu.2005.01.010

Journal of Information Systems Education, 35(4), 438-450, Fall 2024
https://doi.org/10.62273/QPEA8450

447

APPENDIX

Python Scripts Shown in Class

Script A. Income Tax Computations

import pandas as pd

Named functions
def tax(inc):
 if inc < 26050:
 amt = 0
 elif inc < 100000:
 amt = 360.69 + (inc - 26050) * 0.0275
 elif inc < 115300:
 amt = 2394.32 + (inc - 100000) * 0.03688
 else:
 amt = 2958.58 + (inc - 115300) * 0.0375
 return round(amt)

get data from CSV file
df = pd.read_csv('incomes.csv')

move dataframe values into lists
ssns = df['id'].values.tolist()
names = df['last_name'].values.tolist()
incomes = df['nb_income'].values.tolist()

compute taxes
taxes = list(map(lambda x: tax(x), incomes))

move data from lists into dataframe
records = list(zip(ssns, names, incomes, taxes))

transform records into dataframe
df = pd.DataFrame(records, columns=['SSN', 'Name', 'Income', 'Tax'])

save results to csv file
df.to_csv('results.csv', index=False)

Script B1. Fetch Ohio Parks Web Page and Save to Local Device

import library needed for Python to visit web sites
import requests

visit the web site
url = 'https://www.nps.gov/state/oh/index.htm'
fetch web page
page = requests.get(url)

save to local device
with open('oh-parks.html','w') as file:
 file.write(str(page.text))

Script B2. Scrape National Parks From the Saved Ohio Parks Page

library to extract content from web page
from bs4 import BeautifulSoup
library to handle data in Excel files
import pandas as pd

open OH web page

https://doi.org/10.62273/QPEA8450

Journal of Information Systems Education, 35(4), 438-450, Fall 2024
https://doi.org/10.62273/QPEA8450

448

with open('oh-parks.html','r') as file:
 page = file.read()
read page as HTML file
soup = BeautifulSoup(page,'html.parser')

sift required items from soup
parks = soup.findAll('h3')
ptypes = soup.findAll('p',attrs={'class':'list_left__kicker'})
places = soup.findAll('p',attrs={'class':'list_left__subtitle'})

clean up the sifted data by dropping tags
parks = list(map(lambda x: x.text, parks))
ptypes = list(map(lambda x: x.text, ptypes))
places = list(map(lambda x: x.text, places))

stitch data in the three lists
data = list(zip(parks, places, ptypes))

load combined data into a Pandas dataframe
rows = pd.DataFrame(data, columns=['Park','Place','Type'])

save the Pandas dataframe to CSV file
rows.to_csv('oh-parks.csv',index=False)

Script C1. Fetch Parks Web Pages for Utah, Arizona, New Mexico, and Colorado

import library needed for Python to visit web sites
import requests

define the states for which pages need to be gathered
states = ['UT','AZ','NM','CO']

repeat for each state
for s in states:
 # visit the web site
 url = 'https://www.nps.gov/state/'+s+'/index.htm'
 # fetch web page
 page = requests.get(url)
 # save to local device
 with open(s+'-parks.html','w') as file:
 file.write(str(page.text))

Script C2. Scrape National Parks for Utah, Arizona, New Mexico, and Colorado

library to extract content from web page
from bs4 import BeautifulSoup
library to handle data in Excel files
import pandas as pd

define states for which park info needs to be gathered
states = ['UT','AZ','NM','CO']
setup a temporary variable to hold data gathered from each web page
alldata = []

repeat for each state
for s in states:
 # open state web page
 with open(s+'-parks.html','r') as file:
 page = file.read()
 # read page as HTML file
 soup = BeautifulSoup(page,'html.parser')

https://doi.org/10.62273/QPEA8450

Journal of Information Systems Education, 35(4), 438-450, Fall 2024
https://doi.org/10.62273/QPEA8450

449

 # sift required items from soup
 parks = soup.findAll('h3')
 ptypes = soup.findAll('p',attrs={'class':'list_left__kicker'})
 places = soup.findAll('p',attrs={'class':'list_left__subtitle'})
 # clean up the sifted data by dropping tags
 parks = list(map(lambda x: x.text, parks))
 ptypes = list(map(lambda x: x.text, ptypes))
 places = list(map(lambda x: x.text, places))
 # stitch data in the three lists
 data = list(zip(parks, places, ptypes))
 # save data to the temporary variable
 alldata.append(data)

flatten temporary data to build single list and not list of lists
alldata = sum(alldata, [])

load combined data into a Pandas dataframe
rows = pd.DataFrame(alldata, columns=['Park','Place','Type'])

save the Pandas dataframe to CSV file
rows.to_csv('4s-parks.csv',index=False)

Script D1. Fetch Stock Price for One Date for One Ticker

Fetch closing price for 1 date for 1 ticker

import requests
from bs4 import BeautifulSoup

Define URL to fetch data
url = 'https://bigcharts.marketwatch.com/historical/default.asp?symb=msft&closeDate=12/31/21'

Fetch page and process HTML
page = requests.get(url)
soup = BeautifulSoup(page.text, 'html.parser')

Search for TD tags on web page
alltd = soup.findAll('td')

Extract item 3 from the ALLTD list
print(alltd[3].text)

Script D2. Fetch Stock Prices for Multiple Dates for One Ticker

Script: Fetch closing price for Multiple dates for 1 ticker

import requests
from bs4 import BeautifulSoup
import time

Define dates required
ydates = ['12/31/21', '12/31/20', '12/31/19']

Repeat fetch activity for EACH date
for d in ydates:

 # Define URL to fetch data
 url =
'https://bigcharts.marketwatch.com/historical/default.asp?symb=msft&closeDate='+d
 # Fetch page and process HTML
 page = requests.get(url)

https://doi.org/10.62273/QPEA8450

Journal of Information Systems Education, 35(4), 438-450, Fall 2024
https://doi.org/10.62273/QPEA8450

450

 soup = BeautifulSoup(page.text, 'html.parser')
 # Search for TD tags on web page
 alltd = soup.findAll('td')
 # Extract item 3 from the ALLTD list
 print(alltd[3].text)

 time.sleep(3)

Script D3. Fetch Stock Prices for Multiple Dates for Multiple Tickers

Script: Fetch closing price for Multiple dates for Multiple tickers

import requests
from bs4 import BeautifulSoup
import time
import pandas as pd

Define tickers
tickers = ['MSFT', 'AAPL', 'ORCL']

Define dates required
ydates = ['12/31/21', '12/31/20', '12/31/19']

Set up list to hold prices
table = []

Repeat for EACH ticker
for t in tickers:
 # Set up temporary list to hold prices
 row = [t]

 # Repeat fetch activity for EACH date
 for d in ydates:

 # Define URL to fetch data
 url =
'https://bigcharts.marketwatch.com/historical/default.asp?symb='+t+'&closeDate='+d
 # Fetch page and process HTML
 page = requests.get(url)
 soup = BeautifulSoup(page.text, 'html.parser')
 # Search for TD tags on web page
 alltd = soup.findAll('td')
 # Extract item 3 from the ALLTD list
 row.append(alltd[3].text)

 time.sleep(3)

 # Add data row to table
 table.append(row)

Build a Pandas Dataframe with the table of results
data = pd.DataFrame(table, columns=['Ticker','2021','2020','2019'])

Save data to Excel
data.to_csv('prices.csv', index=False)

https://doi.org/10.62273/QPEA8450

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2024 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN: 2574-3872 (Online) 1055-3096 (Print)

	JISE 2024 35(4) 438-450 First Page
	c-2403036TT Final-TCS-LAM-XPZ.pdf
	JISE 2024 35(4) Copyright ISSN

