

Journal of
Information
Systems
Education

Volume 35

Issue 3
Summer 2024

Self-Explanation Effect of Cognitive Load Theory in
Teaching Basic Programming

Carlos Sandoval-Medina, Carlos Argelio Arévalo-Mercado, Estela

Lizbeth Muñoz-Andrade, and Jaime Muñoz-Arteaga

Recommended Citation: Sandoval-Medina, C., Arévalo-Mercado, C. A., Muñoz-
Andrade, E. L., & Muñoz-Arteaga, J. (2024). Self-Explanation Effect of Cognitive
Load Theory in Teaching Basic Programming. Journal of Information Systems
Education, 35(3), 303-312. https://doi.org/10.62273/GMIV1698

Article Link: https://jise.org/Volume35/n3/JISE2024v35n3pp303-312.html

Received: July 5, 2023
First Decision: September 25, 2023
Accepted: December 12, 2023
Published: September 15, 2024

Find archived papers, submission instructions, terms of use, and much more at the JISE website:

https://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

https://doi.org/10.62273/GMIV1698
https://jise.org/Volume35/n3/JISE2024v35n3pp303-312.html
https://jise.org/

Journal of Information Systems Education, 35(3), 303-312, Summer 2024
https://doi.org/10.62273/GMIV1698

303

Self-Explanation Effect of Cognitive Load Theory in
Teaching Basic Programming

Carlos Sandoval-Medina
Carlos Argelio Arévalo-Mercado
Department of Information Systems

Autonomous University of Aguascalientes
Aguascalientes, México

al285667@edu.uaa.mx, carlos.arevalo@edu.uaa.mx

Estela Lizbeth Muñoz-Andrade
Department of Electronic Systems

Autonomous University of Aguascalientes
Aguascalientes, México

lizbeth.munoz@edu.uaa.mx

Jaime Muñoz-Arteaga
Department of Information Systems

Autonomous University of Aguascalientes
Aguascalientes, México

jaime.munoz@edu.uaa.mx

ABSTRACT

Learning basic programming concepts in computer science-related fields poses a challenge for students, to the extent that it becomes
an academic-social problem, resulting in high failure and dropout rates. Proposed solutions to the problem can be found in the
literature, such as the development of new programming languages and environments, the inclusion of virtual and augmented
reality, gamification, automatic grading tools, and intelligent tutoring systems, among others. However, most of these solutions do
not explicitly describe the application of some learning theory, instead, they focus on new technologies. Cognitive Load Theory
(CLT) is an instructional design theory that aligns the design of instructional materials with human cognitive architecture using 17
design guidelines to optimize learning. The goal of this research is to design, develop, and test instructional materials to support
the teaching and learning of basic programming, measuring their effectiveness compared to traditional materials, based on the self-
explanation effect of CLT. To compare the instructional materials, a quasi-experimental design with homogeneous groups was
used, involving students from the Autonomous University of Aguascalientes. The results indicate a positive impact of the use of
CLT-based instructional materials, either through the application of a single effect or the combination of two effects such as worked
example and self-explanation.

Keywords: Cognitive load theory, Self-explanation, Introductory programming, Computing education, Computing skills

1. INTRODUCTION

The software industry plays a crucial role in business processes
and is experiencing a growth trend. One of its core processes is
programming, which implies an increasing demand for
programmers. According to Voichick et al. (2019), software
developers are reported to be one of the professions with the
highest growth projection for the year 2030, with an increase of
over 30%.

Skills acquired in programming are not only important in
education but also in the advancement of technology and

communication (Rahman et al., 2020), industry 4.0, as well as
in data science and artificial intelligence (Nakagawa et al.,
2021). However, learning programming has been widely
documented as highly challenging for beginners in computer
science-related fields, often resulting in failure rates of around
34% (Bennedsen & Caspersen, 2019; Simon et al., 2019;
Watson & Li, 2014).

The application of Cognitive Load Theory (CLT) in the
teaching and learning of programming mostly reports positive
empirical results (Aureliano et al., 2016; Beege et al., 2021;
Price et al., 2020; Sands, 2019; Vieira et al., 2017; Yen &

https://doi.org/10.62273/GMIV1698
mailto:al285667@edu.uaa.mx
mailto:carlos.arevalo@edu.uaa.mx
mailto:lizbeth.munoz@edu.uaa.mx
mailto:jaime.munoz@edu.uaa.mx

Journal of Information Systems Education, 35(3), 303-312, Summer 2024
https://doi.org/10.62273/GMIV1698

304

Wang, 2017). As a result, CLT is one of the most cited
instructional design theories in many learning areas, with
citations ranging from 10,000 to 20,000 occurrences (Sweller,
2016).

In this paper, the design, development, and application of
instructional materials are described. Materials were developed
for students at the Autonomous University of Aguascalientes,
as support for teaching and learning basic concepts of the C++
programming language in the structured paradigm. The
instructional materials were designed and developed based on
the self-explanation effect of CLT. A quasi-experimental pre-
post study compared the effectiveness of the instructional
materials based on the self-explanation effect compared to
traditional instructional material in improving learning
outcomes.

2. PROBLEM OUTLINE

Learning programming is a challenging task for both students
and teachers due to its complex nature. Concepts with a high
degree of complexity impose a greater cognitive load on
students. However, the brain has a limited capacity for
information processing (Sweller et al., 2019), requiring
significant effort, dedication, high levels of motivation, time,
and ample practice and trial-and-error (Silva-Maceda et al.,
2016). Regarding the factors that affect programming learning,
on the teaching side, there are factors such as the complexity of
the topics, instructional materials, teaching methods, and the
learning environment (Insuasti, 2016; Silva-Maceda et al.,
2016). On the learning side, student-related factors include
gender, mathematical knowledge (Silva-Maceda et al., 2016),
complex cognitive skills (Insuasti, 2016), prior knowledge
(Anfurrutia et al., 2017), attitude, perception of self-efficacy,
discipline, self-forecasting of success or failure, and motivation
(Gurer & Tokumaci, 2020; Sharma & Shen, 2018).

We find numerous investigations in the search for
alternatives to help in the teaching-learning process, which date
back practically from the creation or beginning of programming
as such, to the present day, such as the development of new
programming languages and environments, the inclusion of
virtual and augmented reality, gamification, automatic grading
tools, and intelligent tutoring systems, among others. However,
most of these alternatives do not explicitly describe the
application of some learning theory (Becker & Quille, 2019;
Kim et al., 2019; Luxton-Reilly et al., 2018; Oberhauser &
Lecon, 2017), and the teaching-learning process of
programming still represents a challenge for both teachers and
students.

This challenge can be confirmed by the high failure and
dropout rates of introductory programming courses, which are
around 34% (Bennedsen & Caspersen, 2019; Simon et al.,
2019; Watson & Li, 2014). Although the global trend shows a
slight decrease in failure rates, this does not apply to Latin
America. Studies such as Beltrán et al. (2015) from the Central
University of Ecuador report a failure rate of 47%, Juárez
Viveros et al. (2016) from the Technological Institute of
Mexicali report a 49.7% failure rate, Justo-López et al. (2021)
from the Autonomous University of Baja California report a
38.4% failure rate, Cerón Garnica et al. (2021) from the
Benemérita Autonomous University of Puebla report a 46%
failure rate, and the Autonomous University of Aguascalientes,

through its statistics department, presents varying percentages
with most values above 30%.

The problem of learning programming languages in the
teaching-learning process has become an academic-social
problem, not only directly affecting students but the
development of fundamental and instrumental competencies in
the knowledge society (Tejera-Martínez et al., 2020).

3. BASIC CONCEPTS

3.1 Cognitive Load Theory (CLT)
The Cognitive Load Theory (Sweller et al., 1998, 2019) is an
instructional theory based on evolutionary biology (Geary,
2012), human cognitive architecture (Atkinson & Shiffrin,
1968), and Bartlett’s schema theory (Carbon & Albrecht, 2012).
In the human brain, information processing occurs through two
subsystems: working memory, which is highly limited; and
long-term memory, which is unlimited.

When information is processed in working memory, it is
transferred to long-term memory, where it is stored and
organized into collections called schemas. These schemas can
last a lifetime and can eventually become automated, requiring
minimal cognitive resources (through practice). According to
the CLT, learning involves the construction of schemas
(Berssanette & De Francisco, 2022; Sweller et al., 2019).
Therefore, instructional design should aim to reduce the
cognitive load imposed on working memory (Sweller, 2016).

The term cognitive load refers to the number of resources
that working memory requires for a learning process
(Berssanette & De Francisco, 2022). CLT identifies three types
of loads that are involved in learning processes. Intrinsic
cognitive load is associated with the complexity of the
information or knowledge to be learned and the student’s prior
knowledge. Extraneous cognitive load is related to how the
information is presented to the student, influenced by
instructional methods, and it can be modified. Finally, germane
cognitive load is the load necessary for learning, which refers
to the resources allocated by working memory during the
learning process (Sweller et al., 2019).

From research on CLT, 17 “effects” have been identified
that predict learning outcomes under specific instructional
conditions that modify extraneous cognitive load and promote
germane cognitive load (Sweller et al., 2019). These effects
have mostly shown positive learning results. Among them, the
most cited effects are the worked-example effect and the
completion problem effect (Andersen et al., 2016; Beege et al.,
2021; Sands, 2019; Zhi et al., 2019). However, limitations have
also been reported regarding their application and effectiveness,
where their efficiency may decrease (Moreno, 2006; Rittle-
Johnson & Loehr, 2017) or even be counterproductive
(Kalyuga, 2007).

The most studied effect in CLT and commonly used
instructional strategy for studying or review purposes is worked
examples (Sweller et al., 2019). However, learning from
worked examples has limitations when the learner has not
acquired sufficient knowledge, and they tend to study them
superficially. However, when learners are asked for verbal
explanations of the problem (Kalyuga, 2007; Rittle-Johnson &
Loehr, 2017), it promotes the search for and reinforcement of
schemas in long-term memory.

https://doi.org/10.62273/GMIV1698

Journal of Information Systems Education, 35(3), 303-312, Summer 2024
https://doi.org/10.62273/GMIV1698

305

3.2 The Self-Explanation Effect
The self-explanation effect is a mental process in which the
student, while studying a worked example, establishes the
relationship(s) between it and the previously acquired
knowledge through self-explanation. This process promotes
relevant cognitive load by creating connections with existing
prior knowledge in long-term memory and generating cognitive
schemas.

For this reason, the application of the self-explanation
effect is recommended for students with prior knowledge, as
students without adequate prior knowledge may generate
incorrect explanations and develop erroneous cognitive
concepts (Sweller et al., 2019). Self-explanation can be
described as an active learning construction activity that
engages students with the content, allowing them to monitor
their level of understanding (Vihavainen et al., 2015). At times,
it may be necessary for the instructor to provide an explanation
when the student is unable to generate a correct or complete
explanation (Bisra et al., 2018).

This research aims to evaluate the effectiveness of CLT’s
self-explanation and worked example effects, through the
design of instructional materials to support the teaching of basic
C++ programming. Using quasi-experimental methods, the
study compares these CLT-based instructional materials with
the use of traditional classroom examples at the Autonomous
University of Aguascalientes.

4. RELATED WORK

The literature reports benefits of utilizing the self-explanation
effect that are applicable to most educational domains (Bisra et
al., 2018). However, it also highlights the limitations that need
to be addressed to optimize its effectiveness (Rittle-Johnson &
Loehr, 2017).

In the field of programming, Vihavainen et al. (2015)
employed the inclusion of two types of self-explanation
questions, with and without help options, through an online
programming exercise book and self-explanation tasks. They
reported positive results reflected in the grades of the students.

Yen and Wang (2017) developed a programming
environment based on self-explanation that provides feedback
using an ontology created by expert programmers for C++
programming, with a focus on correcting programming syntax.
They reported that the tool successfully provides appropriate
learning materials and extended examples for programmers to
correct their potential misconceptions, thereby helping them
develop solid concepts.

Price et al. (2020) present a prototype called “Instructor’s
Solution” as support for online programming tasks. The
prototype is based on comparison, self-explanation, and
incomplete explanations (explain prompts). Their results
indicate that students can learn more with explain prompts, but
it is also reflected in increased time investment, which can lead
to a loss of interest for many students.

5. METHOD

In this research, instructional materials were designed based on
self-explanation problems, based on the self-explanation effect
in CLT. They were developed to support the teaching and
learning of basic concepts in the C++ programming language,
and their effectiveness was evaluated in terms of learning

objectives compared to traditional instructional materials.
Traditional instructional materials consist of exercises or notes
used in a setting where the teacher explains topics and solve
examples step-by-step to the group. A second set of materials
was created by combining these self-explanation problems with
videos of worked examples following the principles of CLT.

This research was done in two phases. The first involved
the design of instructional materials, which included the
creation of problems and videos based on the CLT effects. The
second consisted of the application of the materials and the
evaluation of its effectiveness in learning through a quasi-
experimental design.

5.1 Design of Instructional Material
Here are some examples of traditional problems commonly
used in class on the topics of arrays and strings, in which the
teacher demonstrates the solution:

• “Create a program to fill an array with n numbers
(defined by the user) and order the contents of the array
from smallest to largest.”

• “Create a program that, given a string of characters,
inverts the content of said string, saves it in an
additional variable and outputs both strings (Note:
without using the strcmp, strcpy, or strlen functions).”

• “Create a program that generates n (data entered by the
user) next numbers of the Fibonacci series. Remember
that the series begins with 0 and 1 where the next
number is the sum of the previous 2.”

Similar problems were designed in topics related to arrays

and strings, but these problems were transformed into a self-
explanation format. In this format, a “real-life situation” is
presented where the student needs to identify the error(s) in
code (like the ones seen in class) “developed by a classmate.”
The student then needs to explain to their “classmate” the
reasons for the errors and help them correct the program to
produce the correct output. These exercises consist of three
parts: problem description, program output, and code with
introduced errors. An example of such a problem is shown in
Figure 1. The design structure of these problems is described
below:

1) The problem description: It describes what the student
needs to do to solve the exercise.

2) The program output: It shows an example of the output
generated by the program for the given exercise.

3) Source code: The source code of the program for the
exercise is included, which the student must analyze to
identify the errors.

In addition to the problems in self-explanation format,

videos of solved examples were created, like the presented
problems, to combine the self-explanation effect with the
worked example effect in an audiovisual format and apply it to
a second experimental group. The development of instructional
materials was carried out following the principles of CLT aimed
at reducing cognitive load through the five phases described in
Figure 2.

5.2 Experimental Design
A quasi-experimental PRE-POST study was conducted with
three groups: Experimental Group 1 (Exp1) n = 50,
Experimental Group 2 (Exp2) n = 49, and Control Group (Cont)

https://doi.org/10.62273/GMIV1698

Journal of Information Systems Education, 35(3), 303-312, Summer 2024
https://doi.org/10.62273/GMIV1698

306

n = 45, with the same instructor, consisting of first-year students
majoring in Computer Systems Engineering, in a distance
education context for all groups (due to the COVID-19
pandemic). In this study, the treatment for Exp1 involved the
application of self-explanation problems, for Exp2 it included
self-explanation problems + videos of solved examples, and the
Control group received exercises covered in class. The topics
covered included array sorting, nested loops, matrix addition,
string length, string reversal, and string comparison.

Figure 1. Problem in Self-Explanation Format

Figure 2. Proposed Phases for the Development of

Instructional Material

These problems were implemented on an educational
platform based on Moodle, using open-ended essay-type
questions. The exercises given in the experimental treatment

were assigned as tasks to be graded, to encourage student
participation. They were presented in a format where
participants were given a context simulating a real-life situation
(“Your teammate has written the assigned sorting program but
cannot find the error”), followed by the program output with
errors and the corresponding source code to analyze.
Participants were then asked to explain in their own words,
either in written text or audio format, the reason for the error
and provide a solution while explaining their proposed solution.

An automatic feedback system was designed, which
provided students with an explanation from the instructor about
errors in the exercises, along with suggested solutions and
explanations for them. This feedback was presented to students
once they completed the exercises on the platform, allowing for
immediate feedback. The Cont studied in a traditional manner,
reviewing their exercises in class.

After the treatment, learning outcomes were evaluated
using standardized and calibrated exams administered by the
programming department of the Electrical Systems Department
of the Autonomous University of Aguascalientes. These exams
were given to all groups and focused only on the topics of
arrays, vectors, and strings used in the design of the
instructional material. The exams were conducted during the
second (PRE) and third (POST) grading periods. To make the
PRE and POST results comparable, isomorphic problems were
used. For example, typical PRE exam problems were:

a) Briefly explain what the following code does:
#include <stdio.h>
int main(){

int cal=0;
do{

printf(“Type the school grade: “);
scanf(“%d”, cal);

}while (cal<0||cal>10);
}

b) In the city of Aguascalientes, we have 5 hospitals. As we
know, a hospital has nurses, doctors, and interns. A staff
of 30 people is being assigned to each hospital. Run a
simulation using random numbers, where 1 identifies
nurses, 2 doctors, 3 interns. You are asked to write a
program that uses functions that get:

1) How many doctors belong to each hospital.
2) The number of doctors to be hired by the 5

hospitals.
You are asked to make use of nested loops.

The equivalent isomorphic POST problems were:
a) Briefly explain what the following code does:
#include <stdio.h>
int main(){

int x, month, days=0, aa=2020;
printf(“What month do you want?”);
scanf(%d, &month);
if(month==1||month==3||month==5||month==7
||month==8||month==10||month==12){
days=31;
}
for(x=1, x<=days; x++){

printf(“%d\t”, x);
if(x%7==0){

printf(“\n”);
}

https://doi.org/10.62273/GMIV1698

Journal of Information Systems Education, 35(3), 303-312, Summer 2024
https://doi.org/10.62273/GMIV1698

307

}
}

b) There are 10 teams in the Mexican Pacific Baseball
League, each team has a team of 30 players. Each team
in the league prepares a list where the following data
appears for each player: weight and age (which on this
occasion are not captured by keyboard, they will be
generated randomly)

Weight: range from 45 to 80
Age: range from 18 to 40
You are asked to write a program that does the following
using functions:

1) Average weight of the players
2) How many players per team are between 20 and

30 years old?
It is requested to use nested loops.

The provided isomorphic problems used in PRE and POST

are comparable, given that they have a similar structure (use of
loops and use of functions) with only slight variations of
context.

6. RESULTS

For data analysis, the dependent variable was the grades
obtained in the second (PRE) and third (POST) partial exams,
specifically for the items related to the topics of array sorting,
nested loops, matrix summation, string length, string reversal,
and string comparison from the developed instructional
materials. The independent variable depended on the
instructional material used, with the experimental treatment
groups (self-explanation problems and worked example videos)
and the traditional instructional material group (practice
example problems). Descriptive statistics of the participating
groups are shown in Table 1. For Exp1 (only self-explanation
problems), the pre-treatment (PRE) and post-treatment (POST)
grades had an average of 7.76 and 9.46, respectively, indicating
an increase of 1.7 points in the average grades. In the case of
Exp2 (self-explanation problems + worked example videos),
the average grades were 5.97 PRE and 8.40 POST, reflecting
an increase of 2.4 points in the average grades. The results for
the control group (Cont) show an average of 8.10 for the PRE
grades and 8.73 for the POST grades, indicating a difference of
0.6 points higher in the POST grades.

Group Grades N Min. Max. Mean Typ.
Dev.

EXP1 PRE 50 3.60 10.00 7.76 1.92
POST 50 8.00 10.00 9.46 0.74

EXP2 PRE 49 2.60 10.00 5.97 2.16
POST 49 2.60 10.00 8.40 1.76

Cont PRE 45 0.80 10.00 8.10 2.55
POST 45 3.80 10.00 8.73 1.84

Table 1. Descriptive Statistics Groups Participating in
the Study

The frequency distribution of Exp1 is illustrated in Figure

3, which shows that most observations in the PRE phase are in
the range of 4 to 8. In contrast, the observations in the POST
phase are concentrated in the range of 8 to 10. This indicates

that there was a shift towards higher grades after the treatment,
with a greater number of students achieving higher scores.

Figure 3. Histograms of PRE and POST Observations

of the Experimental Group 1

For Exp2, the observations in the PRE phase indicate that

most scores are in the range of 2 to 6. However, in the POST
phase, most scores are in the range of 7 to 10, as shown in
Figure 4.

For the Cont group, most observations in the PRE phase are
in the range of 9 to 10. The same pattern is observed in the
POST phase, where most scores are still in the range of 9 to 10.
Additionally, the incidence of observations with low values is
very similar in both the PRE and POST phases, as shown in
Figure 5.

Table 2 presents the results of the t-test for the PRE and
POST scores of each group. For both the Exp1 (self-
explanation) and Exp2 (self-explanation + worked example
videos) groups, the p-value is 0.000, indicating a statistically
significant difference between the PRE and POST scores.
Similarly, for the Cont, the t-test yields a p-value of 0.017,
indicating a statistically significant difference between the PRE
and POST scores.

A one-way ANOVA test was conducted for the three
groups, both for the PRE and POST scores. The analysis reveals
that the groups are different in terms of the average scores, both

https://doi.org/10.62273/GMIV1698

Journal of Information Systems Education, 35(3), 303-312, Summer 2024
https://doi.org/10.62273/GMIV1698

308

in the PRE and POST assessments, with a p-value of 0.000 for
the PRE scores and a p-value of 0.002 for the POST scores, as
shown in Table 3.

Figure 4. Histograms of PRE and POST Observations

of the Experimental Group 2

Figure 5. Histograms of PRE and POST Observations

of the Control Group

 Related differences t gl Sig.

(Bilateral) Mean Typ. Dev. Typ. Error 95% Confidence interval
Lower Upper

Exp1POST-Exp1PRE 1.7 2.07 0.29 1.11 2.29 5.80 50 0.000
Exp2POST-Exp2PRE 2.4 2.53 0.36 1.70 3.15 6.72 49 0.000
ContPOST-ContPRE 0.6 1.49 0.22 0.10 0.99 2.49 45 0.017

Table 2. T-Test of Related Samples PRE-POST Participating Groups

Grade Sum of Squares gl Square Mean F Sig.
PRE Inter-groups 126.042 2 63.021 12.849 0.000

Intra-groups 696.486 142 4.905
POST Inter-groups 29.051 2 14.525 6.296 0.002

Intra-groups 327.603 142 2.307

Table 3. One-Way ANOVA for PRE and POST Scores

https://doi.org/10.62273/GMIV1698

Journal of Information Systems Education, 35(3), 303-312, Summer 2024
https://doi.org/10.62273/GMIV1698

309

Dependent
Variable

(I)
Group

(J)
Group

Difference of
Means (I-J)

Typical
Error

Sig Confidence Interval 95%
Lower Limit Upper Limit

Grade PRE Exp1 Cont -0.34 0.45 0.734 -1.41 0.73
Exp2 1.79* 0.46 0.000 0.73 2.84

Exp2 Exp1 -1.79* 0.46 0.000 -2.84 -0.73
Cont -2.13* 0.45 0.000 -3.20 -1.05

Cont Exp1 0.34 0.45 0.734 -0.73 1.41
Exp2 2.13* 0.45 0.000 1.05 3.20

Grade POST Exp1 Cont 0.72 0.31 0.055 -0.01 1.46
Exp2 1.06* 0.31 0.002 0.34 1.78

Exp2 Exp1 -1.06* 0.31 0.002 -1.78 -0.34
Cont -0.34 0.31 0.528 -1.08 0.40

Cont Exp1 -0.72 0.31 0.055 -1.46 0.01
Exp2 0.34 0.31 0.528 -0.40 1.08

*The mean differences are significant at the level 0.05.

Table 4. Post Hoc Tukey Multiple Comparisons

Based on the ANOVA analysis, a post-hoc analysis using

the Tukey test was conducted to identify which groups differ in
terms of the average scores, both in the PRE and POST
assessments. The results for the PRE scores, presented in Table
4, reveal that there are no differences between Exp1 and Cont
with a p-value of 0.734. However, there is a significant
difference between Exp2 and Cont with a mean difference of
2.13 and a p value of 0.000. Likewise, there is a significant
difference between Exp2 and Exp1 with a mean difference of
1.79 and p value of 0.000. For the POST scores, the results of
the Tukey post-hoc test reported in Table 4 indicate that there
are no differences between Exp1 and Cont (p = 0.055), although
this value is at the significance threshold of 0.05. There are also
no differences between Cont and Exp2 (p = 0.528). However,
there is a significant difference between the two experimental
groups, i.e., the self-explication group and the worked example
+ self-explication group, with a mean difference of 1.06 and p
value of 0.002. These results indicate that there is a significant
difference between the two experimental groups, but no
significant difference between Exp1 and Cont or between Cont
and Exp2. In summary, for the PRE averages the group that
differs from the other two is Exp2, but for the POST averages
the group that differs is the Exp1 group.

7. DISCUSSION

7.1 Interesting Insights
The results suggest that the use of instructional material
designed under the format of the self-explanation effect of
cognitive load theory benefited student learning in the topics of
arrays and strings. The results also suggest that the combination
of two or more effects of the cognitive load theory, such as the
worked example and self-explanation, can also produce
positive results in terms of learning, as shown in Tables 1 and
2, as well as in the PRE and POST histograms of the distribution
of the scores of the experimental groups. Furthermore, the
results of the Tukey post hoc test show that the exp1 group has
a greater difference in terms of POST average over the other
two groups, and the exp2 group in PRE average differed
negatively even more than the other two groups, reducing that
difference in the average POST as shown in the results of Table
4, showing a significant increase in average from PRE to POST.

In accord with our results and based on international studies
related to the application of the self-explanation effect (Price et
al., 2020; Vihavainen et al., 2015; Yen & Wang, 2017) and the
worked-example effect (Beege et al., 2021; Sands, 2019; Zhi et
al., 2019) in programming education and various other fields of
study, most of these studies have reported positive findings
regarding their application. These empirical results demonstrate
the effectiveness of the cognitive load theory (CLT) effects in
terms of instructional design and implementation. Therefore,
we argue that the increase in average grades observed in the
experimental groups can be attributed to the use of instructional
materials based on CLT principles.

7.2 Limitations of the Study
In the context of distance education resulting from the COVID-
19 pandemic, due to the lack of control over the application of
the experimental treatment, participants may have used other
sources or study tools in addition to the provided instructional
material.

Furthermore, a component of the self-explanation effect is
the use of prompts during problem explanation, which was not
possible to implement in this study. It is possible that this
circumstance can be partially overcome with the use of
multiple-choice questions, as considered in (Vihavainen et al.,
2015), but we believe that this limits the spontaneity and
experience that a face-to-face instructor can apply to the task
and to evaluation of the learner’s questions and explanations.
Instead, textual or audio explanations were provided
asynchronously.

Also, although care was taken to check that the students’
responses were not copied, some copied responses were
eliminated. As a control measure, it was emphasized to the
participants that the benefit of the exercise is more in the
process and mental effort than in the correctness of the
responses, since the automatic feedback covered that aspect.

Finally, the results cannot be generalized due to the quasi-
experimental design of the study (that is, groups were formed
using the prearranged university cohorts), but we believe that,
in this sense, they have value as a field study, given its
application in a real programming study context, and it shows
signs of a positive effect on the learning of basic data structures.

https://doi.org/10.62273/GMIV1698

Journal of Information Systems Education, 35(3), 303-312, Summer 2024
https://doi.org/10.62273/GMIV1698

310

8. CONCLUSIONS

The results obtained from the t test for the PRE and POST
scores for both experimental groups yield a p value of 0.000,
indicating a statistically significant difference between both
scores for both groups. This indicates a positive effect
translated into a learning gain that it is shown in the average
grade after the application of the study. The increase in the
average grade for experimental group 1 (self-explanation) was
1.7 points and for experimental group 2 (self-explanation +
solved example videos) was 2.4 points.

There are indications that the use of instructional materials
that employ the self-explanation effect as a teaching guide
improves the learning of basic programming skills. The gain in
terms of learning (reflected in the average grades) yielded better
results compared to traditional instructional materials.
Furthermore, combining the self-explanation effect with the
worked example or problem completion effect also improves
learning. However, although the exp2 group obtained a greater
difference in increase in the average PRE at POST than the exp1
group, we cannot affirm that the exp2 group was better since
the PRE averages of the experimental groups differed
significantly. We argue that students can derive benefits from
self-explanation exercises through the reinforcement of existing
schemas acquired during previous stages of learning the
programming language.

The use of self-explanation in instructional materials can
provide “variability in practice” (Sweller et al., 2019), by
stimulating the contrast and comparison of examples, especially
when there are limited solved examples available in the
instructional materials provided by teachers, as may be the case
for instructors in Mexico and Latin America.

Finally, due to the COVID-19 pandemic, in a distance
education context for all groups, the implementation of the
experimental treatment was carried out in a remote and
asynchronous mode, which limited the control over the
treatment. Therefore, we argue that the application of the
experimental treatment in face-to-face mode with rigorous
control in the treatment, including the use of real-time prompts
during the exercises, can benefit students, reflecting this benefit
in better learning.

9. REFERENCES

Anfurrutia, F. I., Álvarez, A., Larrañaga, M., & López-Gil, J.

M. (2017). Visual Programming Environments for Object-
Oriented Programming: Acceptance and Effects on Student
Motivation. IEEE Revista Iberoamericana de Tecnologías
del Aprendizaje, 12(3), 124-131.

Andersen, S. A. W., Mikkelsen, P. T., Konge, L., Cayé-
Thomasen, P., & Sørensen, M. S. (2016). The Effect of
Implementing Cognitive Load Theory-Based Design
Principles in Virtual Reality Simulation Training of
Surgical Skills: A Randomized Controlled Trial. Advances
in Simulation, 1(20), 1-8.

Atkinson, R. C., & Shiffrin, R. M. (1968). Human Memory: A
Proposed System and Its Control Processes. Psychology of
Learning and Motivation (vol. 2, pp. 89-195). Academic
Press.

Aureliano, V. C. O., Tedesco, P. C. De A.R., & Caspersen, M.
E. (2016, June). Learning Programming Through Stepwise
Self-Explanations. 2016 11th Iberian Conference on

Information Systems and Technologies (CISTI) (pp. 1-6).
IEEE.

Becker, B. A., & Quille, K. (2019, February). 50 Years of CS1
at SIGCSE: A Review of the Evolution of Introductory
Programming Education Research. Proceedings of the 50th
ACM Technical Symposium on Computer Science
Education (pp. 338-344).

Beege, M., Schneider, S., Nebel, S., Zimm, J., Windisch, S., &
Rey, G. D. (2021). Learning Programming From Erroneous
Worked-Examples. Which Type of Error Is Beneficial for
Learning? Learning and Instruction, 75, 101497.

Beltrán, J., Sánchez, H., & Rico, M. (2015). Análisis
Cuantitativo y Cualitativo del Aprendizaje de
Programación I en la Universidad Central del Ecuador.
Revista Tecnológica - ESPOL, 28(5), 194-210.

Bennedsen, J., & Caspersen, M. E. (2019). Failure Rates in
Introductory Programming: 12 Years Later. ACM Inroads,
10(2), 30-36.

Berssanette, J. H., & De Francisco, A. C. (2022). Cognitive
Load Theory in the Context of Teaching and Learning
Computer Programming: A Systematic Literature Review.
IEEE Transactions on Education, 65(3), 440-449.

Bisra, K., Liu, Q., Nesbit, J. C., Salimi, F., & Winne, P. H.
(2018). Inducing Self-Explanation: A Meta-Analysis.
Educational Psychology Review, 30, 703-725.

Carbon, C. C., & Albrecht, S. (2012). Bartlett’s Schema
Theory: The Unreplicated “Portrait D’homme” Series from
1932. Quarterly Journal of Experimental Psychology,
65(11), 2258-2270.

Cerón Garnica, C. C., Sierra, E. A., Márquez, A. C., &
Martínez, B. B. (2018). Experiencias de las E-actividades
de Evaluación de las Competencias del Nivel Básico del
Área de Programación: Experiences of the E-Activities for
Evaluation of the Competences of the Basic Level in the
Area of Programming. Tecnología Educativa Revista
CONAIC, 5(3), 65-74.

Geary, D. C. (2012). Evolutionary Educational Psychology. In
K. R. Harris, S. Graham, T. Urdan, C. B. McCormick, G.
M. Sinatra, & J. Sweller (Eds.), APA Educational
Psychology Handbook (vol. 1). Theories, Constructs, and
Critical Issues (pp. 597-621). American Psychological
Association.

Gurer, M. D., & Tokumaci, S. (2020). Factors Affecting
Engineering Students’ Achievement in Computer
Programming. International Journal of Computer Science
Education in Schools, 3(4), 1-12.

Insuasti, J. (2016). Problemas de Enseñanza y Aprendizaje de
los Fundamentos de Programación. Revista de Educación y
Desarrollo Social, 10(2), 234-246.

Juárez Viveros, J., López Gerardo, M., & Villareal González,
Y. (2016). Estrategias Para Reducir el Índice de
Reprobación en Fundamentos de Programación de
Sistemas Computacionales del I.T. Mexicali. Revista de
Gestión Empresarial Y Sustentabilidad, 2(1), 25-41.

Justo-López, Araceli C., Aguilar-Salinas, Wendolyn E., De las
Fuentes-Lara, Maximiliano, & Astorga-Vargas, María A.
(2021). Uso de Videos Educativos en la Materia de
Programación Durante la Etapa Básica de Ingeniería.
Formación Universitaria, 14(6), 51-64.

Kalyuga, S. (2007). Expertise Reversal Effect and Its
Implications for Learner-Tailored Instruction. Educational
Psychology Review, 19(4), 509-539.

https://doi.org/10.62273/GMIV1698

Journal of Information Systems Education, 35(3), 303-312, Summer 2024
https://doi.org/10.62273/GMIV1698

311

Kim, J., Agarwal, S., Marotta, K., Li, S., Leo, J., & Chau, D. H.
(2019). Mixed Reality for Learning Programming.
Proceedings of the 18th ACM International Conference on
Interaction Design and Children (2, pp. 574-579).

Luxton-Reilly, A., Simon, Albluwi, I., Becker, B. A.,
Giannakos, M., Kumar, A. N., Ott, L., Paterson, J., Scott,
M. J., Sheard, J., & Szabo, C. (2018). Introductory
Programming: A Systematic Literature Review.
Proceedings Companion of the 23rd Annual ACM
Conference on Innovation and Technology in Computer
Science Education (pp. 55-106).

Moreno, R. (2006). When Worked Examples Don’t Work: Is
Cognitive Load Theory at an Impasse? Learning and
Instruction, 16(2), 170-181.

Nakagawa, E. Y., Antonino, P. O., Schnicke, F., Kuhn, T., &
Liggesmeyer, P. (2021). Continuous Systems and Software
Engineering for Industry 4.0: A Disruptive View.
Information and Software Technology, 135, 106562.

Oberhauser, R., & Lecon, C. (2017). Virtual Reality Flythrough
of Program Code Structures. Proceedings of the Virtual
Reality International Conference-Laval Virtual 2017 (pp.
1-4).

Price, T. W., Williams, J. J., Solyst, J., & Marwan, S. (2020).
Engaging Students With Instructor Solutions in Online
Programming Homework. Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems (pp.
1-7).

Rahman, M. M., Watanobe, Y., & Nakamura, K. (2020).
Evaluation of Source Codes Using Bidirectional LSTM
Neural Network. The 3rd IEEE International Conference
on Knowledge Innovation and Invention (ICKII),
Kaohsiung, Taiwan (pp. 140-143).

Rittle-Johnson, B., & Loehr, A. M. (2017). Eliciting
Explanations: Constraints on When Self-Explanation Aids
Learning. Psychonomic Bulletin and Review, 24(5), 1501-
1510.

Sands, P. (2019). Addressing Cognitive Load in the Computer
Science Classroom. ACM Inroads, 10(1), 44-51.

Sharma, R., & Shen, H. (2018). The Interplay of Factors
Affecting Learning of Introductory Programming: A
Comparative Study of an Australian and an Indian
University. The 13th International Conference on
Computer Science and Education (ICCSE) (pp. 1-6).

Silva-Maceda, G., David Arjona-Villicana, P., & Edgar
Castillo-Barrera, F. (2016). More Time or Better Tools? A
Large-Scale Retrospective Comparison of Pedagogical
Approaches to Teach Programming. IEEE Transactions on
Education, 59(4), 274-281.

Simon, Luxton-Reilly, A., Ajanovski, V. V., Fouh, E.,
Gonsalvez, C., Leinonen, J., Parkinson, J., Poole, M., &
Thota, N. (2019). Pass Rates in Introductory Programming
and in Other STEM Disciplines. Proceedings of the
Working Group Reports on Innovation and Technology in
Computer Science Education (pp. 53-71).

Sweller, J. (2016). Cognitive Load Theory and Computer
Science Education. Proceedings of the 47th ACM Technical
Symposium on Computing Science Education (p. 1).

Sweller, J., van Merriënboer, J. J. G., & Paas, F. (1998).
Cognitive Architecture and Instructional Design.
Educational Psychology Review, 10(3), 251-295.

Sweller, J., van Merriënboer, J. J. G., & Paas, F. (2019).
Cognitive Architecture and Instructional Design: 20 Years
Later. Educational Psychology Review, 31(2), 261-292.

Tejera-Martínez, F., Aguilera, D., & Vílchez-González, J. M.
(2020). Programming Languages and Development of Key
Competences. Systematic Review. Revista Electrónica de
Investigación Educativa, 22, 1-12.

Vieira, C., Magana, A. J., Falk, M. L., & García, R. E. (2017).
Writing In-Code Comments to Self-Explain in
Computational Science and Engineering Education. ACM
Transactions on Computing Education, 17(4), 1-21.

Vihavainen, A., Miller, C. S., & Settle, A. (2015). Benefits of
Self-Explanation in Introductory Programming.
Proceedings of the 46th ACM Technical Symposium on
Computer Science Education (68, pp. 284-289).

Voichick, F., Gao, G., Ichinco, M., & Kelleher, C. (2019).
Towards Validation of a Model of API Learning. 2019
IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC) (pp. 267-269). Memphis, TN, USA.

Watson, C., & Li, F. W. B. (2014). Failure Rates in Introductory
Programming Revisited. Proceedings of the 2014
Conference on Innovation & Technology in Computer
Science Education (pp. 39-44).

Yen, C. W., & Wang, T. I. (2017). Using Self-Explanation and
Ontology for Providing Proper Feedbacks in a
Programming Environment. The 6th IIAI International
Congress on Advanced Applied Informatics (IIAI-AAI)
(pp. 585-590).

Zhi, R., Price, T. W., Marwan, S., Milliken, A., Barnes, T., &
Chi, M. (2019). Exploring the Impact of Worked Examples
in a Novice Programming Environment. Proceedings of the
50th ACM Technical Symposium on Computer Science
Education (pp. 98-104).

https://doi.org/10.62273/GMIV1698

Journal of Information Systems Education, 35(3), 303-312, Summer 2024
https://doi.org/10.62273/GMIV1698

312

AUTHOR BIOGRAPHIES

Carlos Sandoval-Medina is a doctoral candidate in the

Information Systems Department at
the Autonomous University of
Aguascalientes, México. He is
currently a full-time Ph.D. student, a
scholarship recipient of the
CONAHCYT postgraduate program.
His Ph.D. thesis involves improving
learning in introductory
programming courses by applying

the effects of cognitive load theory through a proposed roadmap
model addressing student motivational issues.

Carlos Argelio Arévalo-Mercado received the Ph.D. degree

in Exact Sciences and Information
Systems from the Autonomous
University of Aguascalientes
(UAA), Mexico in 2010. He was the
Head of the Information Systems
Department at UAA, from 2014 to
2020 and is currently a full-time
Research Professor. His research
interests include the design and

development of learning technologies and teaching methods
based on learning theories from cognitive sciences, particularly
in introductory programming. He is a frequent collaborator with
European universities on multinational projects with Erasmus+
funding. He is a member of the National System of Researchers
(SNII) of CONAHCYT, Mexico.

Estela Lizbeth Muñoz-Andrade obtained her Ph.D. in Exact

Sciences and Information Systems
from the Autonomous University of
Aguascalientes (UAA) in 2010. She
is currently a full-time Research
Professor at the Department of
Electronic Systems at UAA. She has
been teaching for 25 years in the
areas of programming fundamentals
and data structures. Her area of

research is the development of educational applications for
learning programming. She is a member of the “EGEL+ D-I
COMPU” of the Academic Committee at CENEVAL, México,
where she was the coordinator of the Programming Languages
Academy from 2004 to 2017. She was the Head of the
Electronic Systems Department from 2011 to 2017. Currently,
she is Secretary of Undergraduate Teaching of the Basic
Sciences Center of UAA.

Jaime Muñoz-Arteaga is a full-time professor at UAA
(Universidad Autónoma de
Aguascalientes) in Aguascalientes,
México. He holds a Ph.D. in
Computer Science from the
University of Toulouse, France. He
oversees the Computer Science area
of the Ph.D. in Applied Sciences and
Technology. He has experience as
leader of several research projects

related to the digital divide, human-centered design for
interactive systems, and inclusive education. His research
topics are in human-computer interaction, e-learning, and
artificial intelligence. He has published several books, two on
software engineering, two on human-computer interaction, and
two on learning object technology.

https://doi.org/10.62273/GMIV1698

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2024 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN: 2574-3872 (Online) 1055-3096 (Print)

	JISE 2024 35(3) 303-312 First Page.pdf
	f-2307082 Final-MAS-LAM-XPZ
	JISE 2024 35(3) Copyright ISSN

