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ABSTRACT 

 
Learning basic programming concepts in computer science-related fields poses a challenge for students, to the extent that it becomes 
an academic-social problem, resulting in high failure and dropout rates. Proposed solutions to the problem can be found in the 
literature, such as the development of new programming languages and environments, the inclusion of virtual and augmented 
reality, gamification, automatic grading tools, and intelligent tutoring systems, among others. However, most of these solutions do 
not explicitly describe the application of some learning theory, instead, they focus on new technologies. Cognitive Load Theory 
(CLT) is an instructional design theory that aligns the design of instructional materials with human cognitive architecture using 17 
design guidelines to optimize learning. The goal of this research is to design, develop, and test instructional materials to support 
the teaching and learning of basic programming, measuring their effectiveness compared to traditional materials, based on the self-
explanation effect of CLT. To compare the instructional materials, a quasi-experimental design with homogeneous groups was 
used, involving students from the Autonomous University of Aguascalientes. The results indicate a positive impact of the use of 
CLT-based instructional materials, either through the application of a single effect or the combination of two effects such as worked 
example and self-explanation. 
 
Keywords: Cognitive load theory, Self-explanation, Introductory programming, Computing education, Computing skills  
 
 

1. INTRODUCTION 
 
The software industry plays a crucial role in business processes 
and is experiencing a growth trend. One of its core processes is 
programming, which implies an increasing demand for 
programmers. According to Voichick et al. (2019), software 
developers are reported to be one of the professions with the 
highest growth projection for the year 2030, with an increase of 
over 30%. 

Skills acquired in programming are not only important in 
education but also in the advancement of technology and 

communication (Rahman et al., 2020), industry 4.0, as well as 
in data science and artificial intelligence (Nakagawa et al., 
2021). However, learning programming has been widely 
documented as highly challenging for beginners in computer 
science-related fields, often resulting in failure rates of around 
34% (Bennedsen & Caspersen, 2019; Simon et al., 2019; 
Watson & Li, 2014). 

The application of Cognitive Load Theory (CLT) in the 
teaching and learning of programming mostly reports positive 
empirical results (Aureliano et al., 2016; Beege et al., 2021; 
Price et al., 2020; Sands, 2019; Vieira et al., 2017; Yen & 
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Wang, 2017). As a result, CLT is one of the most cited 
instructional design theories in many learning areas, with 
citations ranging from 10,000 to 20,000 occurrences (Sweller, 
2016). 

In this paper, the design, development, and application of 
instructional materials are described. Materials were developed 
for students at the Autonomous University of Aguascalientes, 
as support for teaching and learning basic concepts of the C++ 
programming language in the structured paradigm. The 
instructional materials were designed and developed based on 
the self-explanation effect of CLT. A quasi-experimental pre-
post study compared the effectiveness of the instructional 
materials based on the self-explanation effect compared to 
traditional instructional material in improving learning 
outcomes. 
 

2. PROBLEM OUTLINE 
 
Learning programming is a challenging task for both students 
and teachers due to its complex nature. Concepts with a high 
degree of complexity impose a greater cognitive load on 
students. However, the brain has a limited capacity for 
information processing (Sweller et al., 2019), requiring 
significant effort, dedication, high levels of motivation, time, 
and ample practice and trial-and-error (Silva-Maceda et al., 
2016). Regarding the factors that affect programming learning, 
on the teaching side, there are factors such as the complexity of 
the topics, instructional materials, teaching methods, and the 
learning environment (Insuasti, 2016; Silva-Maceda et al., 
2016). On the learning side, student-related factors include 
gender, mathematical knowledge (Silva-Maceda et al., 2016), 
complex cognitive skills (Insuasti, 2016), prior knowledge 
(Anfurrutia et al., 2017), attitude, perception of self-efficacy, 
discipline, self-forecasting of success or failure, and motivation 
(Gurer & Tokumaci, 2020; Sharma & Shen, 2018). 

We find numerous investigations in the search for 
alternatives to help in the teaching-learning process, which date 
back practically from the creation or beginning of programming 
as such, to the present day, such as the development of new 
programming languages and environments, the inclusion of 
virtual and augmented reality, gamification, automatic grading 
tools, and intelligent tutoring systems, among others. However, 
most of these alternatives do not explicitly describe the 
application of some learning theory (Becker & Quille, 2019; 
Kim et al., 2019; Luxton-Reilly et al., 2018; Oberhauser & 
Lecon, 2017), and the teaching-learning process of 
programming still represents a challenge for both teachers and 
students. 

This challenge can be confirmed by the high failure and 
dropout rates of introductory programming courses, which are 
around 34% (Bennedsen & Caspersen, 2019; Simon et al., 
2019; Watson & Li, 2014). Although the global trend shows a 
slight decrease in failure rates, this does not apply to Latin 
America. Studies such as Beltrán et al. (2015) from the Central 
University of Ecuador report a failure rate of 47%, Juárez 
Viveros et al. (2016) from the Technological Institute of 
Mexicali report a 49.7% failure rate, Justo-López et al. (2021) 
from the Autonomous University of Baja California report a 
38.4% failure rate, Cerón Garnica et al. (2021) from the 
Benemérita Autonomous University of Puebla report a 46% 
failure rate, and the Autonomous University of Aguascalientes, 

through its statistics department, presents varying percentages 
with most values above 30%. 

The problem of learning programming languages in the 
teaching-learning process has become an academic-social 
problem, not only directly affecting students but the 
development of fundamental and instrumental competencies in 
the knowledge society (Tejera-Martínez et al., 2020). 

 
3. BASIC CONCEPTS 

 
3.1 Cognitive Load Theory (CLT) 
The Cognitive Load Theory (Sweller et al., 1998, 2019) is an 
instructional theory based on evolutionary biology (Geary, 
2012), human cognitive architecture (Atkinson & Shiffrin, 
1968), and Bartlett’s schema theory (Carbon & Albrecht, 2012). 
In the human brain, information processing occurs through two 
subsystems: working memory, which is highly limited; and 
long-term memory, which is unlimited.  

When information is processed in working memory, it is 
transferred to long-term memory, where it is stored and 
organized into collections called schemas. These schemas can 
last a lifetime and can eventually become automated, requiring 
minimal cognitive resources (through practice). According to 
the CLT, learning involves the construction of schemas 
(Berssanette & De Francisco, 2022; Sweller et al., 2019). 
Therefore, instructional design should aim to reduce the 
cognitive load imposed on working memory (Sweller, 2016). 

The term cognitive load refers to the number of resources 
that working memory requires for a learning process 
(Berssanette & De Francisco, 2022). CLT identifies three types 
of loads that are involved in learning processes. Intrinsic 
cognitive load is associated with the complexity of the 
information or knowledge to be learned and the student’s prior 
knowledge. Extraneous cognitive load is related to how the 
information is presented to the student, influenced by 
instructional methods, and it can be modified. Finally, germane 
cognitive load is the load necessary for learning, which refers 
to the resources allocated by working memory during the 
learning process (Sweller et al., 2019). 

From research on CLT, 17 “effects” have been identified 
that predict learning outcomes under specific instructional 
conditions that modify extraneous cognitive load and promote 
germane cognitive load (Sweller et al., 2019). These effects 
have mostly shown positive learning results. Among them, the 
most cited effects are the worked-example effect and the 
completion problem effect (Andersen et al., 2016; Beege et al., 
2021; Sands, 2019; Zhi et al., 2019). However, limitations have 
also been reported regarding their application and effectiveness, 
where their efficiency may decrease (Moreno, 2006; Rittle-
Johnson & Loehr, 2017) or even be counterproductive 
(Kalyuga, 2007). 

The most studied effect in CLT and commonly used 
instructional strategy for studying or review purposes is worked 
examples (Sweller et al., 2019). However, learning from 
worked examples has limitations when the learner has not 
acquired sufficient knowledge, and they tend to study them 
superficially. However, when learners are asked for verbal 
explanations of the problem (Kalyuga, 2007; Rittle-Johnson & 
Loehr, 2017), it promotes the search for and reinforcement of 
schemas in long-term memory. 

 

https://doi.org/10.62273/GMIV1698


Journal of Information Systems Education, 35(3), 303-312, Summer 2024 
https://doi.org/10.62273/GMIV1698  

305 

3.2 The Self-Explanation Effect 
The self-explanation effect is a mental process in which the 
student, while studying a worked example, establishes the 
relationship(s) between it and the previously acquired 
knowledge through self-explanation. This process promotes 
relevant cognitive load by creating connections with existing 
prior knowledge in long-term memory and generating cognitive 
schemas. 

For this reason, the application of the self-explanation 
effect is recommended for students with prior knowledge, as 
students without adequate prior knowledge may generate 
incorrect explanations and develop erroneous cognitive 
concepts (Sweller et al., 2019). Self-explanation can be 
described as an active learning construction activity that 
engages students with the content, allowing them to monitor 
their level of understanding (Vihavainen et al., 2015). At times, 
it may be necessary for the instructor to provide an explanation 
when the student is unable to generate a correct or complete 
explanation (Bisra et al., 2018). 

This research aims to evaluate the effectiveness of CLT’s 
self-explanation and worked example effects, through the 
design of instructional materials to support the teaching of basic 
C++ programming. Using quasi-experimental methods, the 
study compares these CLT-based instructional materials with 
the use of traditional classroom examples at the Autonomous 
University of Aguascalientes. 
 

4. RELATED WORK 
 
The literature reports benefits of utilizing the self-explanation 
effect that are applicable to most educational domains (Bisra et 
al., 2018). However, it also highlights the limitations that need 
to be addressed to optimize its effectiveness (Rittle-Johnson & 
Loehr, 2017). 

In the field of programming, Vihavainen et al. (2015) 
employed the inclusion of two types of self-explanation 
questions, with and without help options, through an online 
programming exercise book and self-explanation tasks. They 
reported positive results reflected in the grades of the students. 

Yen and Wang (2017) developed a programming 
environment based on self-explanation that provides feedback 
using an ontology created by expert programmers for C++ 
programming, with a focus on correcting programming syntax. 
They reported that the tool successfully provides appropriate 
learning materials and extended examples for programmers to 
correct their potential misconceptions, thereby helping them 
develop solid concepts. 

Price et al. (2020) present a prototype called “Instructor’s 
Solution” as support for online programming tasks. The 
prototype is based on comparison, self-explanation, and 
incomplete explanations (explain prompts). Their results 
indicate that students can learn more with explain prompts, but 
it is also reflected in increased time investment, which can lead 
to a loss of interest for many students. 
 

5. METHOD 
 
In this research, instructional materials were designed based on 
self-explanation problems, based on the self-explanation effect 
in CLT. They were developed to support the teaching and 
learning of basic concepts in the C++ programming language, 
and their effectiveness was evaluated in terms of learning 

objectives compared to traditional instructional materials. 
Traditional instructional materials consist of exercises or notes 
used in a setting where the teacher explains topics and solve 
examples step-by-step to the group. A second set of materials 
was created by combining these self-explanation problems with 
videos of worked examples following the principles of CLT. 

This research was done in two phases. The first involved 
the design of instructional materials, which included the 
creation of problems and videos based on the CLT effects. The 
second consisted of the application of the materials and the 
evaluation of its effectiveness in learning through a quasi-
experimental design. 
 
5.1 Design of Instructional Material 
Here are some examples of traditional problems commonly 
used in class on the topics of arrays and strings, in which the 
teacher demonstrates the solution: 

• “Create a program to fill an array with n numbers 
(defined by the user) and order the contents of the array 
from smallest to largest.” 

• “Create a program that, given a string of characters, 
inverts the content of said string, saves it in an 
additional variable and outputs both strings (Note: 
without using the strcmp, strcpy, or strlen functions).” 

• “Create a program that generates n (data entered by the 
user) next numbers of the Fibonacci series. Remember 
that the series begins with 0 and 1 where the next 
number is the sum of the previous 2.” 

 
Similar problems were designed in topics related to arrays 

and strings, but these problems were transformed into a self-
explanation format. In this format, a “real-life situation” is 
presented where the student needs to identify the error(s) in 
code (like the ones seen in class) “developed by a classmate.” 
The student then needs to explain to their “classmate” the 
reasons for the errors and help them correct the program to 
produce the correct output. These exercises consist of three 
parts: problem description, program output, and code with 
introduced errors. An example of such a problem is shown in 
Figure 1. The design structure of these problems is described 
below: 

1) The problem description: It describes what the student 
needs to do to solve the exercise. 

2) The program output: It shows an example of the output 
generated by the program for the given exercise. 

3) Source code: The source code of the program for the 
exercise is included, which the student must analyze to 
identify the errors. 

 
In addition to the problems in self-explanation format, 

videos of solved examples were created, like the presented 
problems, to combine the self-explanation effect with the 
worked example effect in an audiovisual format and apply it to 
a second experimental group. The development of instructional 
materials was carried out following the principles of CLT aimed 
at reducing cognitive load through the five phases described in 
Figure 2. 
 
5.2 Experimental Design 
A quasi-experimental PRE-POST study was conducted with 
three groups: Experimental Group 1 (Exp1) n = 50, 
Experimental Group 2 (Exp2) n = 49, and Control Group (Cont) 

https://doi.org/10.62273/GMIV1698


Journal of Information Systems Education, 35(3), 303-312, Summer 2024 
https://doi.org/10.62273/GMIV1698  

306 

n = 45, with the same instructor, consisting of first-year students 
majoring in Computer Systems Engineering, in a distance 
education context for all groups (due to the COVID-19 
pandemic). In this study, the treatment for Exp1 involved the 
application of self-explanation problems, for Exp2 it included 
self-explanation problems + videos of solved examples, and the 
Control group received exercises covered in class. The topics 
covered included array sorting, nested loops, matrix addition, 
string length, string reversal, and string comparison. 

 

 
Figure 1. Problem in Self-Explanation Format 

 

 
Figure 2. Proposed Phases for the Development of 

Instructional Material 

These problems were implemented on an educational 
platform based on Moodle, using open-ended essay-type 
questions. The exercises given in the experimental treatment 

were assigned as tasks to be graded, to encourage student 
participation. They were presented in a format where 
participants were given a context simulating a real-life situation 
(“Your teammate has written the assigned sorting program but 
cannot find the error”), followed by the program output with 
errors and the corresponding source code to analyze. 
Participants were then asked to explain in their own words, 
either in written text or audio format, the reason for the error 
and provide a solution while explaining their proposed solution. 

An automatic feedback system was designed, which 
provided students with an explanation from the instructor about 
errors in the exercises, along with suggested solutions and 
explanations for them. This feedback was presented to students 
once they completed the exercises on the platform, allowing for 
immediate feedback. The Cont studied in a traditional manner, 
reviewing their exercises in class. 

After the treatment, learning outcomes were evaluated 
using standardized and calibrated exams administered by the 
programming department of the Electrical Systems Department 
of the Autonomous University of Aguascalientes. These exams 
were given to all groups and focused only on the topics of 
arrays, vectors, and strings used in the design of the 
instructional material. The exams were conducted during the 
second (PRE) and third (POST) grading periods. To make the 
PRE and POST results comparable, isomorphic problems were 
used. For example, typical PRE exam problems were: 

a) Briefly explain what the following code does: 
#include <stdio.h> 
int main(){ 

int cal=0; 
do{ 

printf(“Type the school grade: “); 
scanf(“%d”, cal); 

}while (cal<0||cal>10); 
} 

b) In the city of Aguascalientes, we have 5 hospitals. As we 
know, a hospital has nurses, doctors, and interns. A staff 
of 30 people is being assigned to each hospital. Run a 
simulation using random numbers, where 1 identifies 
nurses, 2 doctors, 3 interns. You are asked to write a 
program that uses functions that get: 

1) How many doctors belong to each hospital. 
2) The number of doctors to be hired by the 5 

hospitals. 
You are asked to make use of nested loops. 

 
The equivalent isomorphic POST problems were: 
a) Briefly explain what the following code does: 
#include <stdio.h> 
int main(){ 

int x, month, days=0, aa=2020; 
printf(“What month do you want?”); 
scanf(%d, &month); 
if(month==1||month==3||month==5||month==7 
||month==8||month==10||month==12){ 
days=31; 
} 
for(x=1, x<=days; x++){ 

printf(“%d\t”, x); 
if(x%7==0){ 

printf(“\n”); 
} 
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} 
} 

b) There are 10 teams in the Mexican Pacific Baseball 
League, each team has a team of 30 players. Each team 
in the league prepares a list where the following data 
appears for each player: weight and age (which on this 
occasion are not captured by keyboard, they will be 
generated randomly) 

Weight: range from 45 to 80 
Age: range from 18 to 40 
You are asked to write a program that does the following 
using functions: 

1) Average weight of the players 
2) How many players per team are between 20 and 

30 years old? 
It is requested to use nested loops. 

 
The provided isomorphic problems used in PRE and POST 

are comparable, given that they have a similar structure (use of 
loops and use of functions) with only slight variations of 
context. 
 

6. RESULTS 
 
For data analysis, the dependent variable was the grades 
obtained in the second (PRE) and third (POST) partial exams, 
specifically for the items related to the topics of array sorting, 
nested loops, matrix summation, string length, string reversal, 
and string comparison from the developed instructional 
materials. The independent variable depended on the 
instructional material used, with the experimental treatment 
groups (self-explanation problems and worked example videos) 
and the traditional instructional material group (practice 
example problems). Descriptive statistics of the participating 
groups are shown in Table 1. For Exp1 (only self-explanation 
problems), the pre-treatment (PRE) and post-treatment (POST) 
grades had an average of 7.76 and 9.46, respectively, indicating 
an increase of 1.7 points in the average grades. In the case of 
Exp2 (self-explanation problems + worked example videos), 
the average grades were 5.97 PRE and 8.40 POST, reflecting 
an increase of 2.4 points in the average grades. The results for 
the control group (Cont) show an average of 8.10 for the PRE 
grades and 8.73 for the POST grades, indicating a difference of 
0.6 points higher in the POST grades. 
 

Group Grades N Min. Max. Mean Typ. 
Dev. 

EXP1 PRE 50 3.60 10.00 7.76 1.92 
POST 50 8.00 10.00 9.46 0.74 

EXP2 PRE 49 2.60 10.00 5.97 2.16 
POST 49 2.60 10.00 8.40 1.76 

Cont PRE 45 0.80 10.00 8.10 2.55 
POST 45 3.80 10.00 8.73 1.84 

Table 1. Descriptive Statistics Groups Participating in 
the Study 

 
The frequency distribution of Exp1 is illustrated in Figure 

3, which shows that most observations in the PRE phase are in 
the range of 4 to 8. In contrast, the observations in the POST 
phase are concentrated in the range of 8 to 10. This indicates 

that there was a shift towards higher grades after the treatment, 
with a greater number of students achieving higher scores.  
 

 
Figure 3. Histograms of PRE and POST Observations 

of the Experimental Group 1 

 
For Exp2, the observations in the PRE phase indicate that 

most scores are in the range of 2 to 6. However, in the POST 
phase, most scores are in the range of 7 to 10, as shown in 
Figure 4.  

For the Cont group, most observations in the PRE phase are 
in the range of 9 to 10. The same pattern is observed in the 
POST phase, where most scores are still in the range of 9 to 10. 
Additionally, the incidence of observations with low values is 
very similar in both the PRE and POST phases, as shown in 
Figure 5. 

Table 2 presents the results of the t-test for the PRE and 
POST scores of each group. For both the Exp1 (self-
explanation) and Exp2 (self-explanation + worked example 
videos) groups, the p-value is 0.000, indicating a statistically 
significant difference between the PRE and POST scores. 
Similarly, for the Cont, the t-test yields a p-value of 0.017, 
indicating a statistically significant difference between the PRE 
and POST scores. 

A one-way ANOVA test was conducted for the three 
groups, both for the PRE and POST scores. The analysis reveals 
that the groups are different in terms of the average scores, both 
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in the PRE and POST assessments, with a p-value of 0.000 for 
the PRE scores and a p-value of 0.002 for the POST scores, as 
shown in Table 3.  

 

 
Figure 4. Histograms of PRE and POST Observations 

of the Experimental Group 2 

 

 
Figure 5. Histograms of PRE and POST Observations 

of the Control Group 

 
 

 
 Related differences t gl Sig. 

(Bilateral) Mean Typ. Dev. Typ. Error 95% Confidence interval 
Lower Upper 

Exp1POST-Exp1PRE 1.7 2.07 0.29 1.11 2.29 5.80 50 0.000 
Exp2POST-Exp2PRE 2.4 2.53 0.36 1.70 3.15 6.72 49 0.000 
ContPOST-ContPRE 0.6 1.49 0.22 0.10 0.99 2.49 45 0.017 

Table 2. T-Test of Related Samples PRE-POST Participating Groups 

 
Grade  Sum of Squares gl Square Mean F Sig. 
PRE Inter-groups 126.042 2 63.021 12.849 0.000 

Intra-groups 696.486 142 4.905 
POST Inter-groups 29.051 2 14.525 6.296 0.002 

Intra-groups 327.603 142 2.307 

Table 3. One-Way ANOVA for PRE and POST Scores 
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Dependent 
Variable 

(I) 
Group 

(J) 
Group 

Difference of 
Means (I-J) 

Typical 
Error 

Sig Confidence Interval 95% 
Lower Limit Upper Limit 

Grade PRE Exp1 Cont -0.34 0.45 0.734 -1.41 0.73 
Exp2 1.79* 0.46 0.000 0.73 2.84 

Exp2 Exp1 -1.79* 0.46 0.000 -2.84 -0.73 
Cont -2.13* 0.45 0.000 -3.20 -1.05 

Cont Exp1 0.34 0.45 0.734 -0.73 1.41 
Exp2 2.13* 0.45 0.000 1.05 3.20 

Grade POST Exp1 Cont 0.72 0.31 0.055 -0.01 1.46 
Exp2 1.06* 0.31 0.002 0.34 1.78 

Exp2 Exp1 -1.06* 0.31 0.002 -1.78 -0.34 
Cont -0.34 0.31 0.528 -1.08 0.40 

Cont Exp1 -0.72 0.31 0.055 -1.46 0.01 
Exp2 0.34 0.31 0.528 -0.40 1.08 

*The mean differences are significant at the level 0.05. 

Table 4. Post Hoc Tukey Multiple Comparisons 

 
Based on the ANOVA analysis, a post-hoc analysis using 

the Tukey test was conducted to identify which groups differ in 
terms of the average scores, both in the PRE and POST 
assessments. The results for the PRE scores, presented in Table 
4, reveal that there are no differences between Exp1 and Cont 
with a p-value of 0.734. However, there is a significant 
difference between Exp2 and Cont with a mean difference of 
2.13 and a p value of 0.000. Likewise, there is a significant 
difference between Exp2 and Exp1 with a mean difference of 
1.79 and p value of 0.000. For the POST scores, the results of 
the Tukey post-hoc test reported in Table 4 indicate that there 
are no differences between Exp1 and Cont (p = 0.055), although 
this value is at the significance threshold of 0.05. There are also 
no differences between Cont and Exp2 (p = 0.528). However, 
there is a significant difference between the two experimental 
groups, i.e., the self-explication group and the worked example 
+ self-explication group, with a mean difference of 1.06 and p 
value of 0.002. These results indicate that there is a significant 
difference between the two experimental groups, but no 
significant difference between Exp1 and Cont or between Cont 
and Exp2. In summary, for the PRE averages the group that 
differs from the other two is Exp2, but for the POST averages 
the group that differs is the Exp1 group. 

 
7. DISCUSSION 

 
7.1 Interesting Insights 
The results suggest that the use of instructional material 
designed under the format of the self-explanation effect of 
cognitive load theory benefited student learning in the topics of 
arrays and strings. The results also suggest that the combination 
of two or more effects of the cognitive load theory, such as the 
worked example and self-explanation, can also produce 
positive results in terms of learning, as shown in Tables 1 and 
2, as well as in the PRE and POST histograms of the distribution 
of the scores of the experimental groups. Furthermore, the 
results of the Tukey post hoc test show that the exp1 group has 
a greater difference in terms of POST average over the other 
two groups, and the exp2 group in PRE average differed 
negatively even more than the other two groups, reducing that 
difference in the average POST as shown in the results of Table 
4, showing a significant increase in average from PRE to POST. 

In accord with our results and based on international studies 
related to the application of the self-explanation effect (Price et 
al., 2020; Vihavainen et al., 2015; Yen & Wang, 2017) and the 
worked-example effect (Beege et al., 2021; Sands, 2019; Zhi et 
al., 2019) in programming education and various other fields of 
study, most of these studies have reported positive findings 
regarding their application. These empirical results demonstrate 
the effectiveness of the cognitive load theory (CLT) effects in 
terms of instructional design and implementation. Therefore, 
we argue that the increase in average grades observed in the 
experimental groups can be attributed to the use of instructional 
materials based on CLT principles. 
 
7.2 Limitations of the Study 
In the context of distance education resulting from the COVID-
19 pandemic, due to the lack of control over the application of 
the experimental treatment, participants may have used other 
sources or study tools in addition to the provided instructional 
material.  

Furthermore, a component of the self-explanation effect is 
the use of prompts during problem explanation, which was not 
possible to implement in this study. It is possible that this 
circumstance can be partially overcome with the use of 
multiple-choice questions, as considered in (Vihavainen et al., 
2015), but we believe that this limits the spontaneity and 
experience that a face-to-face instructor can apply to the task 
and to evaluation of the learner’s questions and explanations. 
Instead, textual or audio explanations were provided 
asynchronously. 

Also, although care was taken to check that the students’ 
responses were not copied, some copied responses were 
eliminated. As a control measure, it was emphasized to the 
participants that the benefit of the exercise is more in the 
process and mental effort than in the correctness of the 
responses, since the automatic feedback covered that aspect.  

Finally, the results cannot be generalized due to the quasi-
experimental design of the study (that is, groups were formed 
using the prearranged university cohorts), but we believe that, 
in this sense, they have value as a field study, given its 
application in a real programming study context, and it shows 
signs of a positive effect on the learning of basic data structures. 
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8. CONCLUSIONS 
 
The results obtained from the t test for the PRE and POST 
scores for both experimental groups yield a p value of 0.000, 
indicating a statistically significant difference between both 
scores for both groups. This indicates a positive effect 
translated into a learning gain that it is shown in the average 
grade after the application of the study. The increase in the 
average grade for experimental group 1 (self-explanation) was 
1.7 points and for experimental group 2 (self-explanation + 
solved example videos) was 2.4 points. 

There are indications that the use of instructional materials 
that employ the self-explanation effect as a teaching guide 
improves the learning of basic programming skills. The gain in 
terms of learning (reflected in the average grades) yielded better 
results compared to traditional instructional materials. 
Furthermore, combining the self-explanation effect with the 
worked example or problem completion effect also improves 
learning. However, although the exp2 group obtained a greater 
difference in increase in the average PRE at POST than the exp1 
group, we cannot affirm that the exp2 group was better since 
the PRE averages of the experimental groups differed 
significantly. We argue that students can derive benefits from 
self-explanation exercises through the reinforcement of existing 
schemas acquired during previous stages of learning the 
programming language. 

The use of self-explanation in instructional materials can 
provide “variability in practice” (Sweller et al., 2019), by 
stimulating the contrast and comparison of examples, especially 
when there are limited solved examples available in the 
instructional materials provided by teachers, as may be the case 
for instructors in Mexico and Latin America. 

Finally, due to the COVID-19 pandemic, in a distance 
education context for all groups, the implementation of the 
experimental treatment was carried out in a remote and 
asynchronous mode, which limited the control over the 
treatment. Therefore, we argue that the application of the 
experimental treatment in face-to-face mode with rigorous 
control in the treatment, including the use of real-time prompts 
during the exercises, can benefit students, reflecting this benefit 
in better learning. 
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