

Journal of
Information
Systems
Education

Volume 34

Issue 1
Winter 2023

Teaching Tip
An Example-Based Instructional Method to Develop

Students’ Problem-Solving Efficacy in an Introductory
Programming Course

Pratibha Menon

Recommended Citation: Menon, P. (2023). Teaching Tip: An Example-Based
Instructional Method to Develop Students’ Problem-Solving Efficacy in an
Introductory Programming Course. Journal of Information Systems Education, 34(1),
1-15.

Article Link: https://jise.org/Volume34/n1/JISE2023v34n1pp1-15.html

Received: November 23, 2021
Revised: January 22, 2022
Accepted: May 4, 2022
Published: March 15, 2023

Find archived papers, submission instructions, terms of use, and much more at the JISE website:

https://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

https://jise.org/Volume34/n1/JISE2023v34n1pp1-15.html
https://jise.org/

Journal of Information Systems Education, 34(1), 1-15, Winter 2023

1

Teaching Tip
An Example-Based Instructional Method to Develop

Students’ Problem-Solving Efficacy in an Introductory
Programming Course

Pratibha Menon
Department of Computer Science and Information Systems

Pennsylvania Western University
California, PA 15419, USA

menon@pennwest.edu

ABSTRACT

This paper introduces a teaching process to develop students’ problem-solving and programming efficacy in an introductory
computer programming course. The proposed teaching practice provides step-by-step guidelines on using worked-out examples of
code to demonstrate the applications of programming concepts. These coding demonstrations explicitly teach the systematic
approach and strategies required to develop a programming solution. Each code demonstration is then followed by the instructor
assigning similar practice problems to build learners’ awareness of the programming process and problem-solving techniques.
Every successful attempt of the practice exercise by a student exemplifies their efficacy in applying the programming process and
developing solutions using the instructor’s strategies. Finally, through regular and structured feedback, the instructor gives learners
insight into their performance in completing various steps of the programming process. This paper provides guidelines for creating
and using code demonstrations, practice exercises, and rubrics for structured feedback in an introductory programming class. An
end-of-course survey was employed to compare students’ reported self-efficacy and their actual programming and problem-solving
efficacy, based on their completion rates of the practice activities.

Keywords: Self-efficacy, Computer programming, Feedback, Exercises, Code demonstrations

1. INTRODUCTION

Computing and information systems undergraduate students
generally regard the compulsory introductory programming
courses as complex. A significant number of students drop out,
leading to attrition during the first and second years (Beaubouef
& Mason, 2005; Kinnunen & Malmi, 2006). Teaching students
to write computer programs in an introductory course
transcends the programming languages and tools they may use
to develop code. Writing code requires students to develop the
cognitive skills necessary to monitor their programs and apply
effective strategies to fix errors and solve problems.

Learning how to write well-documented, error-free, and
efficient programs, as with any expertise, requires students to
develop an awareness of their thoughts and actions and to
regulate their efforts to meet their learning goals. Studies
suggest that the ability to self-monitor and formulate
explanations independently improves problem-solving skills
and self-efficacy (Cleary & Zimmerman, 2012; Cleary et al.,
2006). Self-efficacy, which influences a learner’s regulation of
their learning process, refers to people’s judgments of their
ability to organize and execute the courses of action required to
attain the desired performance. Self-efficacy enables an
individual with prior knowledge and skills to take the action
necessary to complete a task (Bandura, 2012). Additionally, a
previous study indicates that individuals’ beliefs strongly

influence their behavior, and that knowledge, skills, and prior
attainment alone may not be strong indicators of subsequent
achievements (Pajares & Miller, 1994).

This paper focuses on implementing a process guided by
self-efficacy theories to teach the fundamentals of procedural
programming using the Java programming language. Appendix
A outlines the course objectives and topics covered in the 15-
week course studied in this paper. A key feature of the proposed
instructional design is its incorporation of an example-based
learning approach to teach the code development process and
the problem-solving strategies required to develop robust
programming solutions.

In the proposed approach, students learn problem-solving
methods and strategies by observing the instructor explain
worked-out examples. The instructor introduces key
programming concepts through code demonstrations and
systematically models the programming process and problem-
solving strategies. These include translating problem
requirements into code components and sequence, tracing the
variables, altering code, and fixing errors. Each code
demonstration is accompanied by a group of pre-written
practice activities that target some of the debugging problems
commonly encountered by students. These activities help
students repeatedly practice valuable strategies to troubleshoot
and fix errors. Eventually, they transition to independently

mailto:menon@pennwest.edu

Journal of Information Systems Education, 34(1), 1-15, Winter 2023

2

writing more extensive programs similar in scope and scale to
the examples demonstrated through the code demonstrations.

Research demonstrates that instruction using worked-out
examples is generally more effective and efficient for novice
learners than instruction consisting primarily of problem-
solving exercises (Huang, 2016; Renkl, 2011; van Gog &
Rummel, 2010). For example, a traditional approach to
instruction may involve lectures that introduce a set of
concepts, followed by assignment problems containing a given
set of values, conditions, and a goal statement. However,
assigning problems without explaining the details of the
problem-solving procedure leads novices to resort to weaker
problem-solving strategies. For example, without knowing the
optimal approach an expert would apply to solve problems, a
beginner may use means-ends analysis, searching repeatedly
and inefficiently for the operations needed to reach the goal.
Even though less efficient strategies may allow learners to solve
the problem eventually, they do not contribute to learners
building a cognitive schema for solving similar problems. Such
a schema can extend beyond the specific problem-solving
procedure to enable the reuse, adaptation, and transfer of
problem-solving skills to newer problems (Cooper & Sweller,
1987; Paas, 1992).

Prior studies on self-efficacy show that vicarious learning
experience gained through the observation of others’ modeled
performance provides learners with the aspiration to attain a
given level of performance (Bandura, 1996). Therefore, by
modeling an instructor’s programming practices through
worked-out examples, students could learn efficient and
systematic problem-solving methods and self-monitor their
problem-solving strategies to improve their chance of success.
The cognitive apprenticeship model proposed by Collins et al.
(1989) includes six teaching methods—modeling, coaching,
scaffolding, articulation, reflection, and exploration—that
make explicit the expert’s tacit knowledge for students from
which to learn. The cognitive and metacognitive aspects of such
a model deal with the processes and strategies used to solve
problems, which are helpful in situations that require students
to extend their knowledge to novel situations and complex
problems. A study by Loksa et al. (2016) indicates that explicit
instruction on programming problem solving has improved
students’ programming self-efficacy in a controlled study.

While modeling a problem-solving process allows students
to emulate the instructor’s cognitive schema and set efficacy
expectations, completing many practice problems could
strengthen students’ problem-solving abilities. Furthermore,
personal mastery experiences also influence students’
perceived self-efficacy (Bandura, 2012). Repeated success in
attempting many practice exercises improves mastery and,
therefore, efficacy expectations, which in turn could reduce the
negative impact of occasional failures. Furthermore, presenting
learners with an example followed by similar practice problems
is more effective than providing just the examples (Renkl,
2011; Renkl, 2014; van Gog et al., 2011). Therefore, the
instructional approach proposed in this paper pairs detailed
coding demonstrations with various practice problems that
allow students to apply problem-solving strategies repeatedly
and, as a result, improve their expectation of efficacy.

The rest of the paper is organized as follows. Section 2
explains our teaching process by providing guidelines on
developing instructional components such as code
demonstrations, practice exercises, structured feedback, and

question and answer (Q&A) sessions. Section 3 provides the
author’s guidance on developing code demonstrations and
different kinds of practice exercises. Section 4 discusses the
results of an end-of-the-course survey used to measure the
students’ perceptions of their self-efficacy in solving problems
and completing different types of practice exercises. Section 5
discusses the problem-solving and programming abilities
displayed through students’ completion rates of practice
exercises. Section 6 discusses how various attributes of the
instructional design could have impacted students perceived
self-efficacy and observed problem-solving efficacy. Finally,
Section 7 concludes the paper by summarizing the teaching
practice and potential investigations and improvements for the
future.

2. THE TEACHING PROCESS

The design of the teaching process adopted in this study
assumes that learning computer programming occurs as a
cyclical exchange of knowledge and information between the
learner and an external learning environment. The learner’s
interaction with the learning environment is assumed to occur
in two ways: 1) between the learner and the teacher and 2)
between the learner and external learning tools such as an
integrated development environment (IDE). These interactions
are called teacher-practice and teacher-modeling, respectively
(Laurillard, 2012). Figure 1 depicts the instructional
components of the teacher-practice and teacher-modeling
cycles and the association between the two.

The teacher-practice cycle represents the teacher’s role in
scaffolding the programming and problem-based learning
process. The teacher designs programming and problem-
solving exercises relevant to the content and the student’s level
of knowledge and expertise. By revealing the teacher’s practice
through suitable instructional activities, learners obtain the
means to build an external representation of their learning. The
teacher may also provide means for students to discuss, ask
questions, and clarify their understanding. The teacher-practice
cycle reflects the portion of the instructional design to be
covered through class activities, lectures, and discussions in the
teacher’s presence.

The teacher-modeling cycle involves a modeling
environment in which students complete thoughtfully designed
tasks to practice their programming knowledge and obtain
meaningful feedback. The modeling environment models the
learning task so learners can observe the result of their actions
and compare it to the intended results. Such a modeling
environment enables learning if students can complete the tasks
and interpreting the feedback.

In a typical programming class, the IDE takes the role of
the teacher by providing students with immediate feedback on
the correctness of their code through error and exception
reports. Other tools may include auto-graded online quizzes that
provide immediate feedback on students’ conceptual
understanding of programming concepts. Students complete the
learning activities associated with the teacher-modeling cycle
at home. The online learning tasks are hosted in a learning
management system, and students are provided access to the
IDE through a virtual desktop.

Journal of Information Systems Education, 34(1), 1-15, Winter 2023

3

Figure 1. Structure of the Instruction Process

The instructional design explained in this section illustrates

the knowledge transfer between teacher and learners through
code demonstrations; practice exercises; Q&A sessions; and
regular, structured feedback.

Code demonstrations, which form one of the critical

activities of the teacher-practice cycle, exemplify the teacher’s
practice of writing good programs. Practice exercises allow
students to emulate the teacher’s way of writing programs and
solving problems. Students write programs independently and
submit the code for review and feedback by the teacher. Q&A
sessions allow students to discuss their code, clarify their
understanding, and check their programming solutions with the
teacher’s assistance. Q&A sessions are also used to review
assignments and online quizzes.

The practice exercises adopted during the teacher-modeling
cycle focus on developing the intuition and thought process
required to create a programming solution. Students
subsequently come to realize that coding should be preceded by
thoughtful analysis of the problem and the solution’s
requirements. Many different learning tools currently exist to
introduce software development to beginners without having
them use a strongly typed programming language or a text-
based programming method. For example, block-based and
visual programming approaches could teach students to create
computer programs without writing much syntax. However, a
study by Weintrop and Wilensky (2017) that compared the use
of text-based and block-based programming methods did not
find any difference in students’ programming confidence or
enjoyment. The study also found that, compared to the group
that used the block-based method, students who used the text-

based programming method viewed their programming
experience as closer to what professional programmers do and
more effective at improving their programming ability.

Using end-user development tools, such as low-code
development platforms, spreadsheets, or tools requiring limited
scripting, is another approach to allow students with little or no
prior programming background to develop functional software
solutions. End-user development tools decrease the learning
effort required to develop applications (Fischer et al., 2004). By
using the end-user development approach, developers can
utilize the features of the development tool to assemble a
solution quickly. These end-user tools, however, conceal
several fundamental aspects of learning how to program, such
as knowing about data types, tracing variables’ states, and
understanding how the program compiles and executes. As a
result, by using end-user development tools, students may not
receive sufficient instruction and practice to develop their
programming intuition. This study therefore introduces basic
programming using the Java programming language and an
IDE, such as Eclipse, to help students build and test their code.

Instructional Activities—Teacher-Practice Learning Cycle
 Forethought Performance/

Programming
Process

Self-
Reflection

C
od

e
D

em
on

st
ra

tio
ns

Problem
analysis,
solution
planning,
reviewing test
plans

Choosing
constructs/con
cepts,
specifying
variables,
identifying
sequence,
tracing
variables,
altering code,
running tests

Evaluating
style,
practices, and
errors

Q
&

A

Se
ss

io
ns

Task planning,
goal setting to
improve the
learning
process

Discussions
on identifying
and correcting
errors;
adopting best
practices

Choosing
practice
materials to
strengthen
practice

Table 1. In-Class Instruction—Code Demonstrations
and Q&A Sessions

2.1 The Code Demonstrations
The teacher-practice component of the teaching process
consists of the code demonstrations through which an expert
instructor models program development process. The instructor
delivers the code demonstration in three consecutive phases: the
forethought, the performance, and the reflection phases. These
three steps align with the self-regulated learning (SRL) model
identified by Zimmerman (2009). Table 1 explains how
instruction using code demonstrations and Q&A sessions could
capture the SRL process’s forethought, performance, and self-
reflection phases. Each code demonstration begins with the
instructor describing their forethought on ways to approach the
problem, followed by a performance phase consisting of task
analysis, code development, execution, and testing. Finally,
before concluding a code demonstration, the instructor reflects
on the coding process and the solution. The sample code used

Journal of Information Systems Education, 34(1), 1-15, Winter 2023

4

for the demonstration contains extensive documentation and
comments that students can refer to later.

The code demonstrations introduce programming concepts
by discussing examples of their applications. The instructor’s
explanations contain the rationale for using one or more
programming constructs and ways to apply these constructs to
solve a given problem. For example, the instructor may
introduce the topic of loops by demonstrating applications that
require the repetition of code segments. Furthermore, the
explanation explores a range of loops to choose from, such as
“do-while,” “while,” or “for” loops. In some cases, the
instructor may configure all three types of loops to solve a given
problem and compare their differences.

Aside from teaching students how to pick and configure
appropriate programming constructs, the code demonstrations
are also used to teach critical troubleshooting skills. For
example, tracing the code and modifying the results are vital
skills for debugging programs. Students are also taught to adapt
pre-existing solutions to solve new but related problems.

By making the program development process detailed and
explicit, instructors provide students with a language to discuss
and explain the various steps required to develop a program.
The worked-out examples in the code demonstrations apply the
general programming process illustrated in Figure 2 to create
programs. These programs may use different programming
concepts and constructs, such as variables, data types,
expressions, statements, decision structures, loops, and
methods. In addition, the instructional materials and practice
activities emphasize applying the general programming process
to develop and debug the programs.

While a walk-through of the programming process is at the
heart of the code demonstration, it is essential to precede this
process with the instructor’s forethought and to conclude it by
reflecting on what has occurred. The forethought phase includes
approaches to analyzing the problem and planning the solution,
while the reflection phase includes evaluating types of potential
errors and suitable writing styles. Instructors routinely discuss
the forethought and self-reflection phases of learning during the
Q&A sessions to guide students through the performance phase
they must complete independently while attempting the
programming tasks. A typical code demonstration takes
approximately 45 minutes of class lecture time.

2.2 The Q&A sessions
Q&A sessions are integral to the teacher-practice learning
cycle. They are 20- to 30-minute sessions reserved for
discussions and further clarification of the concepts explored
during the regular class session. During the Q&A sessions, the
instructor clarifies any misconceptions or problem-solving
difficulties students have experienced while completing
learning activities. The instructor may also discuss the graded
assignments and some of the common errors and
misconceptions that were evident in student submissions.

2.3 The Practice Exercises
As illustrated in the instructional process depicted in Figure 1,
the teacher-modeling phase includes several practice exercises.
Students apply the teacher’s program development practices,
previously explained through the code demonstrations, by
attempting similar practice exercises. Table 2 lists the different
categories of practice exercises included in the course content.
These exercises are completed as homework assignments. For

example, the do-it-yourself (DIY) exercises are significant
problems similar in scope and size to the code-demonstration
problem. They require students to follow most of the steps in
the programming process depicted in Figure 1. In this type of
activity, students analyze a problem, identify the potential
solution, implement it, and test the answer. Observing the
sample code provided during the code demonstration allows
students to recollect and emulate the instructor’s practices to
write the code by themselves using an IDE. The DIY activities
also advise students to analyze the problems, write extensive
comments, and build their code incrementally.

Figure 2. The Programming Process

In addition to the DIY activities, the practice exercises also

include shorter skill-building exercises such as hack the code
(HTC), test tube (TT), and messed-up code (MC). These skill-
building activities help students practice and become
comfortable detecting and correcting logical, syntactical, and
runtime errors. For example, the MC contains one or more
errors that students must identify and correct. HTC is an activity
in which students are required to alter a pre-written code’s logic
to obtain the required outputs.

The MC and HTC activities encourage students to feel
comfortable experimenting with their code. Another activity
that enables students to solve problems by experimentation is
the TT activity. This activity requires students to test a given
code by tracing the variables using pen and paper. These
activities allow students to develop the necessary
troubleshooting skills and a sound conceptual understanding as
they learn to write programs. Appendix B presents samples of
each practice activity and the approximate time it would
generally take a student from an introductory programming
class to complete. For example, a typical short practice exercise

Journal of Information Systems Education, 34(1), 1-15, Winter 2023

5

would take approximately 20 minutes, while DIY exercises take
about an hour to complete.

 Targeted Practice for the Teacher-Modeling

Learning Cycle
DIY Problems like the ones from the code

demonstration. Give a mini case; write the
problem requirements; develop
sequence/logic; and apply strategies such as
testing, adjusting/altering code, tracing
variables, and fixing errors. Compile using
IDE.

Testing Test a given code by varying the list of
possible inputs. Identify the correctness of
the code and the exceptions it might produce.
Test using IDE.

Fix Errors
(Messed
Up Code)

Analyze the sequence, logical construct, and
its parameters on an errored code and suggest
possible fixes. Fix and mitigate errors using
the IDE.

Alter the
 Code
(Hack the
Code)

Experiment with a given code to produce a
different set of outputs (including errors).
Develop the ability to draw upon past code
examples and predict the outputs. Produce a
modified code using the IDE.

Tracing
Variables
(Test
Tube)

Using paper and pencil, trace the state of
variables in a code without using an IDE.
This helps students to comprehend a given
code.

Table 2. Different Types of Practice Exercises

2.4 Structured Feedback
After students complete and submit the assigned practice
problems, the instructor provides grades and feedback at the
beginning of the following week. The instructor reviews the
submissions every week and provides feedback to each student
using a rubric shown in Appendix C. The instructor informs the
students of the exact programming process steps they have
completed and the ones that might be causing errors in the
solution. The feedback identifies the stage of the programming
process at which the student could have made an error, although
it does not explicitly state how to correct the mistakes.

Students can follow the instructor’s feedback to correct and
resubmit the solution before a final submission deadline. The
contents of a module are covered for roughly a month. The hard
deadline for submitting all exercises for a module is typically
the last Sunday of the month. Students should complete all DIY
activities before the hard deadline, after which the activities are
graded. Based on the rubric, the feedback indicates how well a
student has followed various steps in the programming process
to develop solutions for the DIY problems. By using the same
feedback rubric for all the DIY exercises, students can monitor
their progress in mastering the programming process and
problem-solving strategies throughout the semester.

3. GUIDELINES FOR DEVELOPING COURSE

CONTENTS

The proposed teaching process requires instructors to plan the
delivery of the code demonstrations and finalize the
composition of the practice exercises. Keeping a consistent

pattern of explanations in the code demonstrations could help
students set their expectations of class time. Repetition of the
explanation pattern also helps students internalize the
instructor’s approach to solving programming problems.

3.1 Developing the Code-Demos
As illustrated in Table 1, the code demonstrations consist of
three phases: the forethought, the performance, and the
reflection. Therefore, the steps listed below could be used as a
guide for instructors to develop code demonstrations that cover
all three phases:

1) Provide a detailed explanation and analysis of the
problem statement to identify the functional and data
requirements. Refer to past examples that have
similar solutions.

2) Identify ways in which the given problem may differ
from the past examples.

3) Identify problem requirements by mapping the
information given in the problem to the input data and
identifying the required outputs.

4) Write comments before writing the code by listing the
problem’s inputs and the expected results.

5) Identify some of the critical programming constructs
to solve the problems.

6) List the required variables and their data types that
will be used to store the input and output values.

7) Declare the required variables and their data types by
writing Java statements.

8) Write the code sequence containing the correct logic
and syntax using an IDE.

9) Test the code incrementally.
10) Identify and fix any syntactical, logical, and runtime

errors.
11) Trace the values of variables by stepping through

each line of the program.
12) Alter the code in at least two different ways to obtain

different program outcomes.
13) Comment on acceptable coding practices and writing

styles relevant to the problem.
14) Reflect on some of the common errors and challenges

commonly encountered by learners while solving a
similar problem.

15) Recommend ways to improve the problem-solving
and programming skills required to solve similar
problems.

Steps 1, 2, and 3 consist of activities required to plan the

code, and Steps 4, 5, and 6 involve identifying the problem
requirements. After identifying the program requirements, the
instructor develops the program sequence using the variables
and logical constructs and describes how to test and develop the
program incrementally. Students also observe how the
instructor applies techniques such as tracing the variables or
printing out the variables’ values to incrementally build their
code during the code demonstration. Steps 7, 8, and 9 translate
the problem requirements into code using the correct syntax and
sequence. Thereafter, Steps 10, 11, and 12 teach students to test
and develop their code incrementally. In these two steps, the
instructor explains the strategies that students could use to fix
errors in their code. After demonstrating how to develop and
test the program, the instructor moves to the self-reflection
phase of the code demonstration, listed in Steps 13, 14, and 15.

Journal of Information Systems Education, 34(1), 1-15, Winter 2023

6

All the example programs discussed as code demonstrations
incorporate all the instructional steps listed above. In fact, an
instructor could use these steps to record video lectures for
online course delivery.

3.2 Developing Practice Exercises
Just as the code demonstrations have a predictable pattern of
explanation, the practice exercises also have predictable
composition and submission patterns. The entire course is
divided into four broad topics or modules. Appendix D presents
the classification of the practice activities into four assignment
modules, each of which requires a time frame of three to four
weeks to cover the contents thoroughly. Module 1 introduces
the concepts of variables and data types as well as simple input
and output methods. Students write a simple program to input
and output values and perform simple print statements and
arithmetic operations. Module 2 introduces Boolean
expressions and problem-solving using different decision
structures using “if… else” statements. Module 3 covers
problem solving using different types of loops. Module 4
teaches students to modularize their programs using methods.

Each module builds upon the prerequisite concepts covered
in previous modules. Moreover, each module consists of a set
of pre-planned practice exercises. Students complete the
practice exercises independently, and these exercises are
therefore crucial to developing conceptual knowledge and the
ability to write error-free programs. These practice exercises
could be graded assignments throughout the course, in which
case students must complete all the practice exercises as graded
assignments.

The number and types of practice exercises in a module
depend on the number of concepts covered in that module.
Additionally, the number of practice exercises is constrained by
the time required for students to complete them. The following
criteria were used to create the practice exercises:

 1) Each problem and solution discussed in the code
demonstration will be followed by at least two similar
DIY problems.

 2) TT, HTC, and MC activities are incorporated into the
module assignments.

 3) The exercises will require students to test their code and
submit error-free solutions.

 4) The size and scope of the DIY activities will be such
that it would take a student, on average, one hour to
fully complete, test, and document their code.

 5) The scope and size of the practice exercises will be such
that it would take an average of 20 minutes for a
student to complete them.

6) The total number of practice and DIY exercises is
limited by the estimated weekly time a student would
spend on completing them.

Many of the exercises require students to perform more

than one step in the programming process. On the one hand, for
example, almost all the targeted practice activities require
students to test the code by running it using an IDE. On the other
hand, the DIY activities require students to follow all the main
steps of the programming process systematically and,
optionally, to trace the variables and alter the code. The HTC,

TT, and MC activities require students to analyze or change a
given code. By contrast, the DIY activities ask students to
identify the problem requirements and the program sequence
and to develop and test the code. The DIY activities are similar
in scope and complexity to the problems discussed during in-
class code demonstrations. On average, a student would take
approximately an hour to fully complete the writing and testing
of the program. Students attempt all the assignments and
practice activities independently, although they could use Q&A
sessions to clarify their understanding of the problems from the
instructor.

Appendix B offers a sample set of practice activities
covered for each topic/module during a 15-week semester. The
instructor had planned and prepared these practice exercises at
the beginning of the semester. The chart in Appendix C maps
each practice exercise to the set of programming skills it could
help students develop. The names of the problems are chosen
to describe the application that the problem intends to solve
using programming solutions. For example, a problem in
Module 1 on data types is named “FlooringCost” and not
“DataTypes 5.” By giving the problem a meaningful name that
relates to its application, the instructor can refer to it later in the
course to show how it may be extended using more advanced
programming constructs. It also becomes easier to discuss
programming solutions if students can easily recollect the
solution patterns and apply them to similar problems.

4. STUDENT PERCEPTIONS

The impact of the proposed instructional design was studied in
a 15-week introductory Java programming course for a
computer information systems program at a public university.
Twenty-one students had enrolled in the course, 19 of whom
voluntarily participated in an anonymous post-course survey.
The survey measured students’ perceived self-efficacy having
completed the course.

4.1 Value of the Learning Activities
Of the 21 students who attended the course, 19 volunteered to
participate in the non-mandatory end-of-course survey. Since
the practice exercises constituted a large part of the instruction,
the end-of-course survey included questions on the students’
perceptions of the value of various types of practice/learning
activities (such as the DIY, HTC, TT, and MC). The survey
asked students to rate the value of each learning activity on a
Likert scale from 0–4, where 0 represents “Very Much
Disagree,” and 4 represents “Very Much Agree.” Table 3
depicts the results of the post-course survey, showing that most
students felt the learning activities were valuable in the course.
The survey question is stated in the top row of Table 3. The
author of this paper created the survey instrument used in this
study.

The DIY activities received slightly more neutral responses
than the others. The class instructor observed that the DIY
activities appear to be more challenging than the practice
activities because they require students to apply all the steps of
the programming process independently. The DIY problems
cover more programming concepts than the targeted exercises.

Journal of Information Systems Education, 34(1), 1-15, Winter 2023

7

Question: How valuable were the following learning activities in developing your programming skills in this course?
Very Much Disagree Disagree Neutral Agree Very Much Agree

Q&A sessions 0 0 1 11 7
Fix Errors—Messed-Up Code activities 0 0 1 12 6
Write/alter code—Hack the code activities 0 0 1 11 7
Trace variables (Test Tube) 0 0 1 7 11
Develop code (DIY activities) using Eclipse IDE 0 0 4 13 2

Table 3. Student Response Distribution on the Value of Various Learning Activities in Developing Programming Skills

Additionally, the feedback detailed the DIY problems but only
offered commentary on the correctness of the shorter practice
problems. Based on the instructor’s observation, most of the
Q&A questions concerned the initial steps of the programming
process required to develop sequence and logic. Most of the
questions raised by students pertained to identifying
programming requirements for a given problem, such as the
data types, logical constructs, Boolean expressions, and method
parameters.

4.2 Perceptions of Self-Efficacy
The post-course survey also contained questions on self-
reported measures of efficacy. Table 4 lists the survey questions
on students’ perceived self-efficacy to complete the various
steps of the programming process illustrated in Figure 2. In
addition, the survey asked students to rate their confidence and
abilities related to various steps of the programming process on
a 0–4 Likert scale, where 0 represents “Very Much Disagree”
and 4 represents “Very Much Agree.”

Table 4 indicates that most students reported higher
confidence in their ability to troubleshoot errors, and most
students felt confident experimenting with their code. Practice
activities such as TT, MC, and HTC are exercises requiring
students to identify and fix errors to build troubleshooting
skills. Students experiment with various data inputs in many of
these exercises and alter the code to meet the problem
requirements. Student responses in the survey indicate an
overall positive efficacy in eliciting program requirements
before writing the code using Java syntax. Five out of 19
students, however, gave a neutral response on their ability to
elicit program requirements. One possible explanation for the
neutral responses is that no specific skill-building activities
provided students with focused practice in identifying problem
requirements. For example, the instructor frequently had to
guide students in translating the given problem statements into
the sequence of operations and statements. Even though
students could refer to worked-out examples to observe the
solution patterns, they still had to engage in a deliberate thought
process to tailor their solutions sufficiently for the assigned
problem. These actions include mapping the given data and the
required outputs into relevant variables and data types and
identifying the essential operations, structure, flow control
elements, and method parameters. The instructor also observed
that many students repeatedly skipped planning their code and
structuring their solution before starting to type their code in the
IDE. As a result, students did not identify the correct
requirements, resulting in too many logical errors in the
answers.

Readers should note that students’ reported self-efficacy
may not accurately reflect their actual ability to complete
programs and solve problems. A cognitive bias called the

Dunning–Kruger effect could lead poor performers to be
overconfident in their skills and top performers to underrate
themselves (Dunning, 2011). Nevertheless, students’
perceptions of self-efficacy could be an essential motivating
factor for them to persist with computer programming courses
in the future.

This study does not have a mechanism to infer how
accurately students calibrate their perceived self-efficacy based
on their actual performance, which could be observed through
grades and instructor feedback. The anonymous nature of the
self-efficacy survey prevents matching a student’s performance
with the reported self-efficacy measurements. However,
collecting the students’ identities with their reports of self-
efficacy could have motivated them to misreport their true
perceptions of self-efficacy in the interests of social
acceptability. Furthermore, the self-efficacy survey is
administered at the end of the course. Therefore, student
responses could have resulted from their cumulative problem-
solving and programming experience throughout the course
duration.

5. STUDENT PERFORMANCE

This study took place in a live classroom in which an instructor
needed to keep track of the learning outcomes and the class
performance in completing the assignments. The task
completion percentage for every assignment activity submitted
by each student in the class was recorded to measure actual
programming and problem-solving efficacy. Appendix C
tabulates all the assignment activities for the entire semester.

5.1 Practice Exercises Completion Percentages
The task completion percentage is the percentage of assigned
practice activities that a student fully completed without errors.
Assignment questions that were only partially completed or had
errors were not counted while calculating task completion
percentage. The task completion percentage was not collected
for Module 1 since this period coincided with the add/drop
period of the semester. Students who joined late in the class got
caught up with the course materials by the beginning of Module
2. Students have received help from the instructor to complete
the practice activities via the structured time available during
the Q&A sessions. The Q&A sessions encourage students to
use the vocabulary and the steps of the programming process
during the class discussions. Table 5 shows the mean value of
task completion percentage for assignment questions in each
module. The mean value of assignment completion percentages
decreased for each subsequent module. It is also observed that
the standard deviation increased over the semester, indicating
that the gap between the stronger and weaker performers
increased over the semester.

Journal of Information Systems Education, 34(1), 1-15, Winter 2023

8

Question: For each of the following questions, please rate your perceived efficacy in completing various steps of the
programming process.
 Very Much

Disagree
 Disagree Neutral Agree Very Much

Agree
I feel confident to experiment with my programs. 0 0 1 8 10
I feel confident that I can correct programming
errors.

0 0 0 9 10

I feel that learning how to program has improved
my problem-solving skills.

0 0 3 7 9

I know how to read a given problem and
deduce the sequence of operations and statements
required to write a programming solution.

0 0 5 10 4

I know how to correctly identify the statements
required to write a programming solution.

0 0 5 9 5

Table 4. Student Response Distribution on Indicators of Students’ Programming Self-Efficacy

Assignment Completion Percentage
 Module 2 Module 3 Module 4
Total number of Assignment
problem

13 15 11

Min and Max number of concepts in a problem in an assignment Min: 4
Max: 6

Min: 6
Max: 8

Min: 7
Max: 9

Number of DIY activities assigned 6 8 6
Number of skill building (TT, HTC, MC)
activities

7 7 5

% Task Completion:
Mean

83.1 79.7 73.7

% Task Completion: Std. Dev 25.7 27.5 31.5

Table 5. Assignment Completion

5.2 Assignment Complexity
The number of programming constructs that a student must
apply to solve a problem point could be a proxy measure for
task complexity. Each assignment problem is tagged with the
programming concepts essential to developing the solution.
Each example problem discussed in the code demonstrations
typically involves many programming concepts. Each practice
problem that follows the code demonstration also involves
more than one concept. The following concepts were covered
in code demonstrations and practice exercises: 1) variables, 2)
data types, 3) operations, 4) expressions, 5) statements, 6)
loops, 7) decisions, 8) methods, 9) parameters/arguments, and
10) return values.

Table 5 indicates that the minimum and maximum number
of concepts covered in a problem increased as the semester
progressed. For example, Module 1 covered only four concepts,
but there are at least seven concepts per problem from Module
4 onwards. The maximum number of concepts in a Module 2
problem never exceeded six, but the maximum number of
concepts in a Module 4 problem was nine. The DIY exercises
typically covered more concepts than the shorter exercises.
Module 4 exercises covered and built upon many of the
concepts from Module 2. The module-level task completion
decreased for Module 3 and again for Module 4. It also
appeared that the standard deviation was higher for Module 4
exercise completion. This indicates that the conceptually
complex Module 4 assignments must have been challenging for
students to complete fully.

6. DISCUSSION

The post-course survey results revealed that the majority of
students positively agreed on the value of most of the practice
exercises. Most students also agreed on their self-efficacy to
develop computer programs. While the instructor is responsible
for developing students’ programming efficacy by creating
suitable course contents, it is equally important to do so in a
way that supports students’ perceived self-efficacy. At the same
time, accurate feedback on student performance is essential for
the student to calibrate their perceived self-efficacy to their
actual problem-solving and programming efficacy. A study by
Moores and Chang (2009) suggests that self-efficacy could be
positively correlated to true efficacy; still, incorrect perceptions
of self-efficacy could lead to overconfidence and a subsequent
drop in future performance.

Post-course survey results indicate that more students
agreed or strongly agreed with the task value of the targeted
practice exercises, such as the TT, MC, and HTC, than they did
for the more extended DIY activities. Successful completion of
the targeted practice activities could have helped reinforce the
perceived self-efficacy of the student more frequently. These
short activities had students work on pre-written code. They had
to correct errors, predict the outputs by tracing the variables, or
alter the logic and sequence to obtain different results. By
contrast, the more prolonged DIY activities required students to
identify the problem requirements independently, evaluate
multiple solution patterns, and complete all the steps of the
programming process. Even though the code demonstrations

Journal of Information Systems Education, 34(1), 1-15, Winter 2023

9

had explained how the instructor extracted the programming
requirements from the problem statements, there were no
additional exercises that specifically targeted requirement
elicitation or focused on identifying the sequence and
operations from reading problem statements. Future iterations
of the course design could incorporate practice activities to help
students identify the problem requirement, logic sequence, and
correct operators prior to writing their code.

Developing an error-free solution for a DIY activity
required students to invest more time and effort into creating
and testing a programming solution than were required for the
shorter practice activities such as the TT, HTC, and MC. As a
result, feedback on the DIY activities was also more extensive.
The feedback provided for the DIY activities objectively
mapped the correctness of the program for various steps of the
programming process. Although students received positive
feedback for getting their programs correct, they also received
commentary on the improvements they could make to their
incorrect, inaccurate, or incomplete solutions. The DIY
exercises, as a result, made it possible for students to reflect
upon their efficacy extensively.

The extent to which students were accurate in calibrating
their self-efficacy based on the detailed feedback they received
for their DIY solutions could not be inferred due to the
anonymity of student survey responses. However, what could
be measured was the efficacy of the class as a whole. Students’
ability to complete the programming assignments fully could be
observed by collecting the assignment samples. Table 6
indicates that the aggregate task completion percentage
declined in the later modules, possibly due to the complexity of
the topics. The complexity of the problems could have made the
solutions more prone to errors in the latter part of the course.
These errors could have influenced the survey that collected
data on perceived self-efficacy during the final week of the
course.

While students would have inferred the increasing
complexity of problems in the later modules, the feedback
provided by the instructor did not explicitly relate students’
performance to the complexity of the problem, nor did the
feedback indicate students’ progression in complex problem-
solving capabilities over the semester. Future iterations of the
instructional design could benefit from an enhanced feedback
method that informs students about the complexity of the tasks
they have completed during the course. In addition, providing
each student with a progress trajectory that tracks their
performance according to the complexity of the problems
solved could help students calibrate their perceived self-
efficacy with their actual problem-solving and programming
efficacy.

The instructional design proposed in this paper stresses
developing a set of practice activities and code demonstrations.
Content development is always a time-consuming process.
However, creating a template for the learning activities and
repeating the problem templates for different learning units may
save the instructor some time while developing content. For
example, the short practice problems were restricted to the TT,
MC, and HTC types. The modules had a predictable mixture of
short practice activities and more extended DIY exercises.

One of the challenges of applying the instructional design
proposed in this course is the creation of practice exercises.
Repetition of the same pattern of practice exercise, such as the
DIY, TT, MC, and HTC, makes it easier to generate assignment

questions across different learning units. In addition,
developing question templates and a sharable repository of
practice exercises will make it easier for novice instructors to
adopt the instructional method proposed in this paper.

7. CONCLUSIONS

Computer programming courses are valuable for information
systems curriculums, as they provide a structure to analyze
problems and develop solutions. This study proposes an
example-based instructional method to teach programming and
problem-solving strategies by creating code demonstrations and
practice problems. The instruction provided by the code
demonstrations and the programming and problem-solving
steps targeted by the practice problems capture the forethought,
the programming process, and the self-reflection required to
develop programming solutions. This paper provides
instructors with a step-by-step guideline to build code
demonstrations and practice exercises such that students
develop the skills necessary to complete various steps of the
programming process. Just as the examples of code
demonstrations provide students with program structure, the
practice exercises offer them examples of ways to test, debug,
and alter solutions. In addition, each successful attempt of the
practice exercise helps exemplify students’ programming self-
efficacy. The worked-out examples in the code demonstrations,
practice problems, Q&A sessions, and structured feedback that
inform a student’s mastery of the programming process are
repeated for every unit of study throughout the semester.

A post-course survey revealed that students regarded the
practice exercises as valuable for developing their
programming skills. In the survey, students reported positive
self-efficacy in their abilities to write programs and solve
programming problems. The survey also showed that students
were more confident in their ability to write and troubleshoot
programs than in their ability to identify program requirements.
Students’ actual efficacy to complete programming and
problem-solving exercises can be observed from the percentage
of fully completed practice exercises that they achieved
throughout the course. As the semester progressed, students
produced lesser error-free solutions on average, possibly due to
the complexity of activities requiring students to combine more
programming concepts. Future studies could investigate how
students calibrate their perceived self-efficacy at various points
in the semester. These studies could also explore how
assignment grades and feedback provided by the instructor
influence their perceptions of efficacy.

Feedback on the correctness of the assignment solutions
submitted by students was an essential part of the instructional
design discussed in this paper. Regular, structured feedback for
each programming problem provided a way for students to
focus their efforts on the different steps of the programming
process. However, the feedback structure did not provide
students with insight into their progress over the semester. For
example, students did not receive explicit feedback on the
improvement in their error-correcting skills at a given time
compared to their skills at the beginning of the semester. Future
implementations of instructional design could devise a method
to show students how much they have progressed in effectively
completing various stages of the programming process depicted
in Figure 2. Additionally, the feedback mechanism could
highlight the number of concepts students have mastered by

Journal of Information Systems Education, 34(1), 1-15, Winter 2023

10

completing practice exercises throughout the course.

8. ACKNOWLEDGEMENTS

The author would like to thank and acknowledge the PASSHE-
FPDC grant for funding the instructor during the summer of
2019. The grant funding helped the author acquire the required
professional development in the SRL and learning design study
applied in the current research.

9. REFERENCES

Bandura, A. (1996). Social Cognitive Theory of Human
Development. In T. Husen & T. N. Postlethwaite (Eds.),
International Encyclopedia of Education (2nd ed., pp.
5513-5518). Oxford: Pergamon Press.

Bandura, A. (2012). Self-Efficacy: The Exercise of Control
(13th ed.). New York, NY: Freeman.

Beaubouef, T., & Mason, J. (2005). Why the High Attrition
Rate for Computer Science Students. ACM SIGCSE
Bulletin, 37(2), 103-106.
https://doi.org/10.1145/1083431.1083474

Cleary, T. J, & Zimmerman, B. J. (2012). A Cyclical Self-
Regulatory Account of Student Engagement: Theoretical
Foundations and Applications. In S. L. Christenson & W.
Reschley (Eds.), Handbook of Research on Student
Engagement (pp. 237-257). New York, NY: Springer
Science.

Cleary, T. J., Zimmerman, B. J., & Keating, T. (2006). Training
Physical Education Students to Self-Regulate During
Basketball Free Throw Practice. Research Quarterly for
Exercise and Sport, 77(2), 251-262.
https://doi.org/10.1080/02701367.2006.10599358

Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive
Apprenticeship: Teaching the Craft of Reading, Writing,
and Mathematics. In L. B. Resnick (Ed.), Knowing,
Learning, and Instruction: Essays in Honor of Robert
Glaser (pp. 453-494). Lawrence Erlbaum Associates, Inc.

Cooper, G., & Sweller, J. (1987). Effects of Schema
Acquisition and Rule Automation on Mathematical
Problem-Solving Transfer. Journal of Educational
Psychology, 79(4), 347-362. https://doi.org/10.1037/0022-
0663.79.4.347

Dunning, D. (2011). The Dunning-Kruger Effect: On Being
Ignorant of One’s Own Ignorance. In J. M. Olson & M. P.
Zanna (Eds.), Advances in Experimental Social Psychology
(Vol. 44, pp. 247-296). Academia Press.

Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A. G., &
Mehandjiev, N. (2004). Meta-Design. Communications of
the ACM, 47(9), 33-37.
https://doi.org/10.1145/1015864.1015884

Huang, X. (2016). Example-Based Learning: Effects of
Different Types of Examples on Student Performance,
Cognitive Load and Self-Efficacy in a Statistical Learning
Task. Interactive Learning Environments, 25(3), 283-294.
https://doi.org/10.1080/10494820.2015.1121154

Kinnunen, P., & Malmi, L. (2006). Why Students Drop Out CS1
Course? ACM Press.
https://doi.org/10.1145/1151588.1151604

Laurillard, D. (2012). Teaching as a Design Science: Building
Pedagogical Patterns for Learning and Technology (1st
ed., pp. 82-83). Routledge.

Loksa, D., Ko, A. J., Jernigan, W., Oleson, A., Mendez, C. J.,
& Burnett, M. M. (2016). Programming, Problem Solving,
and Self-Awareness. Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems.
https://doi.org/10.1145/2858036.2858252

Moores, T. T., & Chang, J. C. J. (2009). Self-Efficacy,
Overconfidence, and the Negative Effect on Subsequent
Performance: A Field Study. Information & Management,
46(2), 69-76. https://doi.org/10.1016/j.im.2008.11.006

Paas, F. G. W. C. (1992). Training Strategies for Attaining
Transfer of Problem-Solving Skill in Statistics: A
Cognitive-Load Approach. Journal of Educational
Psychology, 84(4), 429–434. https://doi.org/10.1037/0022-
0663.84.4.429

Pajares, F., & Miller, M. D. (1994). Role of Self-Efficacy and
Self-Concept Beliefs in Mathematical Problem Solving: A
Path Analysis. Journal of Educational Psychology, 86(2),
193-203. https://doi.org/10.1037/0022-0663.86.2.193

Renkl, A. (2011). Instruction Based on Examples. In R. E.
Mayer & P. A. Alexander (Eds.), Handbook of Research on
Learning and Instruction. (pp. 272-295). Routledge.

Renkl, A. (2014). The Worked-Example Principle in
Multimedia Learning. In R. E. Mayer (Ed.), The Cambridge
Handbook of Multimedia Learning (2nd ed., pp. 391-412).
Cambridge University Press.

van Gog, T., Kester, L., & Paas, F. (2011). Effects of Worked
Examples, Example-Problem, and Problem-Example Pairs
on Novices’ Learning. Contemporary Educational
Psychology, 36(3), 212-218.
https://doi.org/10.1016/j.cedpsych.2010.10.004

van Gog, T., & Rummel, N. (2010). Example-Based Learning:
Integrating Cognitive and Social-Cognitive Research
Perspectives. Educational Psychology Review, 22(2), 155-
174. https://doi.org/10.1007/s10648-010-9134-7

Weintrop, D., & Wilensky, U. (2017). Comparing Block-Based
and Text-Based Programming in High School Computer
Science Classrooms. ACM Transactions on Computing
Education, 18(1), 1-25. https://doi.org/10.1145/3089799

Zimmerman, B. J. (2009). Self-Regulation: Where
Metacognition and Motivation Intersect. In A. R. Moylan
(Ed.), Handbook of Metacognition in Education (pp. 311-
328). Routledge.

AUTHOR BIOGRAPHY

Pratibha Menon is an associate professor at the Department of

Computer Science and Information
Systems, Pennsylvania Western
University. Dr. Menon has over ten
years of experience teaching courses
in Computer Information Systems
and has actively participated in
teaching and learning innovation
projects. In addition, Dr. Menon has
been the Principal Investigator for

grant projects that have resulted in the study of learning design
for introductory courses in information systems.

https://doi.org/10.1145/1083431.1083474
https://doi.org/10.1080/02701367.2006.10599358
https://doi.org/10.1037/0022-0663.79.4.347
https://doi.org/10.1037/0022-0663.79.4.347
https://doi.org/10.1145/1015864.1015884
https://doi.org/10.1080/10494820.2015.1121154
https://doi.org/10.1145/1151588.1151604
https://doi.org/10.1145/2858036.2858252
https://doi.org/10.1016/j.im.2008.11.006
https://doi.org/10.1037/0022-0663.84.4.429
https://doi.org/10.1037/0022-0663.84.4.429
https://doi.org/10.1037/0022-0663.86.2.193
https://doi.org/10.1016/j.cedpsych.2010.10.004
https://doi.org/10.1007/s10648-010-9134-7
https://doi.org/10.1145/3089799

Journal of Information Systems Education, 34(1), 1-15, Winter 2023

11

APPENDICES

Appendix A. Course Objectives and Topics.

A. Objectives of the Course:

Upon completion of this course the student will be able to do the following items using the presently adopted language for
this course (Fall 2010: Java):

a) Analyze business case studies and discuss strengths and weaknesses of various potential solutions.
b) Recognize and use problem-solving techniques and methods of abstract logical thinking to develop and

implement structured solutions to given software design problems.
c) Apply problem-solving techniques and design solutions to business problems and implement these solutions

by writing computer programs.
d) Write well-structured business programs.
e) Evaluate and debug programs.
f) Work in collaborative groups.

B. Catalog Description:

This course provides students with an understanding of business problems that are typically solved by writing computer
programs, problem-solving techniques to enable students to design solutions and programming skills learned in a
traditional CS1 course. Emphasis is placed on efficient software development for business-related problems. Students are
required to write, test, and run programs. Prerequisite: High School Algebra or Equivalent. Three credits.

C. Outline of the Course:

a) Problem Solving Techniques for Business Problems
i) Business Case Studies
ii) Problem Identification and Understanding
iii) Solution Planning (flowcharts, pseudocode, etc.)
iv) Algorithm Development

b) Programming Concepts
i) Structure of a Program (“Hello World”)
ii) Constants, variables, and data types
iii) Arithmetic operators
iv) Relational operators
v) Logical operators
vi) Assignment statements
vii) Input and output
viii) Selection (if/else and switch)
ix) Repetition (while, do/while, and for)

c) Strings
d) File Processing
e) Functions (in presently adopted language, “method’’)

Journal of Information Systems Education, 34(1), 1-15, Winter 2023

12

Appendix B. Practice Exercises Examples

1. A Sample DIY Problem (to be solved in about an hour per problem):

Shopping Cart – Create a file called ShoppingCart.java
Please refer to the code demo called VariableDataEntry.java before attempting this problem. This problem shows you how to:

• obtain data from the user, scan this data and save it in an appropriate variable.
• perform arithmetic using the numeric data types,
• print a message displaying values of all the variables.

In this program, you will capture data of an item for a ShoppingCart application. Your program may need to know the following
properties: customer_name, item_name, item price, sales tax rate, item quantity, calculated total price of all items in the cart
A ShoppingCart may need the following behaviors:

• Obtain the following data from the user for a single item: customer_name, item_price, sales_tax_rate, item_quantity.
Scan these values and store them in variables of appropriate data type.

• Calculate the total price of all items in the cart
• Print a message listing all the item variables with their total calculated price (that includes the sales_tax factored in).

2. A Sample Hack-the-Code Activity (to be solved in about 15 minutes per problem):

Refer to the code called AgeCheckerCase2.java.

 Hack this code so that your decision structure calculates the ticket price based on the following rule: For an age that is less than
12, give a 20% discount on ticket price, but for age greater than 65, give just a 10% discount on the ticket price for all other age
groups between and including 12 and 65, give just 2% discount on ticket price.

3. A Sample Test-Tube Activity (to be solved in about 15 minutes per problem)

Journal of Information Systems Education, 34(1), 1-15, Winter 2023

13

1) Determine the value of the result, i/4 and (i<gate) for each iteration of the while loop and complete the table shown
below

gate = 5 n =2 i result i/4 i<gate

5 2 0 0

5 2

5 2

5 2

5 2

5 2

2) Determine the value of result, i/4 and (i<gate) for each iteration of the while loop and complete the table shown below

for a gate = 10 and n = 3. Add more rows if needed.

gate = 10 n =3 i result i/4 i<gate
5 2 2 0
5 2
5 2
5 2
5 2
5 2

4. A Sample Messed-up Code Activity (to be solved in about 15 minutes per problem)

Problem: Use decision structures to check if a variable userLetter is a vowel in the English alphabet. Assume the value of
userLetter is already obtained from the user and set to an appropriate data type in each of the following responses. Correct the
errors in each of the following responses that assume a given data type for userLetter,

Response 1: userLetter is a String.
if (userLetter.equalsIgnoreCase "a"){ System.out.println("Letter is a vowel"); }
else if (userLetter.equalsIgnoreCase "e"){ System.out.println("Letter is a vowel"); }
else if (userLetter.equalsIgnoreCase "i"){ System.out.println("Letter is a vowel"); }
else if (userLetter.equalsIgnoreCase "o"){ System.out.println("Letter is a vowel"); }
else if (userLetter.equalsIgnoreCase "u"){ System.out.println("Letter is a vowel"); }
else { System.out.println("Letter is not a vowel"); }

Response 2: userLetter is a char
If (user == a){ System.out.println("It’s a vowel");}
else if (user == e){ System.out.println("It’s a vowel"); }
else if (user == i){ System.out.println("It’s a vowel"); }
else if (user == o){ System.out.println("It’s a vowel"); }
else if (user == u){ System.out.println("It’s a vowel"); }
else { System.out.println("Not a vowel"); }

Response 3: userLetter is a String and you need to use a || in your if condition
if (letter.equalsIgnoreCase("A||E||I||O||U")){
 System.out.println("You got a vowel");
}

Journal of Information Systems Education, 34(1), 1-15, Winter 2023

14

Appendix C. A Sample Set of Practice Activities and the Skills They Help Develop

Activity ./ Program
Name

Develop
Sequence
&
 logic

Testing
Alter
the
 code

Trace
variables

Fix errors

HTC Age
MC CharDemo
HTC StringDemo
TT Mice - 10 problems
TT PeopleKnown

ShippingCost
TacoPrice
TypeCasting
FlooringCost
HealthData
MakeChange

HTC FindSpecialValues
TT RangeChecker

TT, HTC AgeChecker2-5 problems
TT, HTC AgeChecker3 -5 problems
TT, HTC ScoreDifference-5 problems
TT, HTC AgeChecker4 - 5 problems
TT

y

AgeZipCodechecker
YearToCenturyConverter
TicketPrice
AgeChecker1
Electrice Power Consumption
RockPaperScissor
LaborCharge

TT, HTC LoopSimulators -4 problems
TT Tracing While loops -3

TT,HTC While loop counters1
TT,HTC While loop counters2
TT,HTC While loop counters3

HTC InterestCaluclator
HTC DivideByTwo

ABCounter ForLoop
ABCounterWhileLoop
WhileLoop_SentinelValue
FutureTuition
InsectGrowth
ValidatingUsers
ValidatingUsers- part2
TaxProblem

HTC FacePrinter_1
MC PrintShapes

TT, HTC FacePrinter_parameters
TT,HTC DinnerPriceCalc_1
TT,HTC Price Calc- 4 methods

DinnerPriceCalc_2
eBayFee
LengthConvertors
TicketingApplication 1
TicketingApplication 2
TaxApplication

DIY - graded activities-to develop a programing solution for a given problem

DIY

M
od

ul
e

1-
 V

ar
ia

bl
e,

 D
at

a t
yp

es
,

Sc
an

ne
r m

et
ho

ds
M

od
ul

e
3

- L
oo

ps
M

od
ul

e
4-

 M
et

ho
ds

DIY

DIY

M
od

ul
e

2
- D

ec
isi

on
 St

ru
ct

ur
es

DIY

List of Practice Activities used in the assignments
 and the problem solving skills/strategies they target

Practice Activities on pre-written code -graded
Ungraded- but students could use these skills

Journal of Information Systems Education, 34(1), 1-15, Winter 2023

15

Appendix D. Sample Rubric Used to Assess and Provide Feedback on the DIY Assignment Problems for Each of the Four
Modules

Note: Assignments 4, 5, and 6 cover contents of Modules 2, 3, and 4, respectively.

Student is able
to write
 the order of
statements
correctly, as
 required to
meet the
requirements of
the problem

Student is able
to identify
 the correct
type of
statements
required to
solve the
problem

Student is able
to
identify the
correct type of
expressions to
compose the
statements

Student is
able to
 write all the
expressions
correctly

Student is
able to
correctly
identify the
 variables
and its data
types
required
 to capture
the data in
the problem

Student is
able to
obtain the
required
inputs, as
required by
the problem

Student is able
to correctly
output data as
per the
problem
requirements

Assignment 1:
 i l i t Assignment 2:
Statements
with
 expressions,
input and
output

Assignment 3:
Statements
with
variables,expr
essions, input
and output
Assignment 4:
Statements
with if.else /
switch ,
variables,
expressions,
input and
output
Assignment 5:
Statements
with various
types of
loops,variable
s,
expressions,
inputs and
outputs
Assignment 6:
Statements
with if..else,
loops,
variables,
expressions,
inputs and
outputs

Information Systems & Computing Academic Professionals

Education Special Interest Group

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2023 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN: 2574-3872 (Online) 1055-3096 (Print)

	JISE 2023 34(1) 1-15 First Page
	a-2111142TT Final-MGT-LAM
	A. Objectives of the Course:
	B. Catalog Description:

	JISE 2023 34(1) Copyright ISSN

