

Journal of
Information
Systems
Education

Volume 33

Issue 2
Spring 2022

Apply Small Teaching Tactics in an Introductory
Programming Course: Impact on Learning Performance

Yabing Jiang

Recommended Citation: Jiang, Y. (2022). Apply Small Teaching Tactics in an
Introductory Programming Course: Impact on Learning Performance. Journal of
Information Systems Education, 33(2), 149-158.

Article Link: https://jise.org/Volume33/n2/JISE2022v33n2pp149-158.html

Initial Submission: 22 November 2020
Accepted: 12 May 2021
Published: 15 June 2022

Full terms and conditions of access and use, archived papers, submission instructions, a search tool, and

much more can be found on the JISE website: https://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

https://jise.org/Volume33/n2/JISE2022v33n2pp149-158.html
https://jise.org/

Journal of Information Systems Education, 33(2), 149-158, Spring 2022

149

Apply Small Teaching Tactics in an Introductory

Programming Course: Impact on Learning Performance

Yabing Jiang
Department of Information Systems & Operations Management

Lutgert College of Business
Florida Gulf Coast University
Fort Myers, FL 33965, USA

yjiang@fgcu.edu

ABSTRACT

Small teaching approaches are well-structured, incremental teaching improvement techniques supported by research in cognitive
science, memory, and learning. I systematically implement a series of small teaching activities in an introductory programming
course to tackle the teaching and learning challenges faced by instructors and students. The small teaching activities are designed
to promote effective learning strategies such as knowledge retrieval, spacing-out practice, and interleaving learning. I examine the
impact of such approaches on students’ performance through comparative analyses. The test results indicate that small teaching
approaches are effective in improving students’ lower- and higher-level thinking skills and help boost students’ long-term
knowledge retention. Because the small teaching approaches are flexible and easy to implement, instructors teaching technical
information systems topics can quickly integrate at least some small teaching activities into their classes.

Keywords: Small teaching, Teaching effectiveness, Student performance, Active learning, Introductory programming

1. INTRODUCTION

Programming fundamentals and programming languages are
subtopics within the information systems (IS) body of
knowledge specified in the undergraduate IS model curriculum
(Gorgone et al., 2003; Topi et al., 2010). At many business
schools, an introductory programming course is often
designated as a core or an elective course for undergraduate
students majoring or minoring in IS, and it typically teaches an
object-oriented programming language, such as C++, Java, or
Python. Regardless the choice of language, these courses are
often considered to be challenging to teach by instructors and
difficult to pass by students (Beise et al., 2003; Gill & Holton,
2006; Mok, 2014; Sengupta 2009; Woszczynski et al., 2005).

Introductory programming textbooks often teach
programming in a problem-driven way; they focus on problem
solving rather than syntax (Liang, 2015). Instructors can rarely
teach programming concepts and techniques by just discussing
the concepts and rules. Instead, they often use examples that
represent different application areas such as business, gaming,
and science. This means students must not only learn how to
use a new language—mastering rules, concepts, and syntaxes—
but also develop applications to solve problems. Many students
often have a hard time understanding the abstract aspects of
programming and are unable to develop coding solutions
because they do not have adequate analytic-thinking and
problem-solving skills. Additionally, a solid grasp of materials
discussed early is a must for successful learning of new subjects
for any programming languages. Students who do not fully

understand programming conventions, such as basic rules and
syntaxes, or leave their issues on logic, selection, and loops
unresolved will quickly find it challenging to learn new
subjects. Poor performance on earlier fundamental subjects will
snowball into a formidable mountain of cumulated coding
errors later, leading to escalated frustrations and quick
disengagement from the course (Cavaiani, 2006; Mok, 2014;
Sengupta, 2009).

Similar instructional and learning challenges are also found
in other IS curricula, such as introductory IS (Riordan et al.,
2017), database analysis and design (Connolly & Begg, 2006),
business analytics (Saundage et al., 2016), business process
integration and enterprise systems (Seethamraju, 2011), and
systems analysis and design (Parker et al., 2005). Teaching
business students technical IS subjects with traditional lecturing
and learning methods is challenging and less effective. As a
result, IS faculty have been actively exploring and testing
various pedagogical approaches to enhance student engagement
in coursework and improve student competency and
performance. For example, Zhang et al. (2013) examine the
effectiveness of two teaching approaches used in an
introductory programming course, one with both lectures and
assignments and the other with only assignments. They find that
the assignment-only teaching approach produces a significantly
higher score improvement than the more traditional approach.
Mok (2014) experiments with the flipped-classroom approach
in a programming course and finds that it encourages student
engagement and is positively received by students. Frost et al.
(2015) study the effectiveness of gamification of a learning

mailto:yjiang@fgcu.edu

Journal of Information Systems Education, 33(2), 149-158, Spring 2022

150

management system (LMS) in a core IS course in increasing
student interest, learning, motivation, satisfaction, and
perception of pedagogical effect. Seethamraju (2011) examines
the impact of an ERP simulation game on teaching and learning
and finds that the simulation game improves students’ abilities
and contributes to deep learning. Saundage et al. (2016)
demonstrate that a learning environment that combines
interactivity, visualization, and narratives can help improve
student learning outcomes and engagement in a business
analytic course. Riordan et al. (2017) find some positive
outcomes in a redesigned introduction to IS core course, which
is contextualized in a simulated environment and filled with
role-playing activities that focus on experiential and active
learning.

What these suggested teaching approaches and methods
have in common is that they often require a fundamental
redesign of content delivery methods, learning activities,
assessments, or even the learning management systems.
Instructors must not only spend extensive time and efforts to
create the redesigned courses, but also put in extra efforts in
implementing and delivering the redesigned courses.
Furthermore, some redesigns, such as simulation games or
gamification of LMS, may require additional financial and/or
technical support from the departments. Drastic course
redesigns also demand extra effort from students, who are often
unfamiliar with these new approaches. As a result, instructors
often hesitate to initiate major transformations to a course.

Applying small teaching techniques to teach IS courses, in
comparison, is an effective alternative that does not require
fundamental course redesign. Small teaching is “an approach
that seeks to spark positive change in higher education through
small but powerful modifications to our course design and
teaching practices” (Lang, 2016, p. 5). The principle behind
small teaching techniques is that significant instructional and
student performance improvement can be accomplished by
incorporating incremental changes in courses instead of
conducting dramatic redesigns. While educators have
experimented with different small teaching approaches in
various disciplines from K-12 to higher education, small
teaching is still a rarely studied subject in IS education
literature. The purpose of this research is to study the efficacy
of applying small teaching techniques to teach technical IS
subjects. There are three main objectives of this paper. First, it
reviews learning strategies and small teaching techniques that
are tested and proven to be effective in improving student
learning. Second, it demonstrates how to implement several
small teaching techniques in an introductory programming
course. Third, it examines the effectiveness of the adopted small
teaching approaches in improving student performance and
makes recommendations on applying small teaching techniques
in IS curriculum.

The remainder of the paper is organized as follows. In the
next section, I present a review of principles of learning and
discuss the associated small teaching techniques, based on
which I develop my hypotheses. In section 3, I discuss the
research methodology, including course background, course
redesign, data collection, and data analysis. Results of
hypothesis testing are also presented. Following that, I discuss
the findings, their implications, and directions for future
research in section 4. I conclude the paper with
recommendations in section 5.

2. PRINCIPLES OF LEARNING, SMALL TEACHING
TECHNIQUES, AND HYPOTHESES DEVELOPMENT

To succeed in any IS program, students need to adopt the deep
learning approach instead of relying on surface learning, an
easier approach that may have worked for them in the past. With
surface learning, students concentrate on learning the text itself
and memorizing the facts; with deep learning, however,
students focus on comprehending the meanings conveyed in the
text (Marton & Saljo, 1976). Learners who take the deep-
learning approach reflect on what they have read and relate new
information to what they already know to develop
understanding, rather than focusing on memorization. To
develop effective teaching approaches and promote more
student learning, instructors must understand the evidence-
based principles of learning, encourage deep learning, and
educate students on how to study efficiently.

2.1 Principles of Learning
Learning means “acquiring knowledge and skills and having them
readily available from memory so you can make sense of future
problems and opportunities” (Brown et al., 2014, p. 2). We all
know the saying that “practice makes perfect,” but simple
repetition does not necessarily enhance learning. Massed
practices, referring to a learning approach of single-minded, rapid-
fire repetition of subjects, such as practicing one type of problem
or reading/reviewing text and notes repeatedly, are widely adopted
by students and educators, but proven to be less productive
(Callender & McDaniel, 2009; Karpicke et al., 2009; McCabe,
2011). The familiarity with, or even fluency in, the underlining
subjects gained through such massed practices can create an
illusion of learning, but does not translate into actual
understanding and mastery of the ideas behind the subjects or how
they relate to pre-existing knowledge. Anecdotally, I frequently
observe that students in my introductory programming course
often have no questions and feel confident that they have mastered
the subjects after a few in-class coding practices. However, most
of them are puzzled by assignments that are similar to what they
have practiced in class but require them to apply what they have
learned in multiple classes.

Instead of performing massed practices, students can
benefit greatly by adopting more effective learning strategies
such as retrieval, spacing-out practices, and interleaving
learning. Retrieval practices, such as flashcards, require
students to recall what they have read or learned from memory.
Quizzes, whether they are self-quizzes or graded quizzes, are a
powerful form of retrieval practice because they force students
to recall what they have learned (Roediger & Karpicke, 2006;
Wheeler & Roediger, 1992). Elaboration practices, asking
learners to explain the new material using their own words, also
require learners to practice knowledge retrieval and can help
them develop understanding, integrate concepts, and connect
new learning to previous material. Retrieval activities that
require students to put more thought into their answers, such as
completing short-answer questions, can produce better learning
outcomes than activities that are less effortful, such as
answering multiple-choice questions (Butler & Roediger, 2007;
Kang et al., 2007; McDaniel et al., 2007).

Spaced practices are retrieval practices that are purposely
spaced-out. They have been proven to be even more effective,
as they allow for potential forgetting in between sessions and
require more cognitive effort from learners (Carey, 2015;

Journal of Information Systems Education, 33(2), 149-158, Spring 2022

151

McDaniel et al., 2011; Roediger et al., 2011). In a study
conducted on 38 surgical residents, randomly assigned into two
groups, Moulton et al. (2006) compared the effectiveness of two
approaches teaching microvascular anastomosis: an intensive
one-day session (massed practice) covering four lessons versus
a spaced-practice approach covering one lesson a week for four
weeks. They found that the spaced-instruction produced better
outcomes in all aspects measured, because the increased effort
required for students to retrieve the learning helped them further
embed the learning in their long-term memory, leading to
durable learning.

Another effective alternative to massed practice is
interleaving. “Interleaving refers to the practice of spending
some time learning one thing and then pausing to concentrate
on learning a second thing before having quite mastered that
first thing, and then returning to the first thing, and then moving
onto a third thing, and then returning to the second thing, and
so forth” (Lang, 2016, p. 68). Interleaved approach is like a
form of spiraling because learners add new layers of learning
each time they iterate through the material. Interleaving
promotes long-term retention because it involves spacing-out
learning sessions over time and mixing-up varied learning
activities. This approach forces students to practice how to
select and apply the correct solutions for different types of
problems and helps them develop a deeper understanding of the
associated underlying principles and rules such that they are
more capable of choosing the right solutions in unfamiliar
situations (Birnbaum et al., 2013). In an experiment conducted
on 18 college students, Rohrer and Taylor (2007) showed that
the interleaving approach, introducing four models of
mathematics problems together and letting students practice
how to solve problems involving one of the four types in a
random order, produced a significantly better test outcome a
week later than the massed practice approach, which teaches
one model and lets students practice it repeatedly before
moving on to the next model. Studies in different contexts have
further shown that interleaving outperforms massed practice in
long-term retention and conceptual learning because it helps
learners develop understanding of interrelationships of
elements (Goode et al., 2008; Jacoby et al., 2010; Kang &
Pashler, 2012; Kornell & Bjork, 2008).

Each retrieval practice deepens the neural pathway to the
subject in memory, making it readily available for future use
(Zull, 2002). Even though massed practice may lead to higher
scores on an immediate test, a reason why it is widely accepted
and practiced, the resulting learning is often shallow (i.e.,
illusion of mastery) and not lasting since it leans on short-term
memory and promotes short-term learning. Retrieval practices,
especially when spaced out and interleaved, call for more
cognitive effort and are more challenging to perform. They may
seem to be less productive during the practice, compared to
massed practices, but they result in stronger learning, long-term
retention, and versatile application of knowledge solving
known and new problems (Brown et al., 2014).

Rather than letting students pursue the familiar massed
practices, IS instructors should encourage students to purposely
practice retrieving knowledge from memory when studying.
For example, rephrasing the main ideas in their own words after
reading the text, or completing self-check questions in the book.
Furthermore, instructors can incorporate retrieval practices in
course design and content delivery to improve learning, and

these can be done incrementally through small teaching
techniques, all within the control of instructors.

2.2 Small Teaching Techniques
Lang (2016) categorizes small teaching approaches into three
forms. Approach #1: incorporate a brief classroom learning
activity, lasting 5 to 10 minutes, at the beginning or end of a
class. Such activities, which occupy a small portion of a class,
are designed to capture students’ attention, promote student
engagement, and enhance student learning. Approach #2:
conduct a one-time course intervention activity, occupying an
entire class period. Such activities could be a session for
mindful practice or discussion/debate; a session to create a brief
thesis, helping students see the big picture and connections of
various subjects discussed; or a session to develop a concept
map, helping students visualize the organization of key
concepts. These may be a new format, requiring additional
preparation compared to regular sessions, but are only used a
single time in the semester, accounting for only a small portion
of the course. Approach #3: introduce small modifications in
course design or communication with students. Such minor
changes could be in course and assignment description, course
schedule modification, or responses and feedback to students—
all of which focus on promoting mindful learning and do not
require radical redesign of a course.

Through such small, incremental changes, instructors can
provide ample opportunities for students to practice retrieval of
older knowledge, compare and connect new and old material,
and apply knowledge to new contexts, all with the goal of
improving learning and boosting long-term retention. In
contrast to drastic approaches that demand significant instructor
time and effort to prepare course redesign before the beginning
of a semester, each of these small teaching approaches can be
designed and implemented right away with limited preparation,
and none of them require extra financial or technical support.
Additionally, they are accessible to instructors of all ranks and
disciplines and are flexible for implementation in a specific
class session, in the middle of a semester, or throughout a
semester. Adopting small teaching techniques in course design
and delivery is by no means an inferior choice compared to
teaching techniques that require big changes such as flipped
classroom or simulation games. These small teaching
techniques are well-structured teaching strategies that are built
upon solid research on learning and education and are proven
to produce better student learning outcomes than overprepared
lectures (Ambrose et al., 2010; Brown et al., 2014; Lang, 2016;
Miller, 2014). These techniques have been implemented,
studied, and proven to be effective in various disciplines such
as art (Kang & Pashler, 2012; Kornell & Bjork, 2008),
chemistry (Rogerson, 2003), math (Rohrer & Taylor, 2007),
medicine (Moulton et al., 2006), psychology (Leeming, 2002),
and social studies (McDaniel et al., 2011).

2.3 Hypotheses
Bloom’s Taxonomy represents individuals’ cognitive processes
on a continuum of increasing cognitive complexity, from lower-
level thinking, such as remembering and understanding, to
intermediate and higher-level thinking, like applying,
analyzing, evaluating and creating (Bloom et al., 1956;
Krathwohl, 2002). While introductory programming courses
mostly cover the fundamental programing concepts and
techniques, the teaching objectives have never been limited to

Journal of Information Systems Education, 33(2), 149-158, Spring 2022

152

simply memorizing these basics but have focused more on
developing understanding of the course materials and applying
learning to create coding solutions to business problems.
Hence, to do well, students must go beyond employing lower-
order thinking skills.

In this study, I examine whether small teaching approaches
that emphasize highly effective learning strategies—retrieval,
spacing-out practice, and interleaving learning can help
students improve lower- and higher-order thinking skills and
retain knowledge longer in an introductory programming
course. Psychologists have discovered that the more learners
practice retrievals and the more effort they must exert to such
retrieval practices, the better and deeper they learn and retain
knowledge for long-term (Brown et al., 2014). To be effective,
retrievals need to be practiced repeatedly. Hence, instead of
experimenting with just one or two small teaching activities for
one class session, I developed and implemented a series of
small teaching activities that emphasize these effective learning
strategies in multiple sessions.

Rather than separating the effectiveness of each small
teaching activity or learning strategy, I am interested in
examining the collective effect of implementing various small
teaching activities on student performance. Prior research has
found that retrieval practice strengthens the memory and boosts
knowledge retention; spacing-out practice requires more effort
from learners, leading to stronger learning; and interleaving
learning creates opportunities for learners to connect and apply
old knowledge to new material and contexts, helping them
develop understanding and engage in higher-order thinking
tasks (Brown et al., 2014; Lang, 2016; Zull, 2002). Hence, I
hypothesize the following:
• Hypothesis 1 (H1): Small teaching approaches that mix

up retrieval activities with spacing-out and interleaving
practices will help improve students’ lower- and
intermediate-level thinking skills in an introductory
programming course.

• Hypothesis 2 (H2): Small teaching approaches that mix
up retrieval activities with spacing-out and interleaving
practices will help improve students’ higher-order
thinking skills in an introductory programming course.

• Hypothesis 3 (H3): Small teaching approaches that mix
up retrieval activities with spacing-out and interleaving
practices will help improve students’ long-term
performance in an introductory programming course.

3. RESEARCH METHOD

3.1 Course Background
To test the hypotheses, an introductory programming course in
a mid-sized public university in the southeast region of the
United States was used to collect data. The course, titled
“Introductory Business Programming,” introduces students to
basic Java programming and has been offered in the college of
business as a required course for IS majors and as an elective
for IS minors for many years. Most of the students registered in
this course are juniors or seniors. This course uses Daniel
Liang’s “REVEL for Introduction to Java Programming,” an
animated, interactive digital version of Liang (2015). It covers
the following chapters from the textbook: (1) Introduction to
Computers, Programs, and Java, (2) Elementary Programming,
(3) Selections, (4) Mathematical Functions Characters, and
Strings, (5) Loops, (6) Methods, (7) Single-Dimensional

Arrays, (9) Objects and Classes, (10) Object-Oriented
Thinking, and (11) Inheritance and Polymorphism. Upon
successful completion of the course, students should be able to
comprehend and apply the basic object-oriented programming
concepts and techniques to create applications that solve simple
business problems.

One section of the course is offered in both the spring and
fall semesters. All sections meet in class twice a week, each for
75 minutes, for 15 weeks. This course uses both individual
homework assignments and quizzes to assess learning. Students
are informed through the syllabus that the course promotes a
student-centered, active-learning approach, under which the
lecture session only focuses on explaining key concepts and
addressing students’ questions, and most of the class time is
allocated to hands-on activities to enhance students’
understanding of concepts.

3.2 Course Redesign
For this study, the course contents and main course delivery
approach were identical in all sections, except that several small
teaching techniques were implemented in an experimental
section. I used a short presentation in the experimental section
to introduce students to retrieval practices, such as interleaving
and elaboration, and to inform them that the class will adopt
retrieval and interleaving practices.

I often used the first few minutes to review materials
covered in the previous session and used the last few minutes
to summarize materials discussed for that session. Instead of
doing these learning tasks for students, I switched to letting
students conduct the review and summary through a series of
specially designed retrieval activities in the experimental
section to engage more students to actively practice retrieval.
Table 1 summaries a few of such small teaching activities. For
each of these retrieval exercises, I reviewed answers and
provided feedback on students’ submissions either in the same
or the next session.

Additionally, spacing-out practices and interleaving
learning were also purposely incorporated in several sessions.
I, having taught the course for many years, observed that
students often struggle with selection statements and loops,
which are the foundational programming subjects taught at the
beginning stage of the course. Some also struggle with the more
abstract subjects, such as methods and classes. Hence, I
designed small teaching activities to target these problem areas.
For example, four class sessions were dedicated for loop
structures (Ch5). During the first session, the three loop
structures were introduced one by one, and the loop-design
strategy was also discussed. Students then practiced on solving
a problem three times, using a different loop each time. In the
following three sessions, students practiced solving the same set
of problems used in the control sections, but each problem was
coded three times using a different loop during the same class
session, i.e., these activities purposely used interleave learning
and space-out retrieval practices. In comparison, for the control
sections, the first class focused only on the while-loop structure
and how to design a while loop. Students then practiced
designing a while-loop in three examples. The second class
introduced the do-while loop, and students practiced designing
both the while and do-while loops with examples. The third
class focused only on the for-loop, and the fourth class
summarized all three loops and the remaining materials of the
chapter. Interleaving and spacing-out practices were purposely

Journal of Information Systems Education, 33(2), 149-158, Spring 2022

153

not implemented. As a result, for the experimental section, the
class discussed and compared the three loop structures in
multiple sessions whereas for the control sections the class only
did it in one session.

Similarly, when covering methods and classes, I purposely
introduced most key concepts during the first session for the
experimental section. In comparison, for the control sections, I
spread out discussions of key concepts into multiple sessions.
Thus, for the experimental section, the main concepts were
demonstrated, retrieved, and further explained in multiple
sessions.

3.3 Data Collection
I implemented small teaching techniques in a spring semester.
To test the hypotheses, student data from three consecutive
spring semesters were collected, with two sections of 15 and 20
students in the earlier semesters as the control group and the
small teaching experiment (STE) semester of 20 students as the
test group. This course switched to the Python language after
the experimental semester, and as a result, only one section was
used as the test group. To be more comparable with the test
group, previous spring sections were used as the control group
because fall sections usually have a bigger class size (35 to 40
students) and a different student dynamic (such as the numbers
of transfer students and older students pursuing a second
career).

All sections of the course were taught by me. The only
instructional difference between the control and the STE
sections was that several small teaching activities (as described
in section 3.2) were implemented in the latter. Hence, student
performance data on a series of common individual assessments
for the two groups were collected, and comparisons of the
means of students’ grades were used to test the hypotheses.
Specifically, student data on three quizzes, three homework
assignments, and one cumulative exam were collected. The
quizzes and assignments were assigned at different points of the
course after the assessed chapters had been discussed (see the
subjects and assessments mapping in Table 1). Each of these
collected quizzes was worth 2 points; each assignment was
worth 3 points; the cumulative exam was worth 15 points; and
the total points for the course were 100. For both the control

and STE groups, the quizzes and the exam were auto-graded by
Canvas, a learning management system, and the assignments
were graded by me, following the same rubrics.

All quizzes were composed of multiple-choice and
multiple-answer types of questions, and they were administered
through Canvas. Students did not need to write code when
taking quizzes. However, there were some problem-solving
types of questions that required them to analyze code, interpret
code, identify coding errors, and compare coding approaches to
select the correct answers. That is, quizzes were not limited to
lower-order thinking such as recalling and understanding, but
also required some degree of intermediate-level thinking such
as applying and analyzing. Therefore, student data on the three
quizzes were used to test H1.

Each assignment required students to develop
programming code to solve a given problem. Students were
expected to analyze the problem, apply programming concepts
and procedures that they have learned, evaluate possible
alternative approaches, and perform further analysis and
evaluation to debug code. Thus, assignments required students
to apply higher-order thinking skills as defined in the updated
Bloom’s taxonomy (Krathwohl, 2002). Student data on the
three assignments were used to test H2.

For the cumulative exam, 49 out of the 60 test questions
were on subjects that were taught at least four weeks before the
exam. Hence, student data on the exam were used to test H3.

3.4 Data Analysis and Hypothesis Test Results
Two datasets were obtained for this study. Table 2 presents the
descriptive statics of the control and STE groups on quizzes,
assignments, and the exam. Here, N refers to the group size for
the assessed item. The analysis was based on available data
since not all students submitted all the assessment items and
missing submissions provide no information regarding
students’ performance. A simple comparison of the means of
the students’ grades for the two groups shows that students in
the STE section performed better than students in the control
sections on all the quizzes and the cumulative exam. Also,
students in the STE group performed better than students in the
control group on assignments #3 and #4, but students in the

Subjects and Assessments Sample Small Teaching Activities on Retrieval Practice
Ch3 Selection Statement
(assessed in quiz 2 and
assignments #2 and #3)

Write down the syntax of the if-else statement discussed in the previous session.
Summarize the common errors associated with designing if-else statements.
Write down the syntax for the switch statement and compare the switch statement with
the multi-level if-else statements.

Ch5 Loops (assessed in
quiz 2 and assignment #3)

Summarize the loop-design strategy that applies to all three types of loops.
Write down the pseudocode for each loop structure.
Compare the three loop structures, while, for, and do-while, and discuss when to use
which type.

Ch6 Methods (assessed in
quiz 3 and assignment #3)

List and describe the methods that you have been using prior to Ch 6.
Summarize the method structure introduced in the previous session.
Write down the syntax for method header and explain each element.

Ch9 and Ch10 Objects and
Classes (assessed in quiz 4
and assignment #4)

List and describe the classes that you have been using prior to Ch 9.
Summarize the class structure introduced in the previous session.
Define the UML (unified modeling language) diagram for a Student class.
Summarize the properties of constructors and write down every property that you can
recall regarding classes.

Table 1. Sample Small Teaching Activities on Retrieval Practice

Journal of Information Systems Education, 33(2), 149-158, Spring 2022

154

control group performed slightly better than students in the STE
group on assignment #2.

Next, I tested whether the two samples were of equal
variance with the Levene’s test to determine which type of t-
test to perform for each assessment. The null hypothesis of a
Levene’s test states that the variances for the two groups are
equal, and the null hypothesis is rejected if the p-value is less
than 0.05. Since the null hypothesis was rejected for quiz 2, quiz
3, the exam, and assignment #3, t-tests for two-sample of
unequal variance were performed on these assessments, and t-
tests for two-sample of equal variance were performed on
others. Table 3 summarizes the results of the Levene’s tests and
the corresponding t-tests.

Because quizzes assessed students’ ability of recognizing
the correct answer through recalling definitions, contrasting
options, analyzing and interpreting code, and identifying errors,
the three quizzes were used to test H1 that small teaching
approaches help improve students’ lower- and intermediate-
level thinking skills. The two-sample t-tests indicated that the
means of the STE group were statistically significantly higher
(at p < 0.1 level) than that of the control group for quiz 3 and
quiz 4, whereas the STE group’s improvement on quiz 2 was
not significant. Thus, H1 was weakly supported by two of the
three quizzes.

The two-sample t-tests on assignments indicated that
students in the STE section performed statistically significantly

better than that of the control sections on assignment #3 (at p <
0.05 level) and assignment #4 (at p < 0.1 level). For assignment
#2, the control group performed better, but the difference was
not statistically significant. Each of these assignments required
students to apply higher-level thinking skills to create coding
solutions for a problem, and hence they were used to test H2.
Past student data and student feedback showed that they
considered assignment #3 as the most complicated assignment
as it required students to develop multi-level if-else statements,
both a for-loop and a while- (or do-while) loop, and four
methods. In the STE section, spacing-out practice and
interleaving learning were purposely implemented when
covering subjects assessed in assignments #3 and #4. The two-
sample t-test on assignment #3 provided a statistically strong
support for H2 whereas the test on assignment #4 only provided
a statistically weak support for H2, though results of assignment
#2 did not support H2.

The two-sample t-test indicated that the mean of the STE
group on the cumulative exam was significantly higher (at p <
0.05 level) than that of the control group. Because the only
instructional difference between the STE and the control
sections was that the former implemented small teaching
techniques, this test result provided a statistically strong support
for H3 that the small teaching approaches help improve
students’ long-term performance.

 quiz2 quiz3 quiz4 #2 #3 #4 exam
STE Control STE Control STE Control STE Control STE Control STE Control STE Control

N 20 33 20 32 19 31 20 32 20 33 20 28 20 32
Mean 1.52 1.40 1.45 1.28 1.59 1.46 2.60 2.62 2.76 2.46 2.91 2.77 12.07 11.02
Median 1.60 1.50 1.52 1.23 1.60 1.46 2.60 2.70 3.00 2.80 3.00 3.00 12.11 11.34
Std Dev 0.26 0.54 0.32 0.46 0.26 0.32 0.36 0.34 0.34 0.66 0.26 0.42 1.48 1.97
Variance 0.07 0.29 0.10 0.22 0.07 0.10 0.08 0.06 0.08 0.11 0.06 0.08 2.20 3.89
Std Err 0.06 0.09 0.07 0.08 0.06 0.06 0.13 0.12 0.12 0.44 0.07 0.18 0.33 0.35
Min 0.88 0.33 0.66 0.45 0.88 0.84 1.50 1.70 2.20 0.70 1.85 1.40 9.25 7.64
Max 1.90 2.00 1.88 1.98 1.90 2.00 3.00 3.00 3.00 3.00 3.00 3.00 14.13 14.38
1st
quartile

1.32 1.00 1.37 0.86 1.47 1.21 2.50 2.50 2.48 2.00 2.98 2.80 11.53 9.12

3rd
quartile

1.63 1.90 1.63 1.66 1.77 1.68 2.85 3.00 3.00 3.00 3.00 3.00 13.14 12.71

Table 2. Descriptive Statistics for Quizzes, Assignments, and the Exam

 Levene’s Test for
Equality of
Variances

 t-test for
Equality of Means

Hypothesis
tested

Assessments F P-value t Stat df Sig (one-tail) Mean Diff

H1 quiz 2 10.2296 0.0024*** 1.1039 49 0.1375 0.1214
H1 quiz3 8.4061 0.0055*** 1.6401 49 0.0537* 0.1787
H1 quiz4 1.8820 0.1765 1.5200 48 0.0675* 0.1309
H2 #2 0.0199 0.8883 -0.1894 50 0.5747 -0.0187
H2 #3 4.9939 0.0298** 2.1964 50 0.0164** 0.3024
H2 #4 1.8588 0.1794 1.3634 46 0.0897* 0.1446
H3 exam 4.6161 0.0365** 2.1836 48 0.0170** 1.0513
*p<0.1, **p < .05, ***p < .01

Table 3. Results of Levene’s Tests for Homogeneity of Variance Based on the Median and
Comparisons of Means of Assessments between the STE and Control Group

Journal of Information Systems Education, 33(2), 149-158, Spring 2022

155

4. DISCUSSION

4.1 Implications of Findings
The results of independent samples’ t-tests showed that students
in the STE section performed statistically significantly better
than students in the control sections on five out of the seven
tested assessments. These findings have important practical
implications. First, small teaching approaches can help improve
not only students’ lower-level thinking skills (H1, supported by
tests on quizzes 3 and 4) but also their higher-level thinking
skills (H2, supported by tests on assignments #3 and #4). As
part of the implemented small teaching techniques, repeated
retrieval activities helped students retrieve knowledge and
develop understanding better because they forced students to
practice recalling and summarizing key programming concepts,
rules, and basic syntax. Naturally, good lower-order thinking
skills provide the imperative foundation for developing higher-
order thinking skills. Spaced-out practices and interleaved
learning activities further provided opportunities for students to
develop higher-order thinking skills, because they not only let
students practice retrieving older knowledge, but also relate
new subjects to what they already knew, differentiate and select
appropriate tools, learn to apply knowledge to new contexts,
organize and design coding elements, and create coding
solutions to presented problems.

Second, small teaching approaches can help boost students’
long-term knowledge retention (H3, supported by the test on the
cumulative exam). In this study, I designed small teaching
activities to engage all students to respond to short-answer
questions or solve problems; solutions were not directly
presented to students. These small teaching approaches focused
on active learning, which is more effectual in motivating and
engaging students (Prince, 2004). They were more effective in
producing stronger and long-lasting learning benefits,
compared to simply presenting students with answers
(traditional lecturing) or practicing with multiple-choice
questions. They required students to not only recall knowledge
but also generate the answers, and hence were more challenging
to practice, demanding more learning efforts from students, but
can also lead to complex mastery and deeper and long-lasting
understanding. Repeated practices of such small teaching
activities can strengthen students’ memory of the course subject
for the long term and boost their abilities to recall and apply it
for future use.

Third, small teaching approaches need to be practiced
repeatedly to gain students’ acceptance and to obtain better
learning outcomes. In this study, assignment #2 and quiz 2 were
the first two assessments administered after I began practicing
small teaching approaches, and they were the only assessments
that did not provide a significant support for the tested
hypotheses. Students might be new to the effective learning
strategies promoted by small teaching, and it may take repeated
practices for them to adapt to and engage in retrieval practices
to achieve performance improvement, evidenced by their
significant performance improvements on the next five

assessments. Introducing students to the evidence-based
effective learning strategies and informing them of the small
teaching approaches adopted for the course may help raise their
awareness, and making retrieval exercises as low-stake
assessments may help promote students’ buying-in. Regularly
reminding students to draw the connections between the coding
exercises and the concepts discussed and asking them to
elaborate on what they are doing and why may also help in
establishing students’ acceptance of the small teaching
approaches and improving their overall learning performance.

Fourth, a comparison of the students’ performance data
indicates that the small teaching approaches are effective in
improving student performance, especially for students in the
bottom-half of the class. For quizzes and the exam, the STE
group not only had a higher mean score, but also a higher
median than the control group. In fact, the score ranges for the
bottom-half of the students of the STE group were much higher
than that of the control group on all quizzes and the exam (see
Table 2). Similarly, students of the STE group performed better
than that of the control group on assignments #3 and #4, mostly
because the performance of the bottom-half of the students had
improved significantly. This could imply that the small teaching
approaches have helped the less able and moderately able
students the most. One reason could be that not all students are
accustomed to the effective learning strategies. The
implemented small teaching activities may have helped
students realize the actual state of their learning, i.e., what they
did and did not know, and informed them where to focus on for
further study. It is important to provide timely review and
feedback so that students know and understand the answers and
the correct approaches.

Overall, findings of this study indicate that small teaching
approaches are effective in improving students’ lower- and
higher-level thinking skills in the introductory programming
course. The applied changes in course design and content
delivery are all small and manageable, but they do require some
preparation by the instructors, such as designing the questions
used for retrieval practice, rearranging the sequence of subjects
to space out retrievals and interleave learning, and modifying
class plans to accommodate these changes. Instructors also need
to grade submissions of retrieval exercises to identify gaps in
student learning and to provide feedback and targeted reviews.
Because the small teaching approaches are flexible and easy to
implement, instructors who are teaching programming or other
IS courses can quickly integrate at least some small teaching
activities into their classes.

4.2 Limitations and Future Research
The findings of this study demonstrate that small teaching
approaches improve student learning in an introductory
programming course. This research, by design, has controlled
potential influencing factors such as the differences in
instructors and course content. However, it still has a few
limitations. First, the sample was limited to the students taking
a specific introductory programming course across multiple

 Programming Skill Levels
Total High Intermediate Some or limited Weak Entry or novice Basic Min/very min Little/no experience

STE 15 0.00% 0.00% 0.00% 13.33% 13.33% 0.00% 40.00% 33.33%
Control 1 15 6.67% 0.00% 6.67% 0.00% 40.00% 6.67% 0.00% 40.00%
Control 2 19 0.00% 5.26% 5.26% 0.00% 31.58% 15.79% 21.05% 21.05%

Table 4. Summary of Student Self-Reported Programming Skill Levels

Journal of Information Systems Education, 33(2), 149-158, Spring 2022

156

semesters. The control group included two sections for a good
sample size. In comparison, the sample size for the STE group
was small, though not untenable for the statistical tests of
hypotheses depicted here (Moulton et al. 2006; Zhang et al.
2013). Expanding the study to other IS courses with larger
samples will help further validate the findings and provide
support for the general effectiveness of small teaching
techniques in improving student performance.

Second, it was assumed that students in the two groups were
comparable in their overall abilities, but students’ GPAs were
not collected to validate this assumption. Nevertheless, during
the first week, students self-reported their programming skill
levels, which are summarized in Table 4.

For the STE section, 15 students reported. For the control
group of two sections, 15 and 19 students reported. As indicated
in Table 4, students of the STE section had no better prior
programming skill levels than that of the control group. From
my subjective observations, the students in each group were
comparable in their ability of learning. In this study, students in
the STE section were taught in the same way as the students in
the control group for chapters 1 and 2 since the implementation
of small teaching activities began with chapter 3. I analyzed
student performance data on two more assessments, quiz 1 and
assignment #1, which covered subjects discussed in chapters 1
and 2. A comparison of the means of students’ grades for the
two groups showed that the STE section had a higher mean on
quiz 1 (1.62 vs. 1.55) but a lower mean on assignment #1 (2.78
vs. 2.80) than the control sections. The two-sample t-tests,
however, showed that none of these differences were
statistically significant (quiz 1: df = 49, t = 1.02263, p =
0.15575; #1: df = 51, t = -0.22552, p = 0.58876). Since students
performed similarly when there were no instructional
differences, this provides some support that students in the two
groups were comparable in their overall ability.

Student feedback was not incorporated into this research to
evaluate their opinions on the small teaching approaches. It is
possible that some students were more engaged in small
teaching activities than others. This research focuses on
studying the impact of small teaching on the overall
performance of the whole student group. Taking a different
research direction, future studies can include a student survey
to evaluate students’ opinions on small teaching activities,
whether these teaching approaches have changed their learning
behaviors, and how students’ opinions and changes in learning
behaviors have affected their individual learning performance.
For this study, I adopted the active-learning approach for both
the control and STE sections. It is possible that students who
are exposed to the active-learning approach may be more
receptive to the small teaching approaches. Future research
could examine and compare the effectiveness of small teaching
on courses with and without active-learning. Additionally, this
research focuses on implementing small teaching approaches
#1 and #3, not because they are easier to carry out but because
they are more suitable for the introductory programming course
and can generally be applied to other IS courses. One can think
of approach #2 as a miniature of a teaching approach that
requires dramatic course redesign, such as gamification, since
instructors only need to use whatever the chosen course
intervention activity once rather than throughout the semester.
Future research could study the implementation and
effectiveness of small teaching approach #2 or a combination
of all three approaches on assorted IS courses.

5. CONCLUSIONS

This paper demonstrates how instructors can tackle the teaching
and learning challenges in introductory programming courses
by systematically implementing small teaching activities that
promote effective learning strategies such as knowledge
retrieval, spacing-out practice, and interleaving learning. The
results of comparative analyses demonstrate that small teaching
approaches are effective in improving students’ lower- and
higher-level thinking skills and help boost students’ long-term
knowledge retention.

The small teaching techniques adopted in this study are
guided by research developments in cognitive science, memory,
and learning. Instead of undertaking a drastic course redesign
that may be time-consuming to develop and implement, small
teaching takes a deliberate and well-structured incremental
approach in course design and content delivery. It is flexible
and easy to implement, making it accessible to instructors of all
ranks and suitable for a face-to-face or virtual setting. While
instructors can control which small teaching approaches to take
and how much small teaching to implement, it is important to
note that retrievals need to be practiced repeatedly in spaced-
out sessions and with some degree of difficulty to achieve
stronger learning and longer retention. Instructors do need to
exert additional efforts to design learning activities, modify
class plans and course schedule, and revise assignments and
assessments, in addition to handling extra grading and
providing feedback. Effective small teaching also requires
students’ cooperation and frequent interaction between the
instructor and the students.

This study demonstrates various examples of small
teaching activities for an introductory programing course. For
instructors interested in adopting small teaching approaches,
they can easily adapt such activities to the contexts of other IS
courses. For example, they can create their own retrieval
practice questions by replacing the programming subjects in
Table 1 with subjects related to their courses. They can also
create their own interleaving learning activities and purposely
space-out retrieval practices by redesigning exercises and
making minor changes in their teaching plans. They can design
assignments requiring students to apply concepts and skills that
they have learned in multiple units. Additionally, instead of
using a midterm and a final exam as the main assessments,
instructors may consider spacing out several major quizzes and
making them all cumulative. Instead of using all multiple-
choice questions, instructors can incorporate more short-answer
or problem-solving types of questions to purposely let students
practice effortful retrievals. They can start with one approach
or one-type of activities and gradually create more activities or
introduce additional approaches. One benefit of the small
teaching approaches is that the created activities and redesigned
assignments can be reused in subsequent terms. Furthermore,
the instructors can transfer small teaching experience gained
from one course to other IS courses with ease.

I encourage IS educators to explore the small teaching
framework, experiment, adapt and develop various formats and
activities that work for their courses, and examine the
effectiveness of small teaching in improving student learning
on assorted IS subjects. Through implementing and promoting
effective learning strategies and active learning, the small
teaching approaches are promising in improving students’
learning of technical IS topics that require deep learning to

Journal of Information Systems Education, 33(2), 149-158, Spring 2022

157

succeed and producing beneficial outcomes for both students
and instructors.

REFERENCES

Ambrose, S. A., Bridges, M. W., DiPietro, M., Lovett, M. C.,

& Norman, M. K. (2010). How Learning Works: Seven
Research-Based Principles for Smart Teaching. San
Francisco, CA: Jossey-Bass.

Beise, C., Myers, M., VanBrackle, L., & Chevli-Saroq, N.
(2003). An Examination of Age, Race, and Sex as
Predictors of Success in the First Programming Course.
Journal of Informatics Education Research, 5(1), 51-64.

Birnbaum, M. S., Kornell, N., Bjork, E. L., & Bjork, R. A.
(2013). Why Interleaving Enhances Inductive Learning:
The Roles of Discrimination and Retrieval. Memory &
Cognition, 41(3), 392-402.

Bloom, B., Engelhart, M., Furst, E. J., Hill, W. H., &
Krathwohl, D. R. (1956). Taxonomy of Educational
Objectives: The Classification of Educational Goals.
Handbook I: Cognitive Domain. London, UK: Longmans.

Brown, P. C., Roediger III, H. L., & McDaniel, M. A. (2014)
Make It Stick: The Science of Successful Learning.
Cambridge, MA: Harvard University Press.

Butler, A. C., & Roediger III, H. L. (2007). Testing Improves
Long-Term Retention in a Simulated Classroom Setting.
European Journal of Cognitive Psychology, 19(4-5), 514-
527.

Callender, A. A., & McDaniel, M. A. (2009). The Limited
Benefits of Rereading Educational Texts. Contemporary
Educational Psychology, 34(1), 30-41.

Carey, B. (2015). How We Learn: The Surprising Truth About
When, Where, and Why It Happens. New York, NY:
Random House.

Cavaiani, T. P. (2006). Object-Oriented Programming
Principles and the Java Class Library. Journal of
Information Systems Education, 17(4), 365-368.

Connolly, T. M., & Begg, C. E. (2006). A Constructivist-Based
Approach to Teaching Database Analysis and Design.
Journal of Information Systems Education, 17(1), 43-53.

Frost, R. D., Matta, V., & MacIvor, E. (2015). Assessing the
Efficacy of Incorporating Game Dynamics in a Learning
Management System. Journal of Information Systems
Education, 26(1), 59-70.

Gill, T. G., & Holton, C. F. (2006). A Self-Paced Introductory
Programming Course. Journal of Information Technology
Education, 5(1), 95-105.

Goode, M. K., Geraci, L., & Roediger, H. L. (2008). Superiority
of Variable to Repeated Practice in Transfer on Anagram
Solution. Psychonomic Bulletin & Review, 15(3), 662-666.

Gorgone, J., Davis, G. B., Valacich, J. S., Topi, H., Feinstein, D.
L., & Longenecker, H. E. (2003). IS 2002 Model Curriculum
and Guidelines for Undergraduate Degree Programs in
Information Systems. Communications of the Association for
Information Systems, 11(1), Article 1.

Jacoby, L. L., Wahlheim, C. N., & Coane, J. H. (2010). Test-
Enhanced Learning of Natural Concepts: Effects on
Recognition Memory, Classification, and Metacognition.
Journal of Experimental Psychology: Learning, Memory,
and Cognition, 36(6), 1441-1451.

Kang, S. H., McDermott, K. B., & Roediger III, H. L. (2007).
Test Format and Corrective Feedback Modify the Effect of

Testing on Long-Term Retention. European Journal of
Cognitive Psychology, 19(4-5), 528-558.

Kang, S. H., & Pashler, H. (2012). Learning Painting Styles:
Spacing Is Advantageous When It Promotes Discriminative
Contrast. Applied Cognitive Psychology, 26(1), 97-103.

Karpicke, J. D., Butler, A. C., & Roediger III, H. L. (2009).
Metacognitive Strategies in Student Learning: Do Students
Practice Retrieval When They Study on Their Own?
Memory, 17(4), 471-479.

Kornell, N., & Bjork, R. A. (2008). Learning Concepts and
Categories: Is Spacing the “Enemy of Induction”?
Psychological Science, 19(6), 585-592.

Krathwohl, D. R. (2002). A Revision of Bloom’s Taxonomy:
An Overview. Theory Into Practice, 41(4), 212-218.

Lang, J. M. (2016). Small Teaching: Everyday Lessons from the
Science of Learning. San Francisco, CA: Jossey-Bass.

Leeming, F. C. (2002). The Exam-A-Day Procedure Improves
Performance in Psychology Classes. Teaching of
Psychology, 29(3), 210-212.

Liang, Y. D. (2015). Introduction to Java programming (10th
ed. brief version). Hoboken, NJ: Pearson.

Marton, F., & Saljo, R. (1976) On Qualitative Differences in
Learning I: Outcome and Process. British Journal of
Educational Psychology, 46(1), 4-11.

McCabe, J. (2011). Metacognitive Awareness of Learning
Strategies in Undergraduates. Memory & Cognition, 39(3),
462-476.

McDaniel, M. A., Agarwal, P. K., Huelser, B. J., McDermott,
K. B., & Roediger III, H. L. (2011). Test-Enhanced
Learning in a Middle School Science Classroom: The
Effects of Quiz Frequency and Placement. Journal of
Educational Psychology, 103(2), 399-414.

McDaniel, M. A., Anderson, J. L., Derbish, M. H., &
Morrisette, N. (2007). Testing the Testing Effect in the
Classroom. European Journal of Cognitive Psychology,
19(4-5), 494-513.

Miller, M. D. (2014). Minds Online. Cambridge, MA: Harvard
University Press.

Mok, H. N. (2014). Teaching Tip: The flipped Classroom.
Journal of Information Systems Education, 25(1), 7-11.

Moulton, C. A. E., Dubrowski, A., MacRae, H., Graham, B.,
Grober, E., & Reznick, R. (2006). Teaching Surgical Skills:
What Kind of Practice Makes Perfect? Annals of Surgery,
244(3), 400-409.

Parker, K. R., LeRouge, C., & Trimmer, K. (2005). Alternative
Instructional Strategies in An IS Curriculum. Journal of
Information Technology Education: Research, 4(1), 43-60.

Prince, M. (2004). Does Active Learning Work? A Review of
The Research. Journal of Engineering Education, 93(3),
223-231.

Riordan, R. J., Hine, M. J., & Smith, T. C. (2017). An Integrated
Learning Approach to Teaching an Undergraduate
Information Systems Course. Journal of Information
Systems Education, 28(1), 59-69.

Roediger III, H. L., Agarwal, P. K., McDaniel, M. A., &
McDermott, K. B. (2011). Test-enhanced Learning in the
Classroom: Long-Term Improvements from Quizzing.
Journal of Experimental Psychology: Applied, 17(4), 382-
395.

Roediger III, H. L., & Karpicke, J. D. (2006). Test-Enhanced
Learning: Taking Memory Tests Improves Long-Term
Retention. Psychological Science, 17(3), 249-255.

Journal of Information Systems Education, 33(2), 149-158, Spring 2022

158

Rogerson, B. (2003). Effectiveness of a Daily Class Progress
Assessment Technique in Introductory Chemistry. Journal
of Chemical Education, 80 (2), 160-164.

Rohrer, D., & Taylor, K. (2007). The Shuffling of Mathematics
Problems Improves Learning. Instructional Science, 35(6),
481-498.

Saundage, D., Cybulski, J. L., Keller, S., & Dharmasena, L.
(2016). Teaching Data Analysis with Interactive Visual
Narratives. Journal of Information Systems Education,
27(4), 233-247.

Seethamraju, R. (2011). Enhancing Student Learning of
Enterprise Integration and Business Process Orientation
Through an ERP Business Simulation Game. Journal of
Information Systems Education, 22(1), 19-29.

Sengupta, A. (2009). CFC (Comment-First-Coding) - A Simple
Yet Effective Method for Teaching Programming to
Information Systems Students. Journal of Information
Systems Education, 20(4), 393-399.

Topi, H., Valacich, J., Wright, R. T., Kaiser, K. M., Nunamaker,
J. F., Sipior, J. C., & Vreede, G. J. (2010). IS 2010:
Curriculum Guidelines for Undergraduate Degree
Programs in Information Systems. Communications of the
Association for Information Systems, 26(1), 359-428.

Wheeler, M. A., & Roediger III, H. L. (1992). Disparate Effects
of Repeated Testing: Reconciling Ballard's (1913) and
Bartlett’s (1932) Results. Psychological Science, 3(4), 240-
246.

Woszczynski, A. B., Guthrie, T. C., & Shade, S. (2005).
Personality and Programming. Journal of Information
Systems Educations, 16(3), 293-299.

Zhang, X., Zhang, C., Stafford, T. F., & Zhang, P. (2013).
Teaching Introductory Programming to IS Students: The
Impact of Teaching Approaches on Learning Performance.
Journal of Information Systems Education, 24(2), 147-155.

Zull, J. E. (2002). The Art of Changing the Brain: Enriching
Teaching by Exploring the Biology of Learning. Sterling,
VA: Stylus Publishing, LLC.

AUTHOR BIOGRAPHY

Yabing Jiang is an associate professor of information systems

in the Lutgert College of Business at
the Florida Gulf Coast University.
She holds a Ph.D. in Computer
Information Systems from the
William E. Simon Graduate School
of Business Administration,
University of Rochester. Her
research interests focus on applying
economic theories and

methodologies to study IT related topics such as new business
models and pricing strategies in electronic commerce, online
word-of-mouth, incentive contracting in service facilities,
outsourcing contract design, integration and sabotage, the role
of IT in corporate governance, and teaching innovation. Her
research appears in Decision Support Systems, Electronic
Commerce Research and Applications, Information Systems
Research, Journal of Management Information Systems,
Journal of Revenue & Pricing Management, Production and
Operations Management, among others. She has received
grants and awards recognizing her research impacts.

Information Systems & Computing Academic Professionals

Education Special Interest Group

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an

initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2022 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital

or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made

or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is

required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to

the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 2574-3872

	JISE 2022 33(2) 149-158 First Page
	f-2011136 Final-MGT
	Apply Small Teaching Tactics in an Introductory Programming Course: Impact on Learning Performance
	ABSTRACT
	1. INTRODUCTION
	2. PRINCIPLES OF LEARNING, SMALL TEACHING TECHNIQUES, AND HYPOTHESES DEVELOPMENT
	2.1 Principles of Learning
	2.2 Small Teaching Techniques
	2.3 Hypotheses

	3. RESEARCH METHOD
	3.1 Course Background
	3.2 Course Redesign
	3.3 Data Collection
	3.4 Data Analysis and Hypothesis Test Results

	4. DISCUSSION
	4.1 Implications of Findings
	4.2 Limitations and Future Research

	5. CONCLUSIONS
	REFERENCES
	AUTHOR BIOGRAPHY

	JISE 2022 33(2) Copyright ISSN

