

Journal of
Information
Systems
Education

Volume 31

Issue 3
Summer 2020

An Agile Framework for Teaching with Scrum in

the IT Project Management Classroom

Daniel E. Rush and Amy J. Connolly

Recommended Citation: Rush, D. E. & Connolly, A. J. (2020). An Agile Framework for
Teaching with Scrum in the IT Project Management Classroom. Journal of Information Systems
Education, 31(3), 196-207.

Article Link: http://jise.org/Volume31/n3/JISEv31n3p196.html

Initial Submission: 30 May 2019
Accepted: 17 October 2019
Abstract Posted Online: 4 June 2020
Published: 8 September 2020

Full terms and conditions of access and use, archived papers, submission instructions, a search tool,

and much more can be found on the JISE website: http://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

http://jise.org/Volume31/n3/JISEv31n3p196.html
http://jise.org/

An Agile Framework for Teaching with Scrum
in the IT Project Management Classroom

Daniel E. Rush
Information Technology and Supply Chain Management

Boise State University
Boise, ID 83725, USA

danrush@boisestate.edu

Amy J. Connolly
Computer Information Systems and Business Analytics

James Madison University
Harrisonburg, VA 22807, USA

conno3aj@jmu.edu

ABSTRACT

This paper presents a framework for teaching a complete, semester-long IT project management course with traditional PMI-based
content (sans software development) while featuring Scrum as the organizing logic for accomplishing coursework. This framework
adapts widely-used Scrum practices from industry for use in the classroom, including how to organize student teams, homework,
and activities. Organizing an existing course with Scrum is intended to maximize student learning of traditional project management
content, as well as the difficult-to-teach, socially-complex, “soft” skills that lead to Scrum team success. This deep integration of
Scrum into a traditional, predictive IT project management course goes well beyond single activities or units without crowding out
valuable time and material. A brief overview of the agile philosophy and examples of teaching Scrum in the classroom situate this
work in the teaching and learning literature. Classroom-tested Scrum rituals and example artifacts are provided to illustrate how to
apply the framework. This group-based, iterative, and hands-on approach equips students to better internalize and understand the
complex social interactions involved with a self-organizing team, concepts that are difficult to learn without first-hand experience.
The proposed framework will help IS educators implement Scrum practices in their own courses, further addressing industry’s
increasing demand for IS professionals with Scrum experience.

Keywords: Project management, Agile, Scrum, Pedagogy, Teaching framework, Active learning

1. INTRODUCTION

This paper presents a teaching framework for integrating Scrum
in a traditional, predictive IT project management course. The
goals of this framework are threefold: (1) to teach modern agile
principles to upper division students with varying degrees of
project experience independently from software development,
(2) to teach traditional project management techniques and
tools as embodied in the Project Management Institute’s (PMI)
Project Management Body of Knowledge (PMBOK), and (3)
for self-organizing student teams to develop important soft
skills (e.g., peer leadership, conflict resolution, and
communication). Agile is arguably the most prevalent
philosophy for quickly and responsively developing software,
and agile frameworks such as Scrum and eXtreme
Programming have gained significant adoption in software
development curricula (Devedzic and Milenkovic, 2011;
Mahnic, 2012; Lang, 2017). However, scant literature explores

how to implement agile frameworks to teach project
management to IS business students. In 2015, as the primary
author was preparing a project management course, he could
not find examples of a course designed to meet all three goals.
Since then, a small but growing body of pedagogical research
has emerged with examples of teaching agile concepts in IS.
However, none of these examples yet provides a tangible
framework for teaching a whole course in project management.
As a result, this framework was built out of necessity and is
shared here for other IS educators looking for a tested approach.

The current literature suggests that when IS students learn
about agile concepts, it is in an introductory or limited fashion
– as one topic among many, instead of internalizing the full
agile process. For example, students receive introductory
activities or lessons that teach the “what” of agile without
practicing the “how” and “when” (e.g. Saade and Shah, 2016;
Sibona, Pourreza, and Hill, 2018). While an introduction is
necessary and useful, Scrum involves much more, and one or

Journal of Information Systems Education, Vol. 31(3) Summer 2020

196

mailto:danrush@boisestate.edu
mailto:conno3aj@jmu.edu

two exercises on agile are unlikely to provide students with
sufficient group interaction to develop the social acumen
needed in industry (Baham, 2019).

Agile focuses on individuals, collaboration, working
output, and adaptive response to change (Beck et al., 2001),
meaning that soft skills (communication, collaboration, and
flexible adaptation) are key to successful agile teams. Agile
teams rely on communication to succeed (Hummel,
Rosenkranz, and Holten, 2015). However, project management
curricula has traditionally struggled to teach soft skills (Pant
and Baroudi, 2008; Clarke, 2010) despite employers’ continued
demand for talent to communicate, adapt, and work effectively
in project teams. A deeper engagement with agile experiences
in the IT project management classroom will help prepare IS
students to meet this persistent demand for soft skills.

To best realize the benefits of an agile framework such as
Scrum, students need to internalize the method in order to gain
confidence in their ability to use it in future work environments.
One way to practice and internalize concepts is through active
learning. Active learning approaches have been shown to
effectively increase student performance (Freeman et al., 2014),
and variations of active learning have long been present in the
project management classroom in one form or another (Allan,
1999). Repetition and practice are hallmarks of active learning
approaches because they emphasize deep learning,
understanding, and accountability (Lipman, 2003; Warburton,
2003; Richmond, Boysen, and Gurung, 2016). We used an
active learning approach to build the framework for teaching
this course.

This framework provided students with a breadth of
scenarios via classroom-based experiences. From these
experiences, students developed confidence and demonstrable
agile skills through repeated hands-on practice with Scrum
rituals and artifacts. Learning through repeated practice is the
method advocated by industry experts to develop agile skills,
whether through exposure to numerous case studies (Schwaber,
2004) or through intense corporate training with group-based,
iterative planning exercises (Griffiths, 2005). Therefore, our
method helps to further align IT project management curricula
with industry best practice.

This paper describes the results of converting a 15-week,
traditional IT project management course to a semester-long
Scrum project schedule with 2- to 3-week Sprints using Scrum
roles, rituals, and artifacts to restructure the coverage of the
course’s original project management content. Rather than
bolting-on a single lesson, activity, or module about the agile
philosophy or one of its associated frameworks, this hands-on
Scrum approach gives students months of experience
developing their expertise in Scrum artifacts and the socially-
complex rituals of Scrum, and in doing so, better prepares them
for agile projects.

We anticipate this framework should be of use to anyone
who teaches or studies project management, especially today,
as the field begins navigating how to complement training in
traditional predictive approaches (e.g., SDLC and waterfall)
with frequently-used agile approaches, without sacrificing
content. The agile philosophy grew out of software
development. Therefore, one challenge in implementing agile
in the IT project management course is the lack of software or
systems development; students plan to build a project but they
typically do not actually build one. Our motivating question is:

How can a college course in predictive IT project management
be restructured without a software development component so
that students develop the skills to confidently work in agile
Scrum teams?

This work contributes to the literature in information
systems, IT project management, active learning pedagogy, and
beyond. To explain how we designed the framework and
provide valuable background context, we first review selected
literature on agile and Scrum practices, focusing on the
relationship of agile to traditional project management. We then
describe how we structured a semester-long course to practice
agile project management principles while still teaching
traditional project management content. We describe the use of
hands-on exercises implementing the principles of agile and
show how the in-class exercises directly reflect industry
practice. We present preliminary lessons learned from teaching
the course twice, as well as student reflections. We conclude
with reflections and possibilities for future research.

2. LITERATURE REVIEW

2.1 Agile in Teaching and Learning
The importance of incorporating the agile philosophy into
project management curriculum is noted in the literature
(Bredillet et al., 2013), however research on how to do this for
IS and business students is still emerging. This is in direct
contrast to teaching agile frameworks to software developers,
of which there are many examples. For instance, Lang (2017)
proposed “agile learning” in the context of a web app
development course. Other software development examples
include McAvoy and Sammon (2005), Devedzic and
Milenkovic (2011), and Mahnic (2012). However, without
software to develop, how does one provide opportunities for
students to practice agile concepts on a project?

Recently, a handful of IS pedagogy articles have shown
how to teach independent Scrum exercises in systems analysis
and design (May, York, and Lending, 2016) and the Journal of
Information Systems Education published a special issue
dedicated to teaching agile in IS. This issue explored methods
to teach either “What” agile is or “How” it can be implemented
in a non-agile classroom (Sharp and Lang, 2018). Even so, the
majority of the JISE special issue focused on programming or
systems analysis and design, courses which are more related to
software development rather than project management (Chen
and Rea, 2018; Linden, 2018; Magana, Seah, and Thomas,
2018; Taipalus, Seppänen, and Pirhonen, 2018). The JISE
special issue included two papers with examples of using agile
in project management or a general MIS course (rather than
software development), but even these had only one or two
broad lessons but no examples of how to teach agile or Scrum
in the rest of the course (Schmitz, 2018; Sibona, Pourreza, and
Hill, 2018). In order to teach students the socially-complex
nature of agile teams, teams must be given sufficient time to
norm and perform, processes that take time (Tuckman and
Jensen, 1977).

Other than two recent conference presentations (Javadi and
Tanner, 2018; Owens and Shekhar, 2018), the most similar
work we could identify to this one reported on a Master’s level
agile project management class in which the entire course was
converted to a Scrum-like, Sprint-based structure (Cubric,
2013). In that course, the class replaced software development
with wiki edits and recorded what they learned about agile

Journal of Information Systems Education, Vol. 31(3) Summer 2020

197

project management in a collaboratively-produced artifact. The
results indicated that increased communication and Sprint
planning contributed to group cohesion and that teamwork,
negotiation, and mutual respect were all significantly enhanced.
The framework presented in the present paper provides similar
team results, but in an undergraduate course and with
deliverables and team activities that students are more likely to
encounter in a general industry setting (e.g., project charters,
Gantt charts, earned value spreadsheets, and team
presentations) as opposed to Wiki pages. To the best of our
knowledge, our paper is among the first to present a framework
for teaching Scrum all semester in the IT project management
course, without having students design software. Although we
believe there are examples of IS instructors using agile for
project management, these are not readily available for use.

2.2 What is Agile Project Management?
The agile philosophy encompasses any method that supports
the Agile Manifesto’s values of “Individuals and interactions
over processes and tools, Working software over
comprehensive documentation, Customer collaboration over
contract negotiation, and Responding to change over following
a plan” (Beck, et al., 2001). Agile frameworks dominate
software development and include methods such as Crystal,
Dynamic Software Development Method, feature-driven
development, Lean software development, Scrum, Extreme
programming (XP, XP2), and variations such as “Scrumban”
which combine Scrum and Kanban techniques (Dybå and
Dingsøyr, 2008; Stettina and Hörz, 2015). Since the Manifesto
was declared by software developers in 2001, this philosophy
has expanded to other areas of business, such as service delivery
(Kowalkowski et al., 2012), general business processes (Graml,
Bracht, and Spies, 2008), and business intelligence (Larson and
Chang, 2016).

The widespread adoption of these techniques and their
importance to project management are reinforced in the latest
revision of the PMI’s PMBOK Guide (2017a), which for the
first time came bundled with a companion book, “The Agile
Practice Guide” (2017c) recognizing agile’s growing place in
project management. In project management, agile is
sometimes contrasted with predictive waterfall methods;
however, they are not orthogonal. In fact, companies can and
do manage projects in a hybrid manner, mixing these methods,
depending on the size, type, and needs of the project (West et
al., 2011). Multiple examples of mixed-methods approaches
from companies such as Caterpillar, Blue Cross Blue Shield of
Nebraska, IBM, and City Furniture are relayed in the PMI’s
Pulse of the Profession report, “Achieving Greater Agility”
(PMI, 2017b). The theme of the report emphasizes that delivery
approaches are selected based on the organization’s needs and
project characteristics, that PMO functions such as minimizing
risk and controlling costs are still required for agile projects,
and that project managers should be adaptable and well versed
in agile and predictive approaches.

2.3 Scrum Methodology
Scrum is one of the most popular of the agile methods and is a
process model of project management because it specifies a
process that is performed iteratively until a business owner
declares the output complete. Scrum relies on small teams of
practitioners who self-govern and organize themselves using
the processes prescribed by Scrum (Schwaber, 2004). One of

Scrum’s central tenets – and the hardest to learn – is how to
effectively operate in a self-organizing team (Kropp et al.,
2014). Thus, Scrum instruction that aspires beyond the
introductory level should challenge students to engage deeply
and repeatedly in a variety of team-based interactions that occur
while practicing Scrum rituals. These interactions guide
students to develop experience and social competence in self-
organizing. As Kropp et al. (2014) discuss, the agile
competencies most in need of being developed go beyond
engineering principles and management practices. From a
learning theory standpoint, these social competencies are on a
higher level than technical skills alone.

Effective student learning of these skills occurs when
students “[develop] and [discuss] agile values and attitudes”
(Kropp et al. 2014, p. 144), which is achieved when students
gain “personal experience … socially through realistic
discourse” (Kropp et al., 2014, p. 143). We organized our
instruction to develop this socially-complex set of
competencies by creating opportunities for students to engage
in realistic discourse. We believe this structure is recognizable
as Scrum while striking a balance between giving students
enough freedom to find their own answers and a clear enough
structure to feel confident in their learning. We next describe
the classroom site and how Scrum was integrated into the
curricula, both in general terms and with concrete examples.

3. COURSE SETTING

3.1 Classroom Site
This teaching framework was implemented across two years of
an upper-division IT Project Management (“ITPM”) class at a
mid-size teaching university in the western United States.
Offered each spring, the class serves as an elective for business-
focused computer information systems (CIS) students and as a
required course for software engineering (SE) students. As a
result of this compositional mix, students begin the course
either familiar with software development but with minimal
experience in business fundamentals (e.g., time value of money,
people management, and presentation skills) or vice-versa.
Regardless of background, the course provides students with
the opportunity to learn the breadth of project management
concepts and their connections to business fundamentals,
independent of software development.

3.2 Supporting Textbook and Projects
The project management course content before and after
modification was based on the PMI’s PMBOK Guide, 5th ed
(2013). For the two semesters described, Kathy Schwalbe’s IT
Project Management, 8th edition (2016) was adopted, which is
structured generally by PMI Knowledge Areas (KA) and
Process Groups (PG). The course also included three of
Schwalbe’s “running cases” which are simulated IT
implementation projects. For example, the cases cover projects
wherein students organize a global entrepreneurial event or
estimate the costs of implementing energy-efficient hardware
upgrades in various companies. These cases include specific
deliverables and activities aligned with each of the PMI KA’s
and PG’s. Team deliverables from these cases were project
artifacts such as a business case, project management plan,
Gantt chart, etc. Running cases are commonly used in IT project
management to simulate the concepts of completing a project
(Austin, Nolan, and O’Donnell, 2009). In addition to team

Journal of Information Systems Education, Vol. 31(3) Summer 2020

198

Sprint M/W/F, 6-Sprint Topic Areas T/Th, 5-Sprint Topic Areas
Pre-Sprint (PS) How class works, Agile (SCRUM) in the

classroom, Intro to PM, MS Project
How class works, Agile (SCRUM) in the
classroom, Intro to PM

Sprint 1 (S1) PM in the IT Context, MS Project, PM Process
Groups

PM in the IT Context, MS Project, PM Process
Groups, Project Integration Management

Exam 1 (E1) One class-period exam One class-period exam
Sprint 2 (S2) Project Integration Management, Project Scope

Management
Project Scope Management, Project Time
Management (1st half)

Sprint 3 (S3) Project Time Management, Project Cost
Management, Facilitated Sprint 3 Retrospective in
Session 24

Project Time Management (2nd half), Project Cost
Management, Project Stakeholder Management,
Project Communications Management

Exam 2 (E2R, E2) Review one day, Exam the next One class-period exam
Sprint 4 (S4) Project Quality Management, Project Human

Resource Management
Project Human Resource Management, Project
Quality Management

Sprint 5 (S5) Project Communications Management, Project
Risk Management

Project Risk Management, Project Procurement
Management

Sprint 6 (S6) Project Procurement Management, Project
Stakeholder Management

N/A

Final Exam (E3) Extended time-period exam Review in Session 30, Extended time-period exam
during finals week

Table 1. Topic and Sprint Schedules for 15-Week Semesters

deliverables, students completed individual quizzes and exams
and a number of individual assignments. The approximate
distribution of work was 60% individual (15% participation,
15% quizzes, and 30% exams) and 40% team (Sprint
homework). A list of topics covered in the course is presented
by Sprint for both 2- and 3-day-a-week meeting schedules in
Table 1.

In the pilot semester, the course met 3 days a week on
Monday/Wednesday/Friday for 50-minute class periods. In the
second iteration, the course met on a Tuesday/Thursday
schedule for 75-minute class periods which affected the number
of in-class Scrum meetings that were possible. The more
frequent meetings of the 3-day-a-week schedule felt more
Sprint-like, but the Sprint review sessions were less compressed
in the 2-day-a-week schedule due to an extra 25 minutes per
class session.

4. COURSE STRUCTURE

4.1 Non-Scrum Classroom Time
One of the benefits to this framework is that the Scrum activities
described in the following sections complement rather than
monopolize instructional contact time. Much of the time
dedicated to Scrum activities is spent discussing or reviewing
traditional project management content in teams or as a class,
and after all activities are accounted for, approximately 60% of
the contact hours remain unaffected and available for non-
Scrum instruction (such as lectures), activities, and individual
assessment. While Sprint planning and Sprint review meetings
take up much (or all) of the class meetings in which they occur,
during the remaining class sessions the Daily Scrum meeting
was the only time dedicated to Scrum. After the Scrum meeting
concluded, the remaining time was spent with mini-lectures,
discussions of book topics, exercises to practice concepts, etc.
We found the time for these activities sufficient to engage with
all the traditional project management content covered by a
course that did not adopt the Scrum structure.

4.2 Semester Schedule
The course was taught during a 15-week semester with a one-
week, mid-semester break. In addition to the team-based work
on the running case studies and other Schwalbe homework, two
mid-semester exams and a final exam were administered after
the first, third, and last Sprint. These exams and an associated
review session were outside of (between) Sprints and were
designed to assess individual understanding of the PMBOK
material.

4.3 Scrum Training and Team Formation
The semester started with a short pre-Sprint period in which
students learned the agile philosophy and Scrum concepts. The
use of Scrum teams was introduced in the first class, with an
assigned reading from Schwalbe and the Scrum Reference Card
(James, 2012). The readings were followed by a lecture on
Scrum, with example Scrum videos and artifacts shown in class
and available on the course Learning Management System
(LMS). The introduction to Scrum in the pre-Sprint period was
similar to the individual activities or lessons recently reported
in the literature (e.g., May, York, and Lending, 2016; Sibona,
Pourreza, and Hill, 2018). What differentiates our framework
from these excellent introductions is the repeated practice of
Scrum rituals throughout the course, rather than moving on to
non-agile topics after the agile lectures and activities. This new
method provided teams with more opportunities to develop and
practice self-governance and other critical “soft” skills. Again,
what’s new here is the opportunity for students to “close the
loop” to see how the entire Scrum process works and to make
changes to how they execute the process over the length of the
semester.

The instructor assigned teams based on students’
availability to meet outside of class, along with major, year-in-
program, and other considerations to ensure a mix of experience

Journal of Information Systems Education, Vol. 31(3) Summer 2020

199

and ability on each team. In the second semester, students were
asked to participate in a collective decision making process to
develop and adopt a set of rules for group discussions. These
rules were brainstormed in the first class meeting and a subset
was adopted in the next class meeting.

4.4 Five 2-to-3 Week Sprints
The 15-week semester was divided into approximately 2-week
Scrum Sprints (6 in the pilot semester and 5 in the second
semester due to days of instruction (TR versus MWF)), with an
initial one-to-two weeks for Scrum training and team formation
plus time for semester exams and final exam review. During
each Sprint, students chose, committed to, worked on, and
presented the results of homework assignments from the book
or a running case. Each Sprint lasted four to six class sessions.

We next describe the details of Sprint structures and how
we adapted industry practice to a classroom setting. We then
supplement this description with concrete examples from
Sprint 5 in the second iteration of the class to show how it
worked. Additionally, the idealized industry experience and
what was happening in the classroom were emphasized to
students as part of their learning in the first few Sprints, to make
these experiences seem more realistic.

5. USING THE SCRUM METHOD TO TEACH
IT PROJECT MANAGEMENT

5.1 Scrum Description
In the ITPM classroom, we implemented a version of Scrum
containing widely used roles, standardized meetings (‘rituals’),
and artifacts, examples of which are shown in Table 2, adapted
from Schwaber (2004). These core Scrum roles and rituals
prepare students for organizations with customized Scrum
implementations (e.g., Business Analyst or other areas of
expertise instead of a generic “Team Member” role).

Scrum meetings scaffold selecting work, monitoring
progress, confirming acceptance of the final deliverables, and
improving the work processes. In the ITPM classroom, this

repetition provided a structure and cadence for each Sprint.
Students internalized this pattern through repeated practice over
the semester, allowing their knowledge of Scrum to move from
“what it is” to “how we produce work with it.”

A figure of a typical Sprint iteration is shown in Figure 1
(adapted from James 2012). To work in an educational setting,
this general pattern was adapted from industry and supported
with Scrum artifacts and rituals, which we instantiated in the
classroom. A description of how each Scrum component might
be generally used in an industry setting can be readily found in
materials such as the PMI publication “The Agile Practice
Guide” (2017c) or Schwaber’s book Agile Project Management
with Scrum (2004). We adapted these rituals to the classroom,
as explained in the next section.

5.2 Scrum Applied in the Classroom
Adapting Scrum to the classroom consisted of altering pre-
semester preparation activities and adapting the in-class
schedule to accommodate Scrum activities. The following
sections describe how each Sprint ritual or artifact was adapted
for the classroom, after which concrete examples drawn from a
single Sprint in the second iteration are shown.

Scrum Roles Product Owner, ScrumMaster,
Team Member

Scrum Rituals Sprint Planning Meeting, Daily
Scrum Meeting, Sprint Review
Meeting, Sprint Retrospective
Meeting

Scrum Artifact
Examples

Product Backlog, Sprint Backlog,
Task Board, Sprint Burndown
Chart

Table 2. Sprint Roles, Rituals, and Example Artifacts

Figure 1. Typical Sprint Process (adapted from James, 2012)

Journal of Information Systems Education, Vol. 31(3) Summer 2020

200

5.2.1 Preparation prior to Sprint. Prior to assigning work to
the Scrum teams, the instructor first developed the assignments
and organized them into backlog items. In contrast to the user
stories common in industry, classroom PBIs were assignments
from the book or tasks associated with a running case. These
assignments covered the KAs and PGs taught near the Sprint in
which the tasks were assigned. These tasks showcased how the
instructor adapted industry practices for the classroom.

5.2.2 ScrumMaster and Sprint planning meeting. At the
beginning of each Sprint, the student teams elected a
ScrumMaster. Each team member was required to serve as
ScrumMaster at least once during the semester, to give every
student an opportunity to practice that role’s responsibilities:
coordinating the team’s efforts, resolving blocking issues, and
reporting on the progress of deliverables. After selecting a
ScrumMaster, the team held a Sprint planning meeting with the
product owner (the instructor) to review and prioritize PBIs in
the product backlog. Attendance at this meeting was
mandatory. The team selected how many PBIs they estimated
they could complete during the Sprint. The team was then
committed to these PBIs for the duration of the Sprint. Finally,
as the last part of the Sprint planning meeting, the team divided
each PBI into Sprint tasks, estimated the amount of effort
required to complete the tasks, and assigned each task to a
responsible person. These tasks formed the committed Sprint
backlog (the output of the Sprint planning meeting). The
ScrumMaster then represented the team’s backlog in a visually
accessible manner on a Kanban board (an example is provided
in section 5.3.2) for the team to reference and update during
daily Scrum meetings.

The instructor provided a force ranked list wherein each
PBI was given an importance priority (from 1 to 8, with 1 being
the highest) and a point value (from 5 to 25 in 5-point
increments). The point values were not equivalent to function
points used in software development complexity, but they
served as a guide for students to estimate the amount of work
per deliverable. The point values represented the maximum
possible grade for a successfully completed deliverable.
Students could elect as a team to attempt any number of PBIs,
although the maximum total points for each Sprint was capped
at a specific total points possible. In theory, a team that did not
attempt enough PBIs might earn less than 100% homework
grade, but generally teams chose enough PBIs for the possible
point total to meet or exceed the cap (the latter to earn the
maximum allowable credit for the Sprint, even if they did not
earn full points on all the PBIs).

The student teams used the in-class planning meeting to
select PBIs and obtain instructor clarification on expectations,
akin to a project meeting with a customer. During these
meetings, the instructor clarified course concepts associated
with PBI deliverables such as the Gantt chart, Pareto chart,
stakeholder response strategy, etc. Each team worked its own
running case, with no more than two teams using the same case.
The decision to use multiple cases gave students the opportunity
to see examples of deliverables applied to multiple scenarios.

5.2.3 ‘Daily’ Scrum meetings. In the classroom, similar to
industry daily Scrum meetings, the ScrumMaster lead 5- to 15-
minute meetings at the beginning of each class period. The
ScrumMaster asked each team member to report: (1) What have

I (the member) completed since the last meeting (and what work
do I have remaining)? and (2) What issues are blocking progress
on my assigned items? The ScrumMaster recorded each
member’s report on the task board. Starting with the Sprint that
covered the time management KA, the remaining work
estimates from the daily reports could optionally be aggregated
in a Sprint burndown chart (as one of the graded PBIs) to
visualize work completed over the length of the Sprint.

Kanban task boards were used to facilitate transparent and
open communication. In the beginning of the semester, teams
could use either individual white boards or a large pad of poster
paper for their task board. They then represented Sprint backlog
items and tasks on sticky notes placed in the column that
corresponded with their current state (e.g., Committed, Not
Started, In Progress, or Completed). An example Kanban board
is provided in the Example Sprint section. As the semester
progressed, teams were encouraged to try building their Kanban
boards in electronic collaboration tools such as Trello. Even
after experimentation for a Sprint or two, most of the teams
(~80% each semester) returned to using physical boards.

5.2.4 Sprint review meeting. In the classroom, the Sprint
Review was held during class time at the end of each Sprint.
Each team presented the end status for each of the PBIs they
attempted in the Sprint Backlog. Teams earned full points for
those items that the instructor (acting as the Product Owner)
accepted, reduced points for items provisionally accepted, or
zero points for items not accepted. During the next Sprint,
teams could optionally choose to reattempt provisionally
accepted items and were required to reattempt items not
accepted. If accepted on the next Sprint, teams received full
points for reattempted items. While slightly more formal than a
functional review around a developer’s workstation, the public
presentation of work offered repeated practice in
communication skills. As each running case was assigned to at
least two teams, this structure ensured at least one team in the
audience was an expert on the presented running case and could
ask informed questions. While presentation professionalism
was not explicitly graded, students reported feeling accountable
to their peers for communication skills. An unintended outcome
of these presentations is that some students reported a deeper
understanding of the assigned artifacts and/or tasks after seeing
how they were applied to multiple running case examples.

5.2.5 Sprint retrospective meeting. Similar to industry but
unlike previous implementations of Scrum in the classroom,
each team held a Sprint retrospective meeting after each Sprint
to reflect on their work processes during the Sprint and to
identify successful elements to be repeated or improvements to
be made. In preparation for the retrospective, students
completed a set of questions for the instructor which asked
students to reflect on their personal experiences. After
composing responses and sharing them privately with the
instructor, students discussed their answers in their Sprint teams
and agreed on any tool or process changes to implement in the
next Sprint.

As an opportunity to reflect on how work was done, the
retrospective plays an important part in the Scrum process by
giving teams a space to discuss and work through friction
points, such as responsiveness on different communication
channels or dealing with free riders. To help ameliorate free-

Journal of Information Systems Education, Vol. 31(3) Summer 2020

201

riding, the instructor solicited confidential concerns via the
individual written feedback that each student was required to
turn in associated with a retrospective, as well as by offering to
mediate any team issues that appeared to be at an impasse.
During the two semesters reported on in this paper, no teams
utilized this service, and qualitative results indicated that while
free-riding did occur, teams were able to handle it on their own,
further evidence that students internalized the Scrum concept of
self-organizing teams. The next Sprint began with a kickoff
meeting (and a new product backlog from which to pull items)
during the next class meeting.

5.3 Example Sprint
Next we present Scrum rituals and artifacts from Sprint Five of
the second course iteration.

5.3.1 Preparation for the Sprint and product backlog. Prior
to the Sprint 5 Planning Meeting, the instructor prepared a
Product Backlog for the Sprint by populating it with Product
Backlog Items (PBIs) drawn from or related to the following
chapters in the course textbook: chapter 8 “Project Quality
Management,” chapter 11 “Project Risk Management,” and
chapter 12 “Project Procurement Management.” The PBIs have
two primary sources: end-of-chapter exercises related to the
knowledge area (e.g. “Research the Malcom Baldridge award”
is an exercise from chapter 8) and the “running cases” from
Schwalbe. Each simulated “running case” has relevant
exercises and deliverables associated with each chapter (e.g.,
creating a list of quality standards is running case task 1 for the
“Global Treps” project). The three cases are titled “Global
Treps,” “Green Computing,” and “Manage your Health.” The
“Global Treps” case is in the printed 8th edition of the textbook
and the other two cases are available on the first author’s

website. After selection, each PBI was assigned a prioritization
(analogous to a product owner’s indication of importance) and
an associated point value (analogous to the amount of work in
‘planning points’), as shown in Figure 2.

5.3.2 Sprint planning meeting, ScrumMaster, and Kanban
task board. At the start of each Sprint, a 20- to 30-minute
planning meeting was held. During the Sprint planning
meeting, each team elected a ScrumMaster, reviewed the
Product Backlog, and selected which PBIs they wanted to
attempt for the Sprint. In the Sprint 5 example, 9 prioritized
PBIs (plus the always available Sprint burndown chart) show as
available, and each PBI is worth 5 to 10 points. While the 10
potential PBIs total 70 points together, the maximum points
each team could earn for the Sprint was capped at 40 points.
This cap was set by the instructor to help the team commit to a
realistic workload, while still exercising choice over their work.
With a 40-point cap, teams typically selected PBIs worth 40 to
45 points. Each of the items was transferred to a Kanban task
board (see Figure 3) for tracking and communicated to the

Figure 2. Example Sprint Product Backlog

Figure 3. Example Kanban Task Board

Journal of Information Systems Education, Vol. 31(3) Summer 2020

202

Product Owner (the instructor) by the ScrumMaster. In any
remaining time during the meeting, teams were encouraged (but
not required) to break larger PBIs down into discrete tasks. For
example, in the Kanban board shown in Figure 3, the PBI “IT
Contract Analysis” (Priority 2, 10 pts) could have been broken
down into 3 sub-tasks: “create framework with types and
typical clauses,” “analyze contract,” and “write report with
results.” However, the team elected to keep this PBI (and all
other PBIs) as one task each. After determining tasks for the
PBIs, the teams collaboratively assigned who would work on
which tasks and estimated how long each task was expected to
take.

5.3.3 Daily Scrum meeting. Frequency of Scrum meetings
varied by team, with many holding them only during class,
despite being informed of the opportunity to hold additional
Scrum meetings on their own. During the Scrum meeting, as
each team member answered the two questions, the
ScrumMaster recorded each member’s report in a log, updated
the task board with the current status, and worked to resolve
blocking issues (either during the remaining meeting time or
afterwards with the instructor and others). In the example
shown, three tasks are shown as in progress and two are not yet
started. The remaining work estimate from the daily reports
could then be aggregated in a Sprint burndown chart to
visualize work completed over the length of the Sprint (this was
required in one Sprint, and available as an optional five-point
PBI in the remaining Sprints).

5.3.4 Sprint review meeting and deliverable acceptance
form. A majority of time in the last class period of each Sprint
was devoted to the Sprint review meeting. During the Sprint
review meeting, each team presented their completed work on
the selected PBIs to the Product Owner (the instructor) and the
class. Presentations were typically supported by slides (in
PowerPoint or Google slides) and sometimes included live
demonstrations, such as if the PBI was to construct or populate
a project management tool (e.g., a Gantt chart with
dependencies). Teams answered questions from the class and
the product owner, who then chose to accept (either in full or
with partial points), not accept, or defer the acceptance decision
on each PBI. The deferral option was used when the quality of
a particular deliverable was not apparent from the presentation
or the deliverable was a short paper that needed to be read prior
to acceptance (e.g., PBI Priority 8, Lease vs. Buy analysis).
After evaluating all PBIs, the product owner returned a copy of
the “Deliverable Acceptance Form” to the team’s
ScrumMaster.

If any items were accepted but did not earn full points or if
they were not accepted, they could be reattempted for full credit
in the following Sprint. In the example deliverable acceptance
form shown in Figure 4 (recreated from an actual form to mask
identities), the PBI “Lean Quality Assurance” (labeled
“Exercise 6, p. 337” on the Kanban board, Priority 3, 10 pts)
was accepted, earning the full 10 points, while the PBI “IT
Contract Analysis” (Priority 2, 10 pts) was at first deferred, and
then upon review only earned 9.5 of the 10 possible points,
making it eligible for a reattempt if the team desired to do so in
the next Sprint.

5.3.5 Sprint retrospective meeting. Due to limited class time,
the Sprint Retrospective meeting was held in class for only the
first Sprint, and teams were responsible for holding
retrospectives outside of class for all subsequent Sprints, with a
written summary turned in to the instructor. During the first,
facilitated retrospective, the instructor introduced and collected
responses to a set of questions, including items such as “What
tools do you want to collaborate with in the next Sprint?” and
“What went well and what could be improved? (Write down 2-
3 of each).” These prompts were re-sent electronically after
each Sprint Review and teams were encouraged to meet and
discuss them.

6. STUDENT REFLECTION AND DISCUSSION

6.1 Student Reflection on Scrum Mastery
Student reactions to this novel class structure were evident in
their course evaluations in Spring 2016. More detailed
responses were solicited through an informal survey in Spring
2017. Students reported their experience and comfort with
Scrum and agile methods before and after the course. The use
of both sources was approved by the university’s institutional
review board. Students in the second iteration of the course
reported a high degree of self-confidence in their ability to
apply Scrum techniques to future projects, despite only two
students having used Scrum before and one-third having never
heard of Scrum or agile methods before taking the class. Of the
two students who had heard of or used Scrum, one indicated
learning about Scrum and using it in the workplace and another
indicated using Scrum to develop software in one or more other
classes. The student with industry experience wrote,

I currently work at a tech start-up, where all of our
processes are derived from SCRUM methods. I had
never heard of SCRUM before working at the
company. I was extremely pleased to see it finally
introduced in my studies since it is widely used in the
IT industry, specifically in software engineering.

In contrast, the student who was familiar with Scrum but hadn’t
used it wrote,

I had heard of SCRUM and Agile methods and was
supposed to learn them in-depth in the Systems
Analysis and Design class, but [we] barely scratched
the surface on how the method actually works. We were
not given any assignments on the topic or tested on the
material.

At the end of the semester, all students agreed or strongly

agreed that they knew the Sprint structure and the four primary
Scrum rituals by the end of the class. They also expressed a high
degree of confidence (Median: Strongly Agree) in their ability
to act as ScrumMaster and create a Kanban board and “Agreed”
that they were comfortable creating a burndown chart or status
report for future Scrum projects. Students also Strongly Agreed
(Median: 5, Mean: 4.6) with the statement “I would recommend
that future Project Management classes adopt a similar SCRUM
team and Sprint structure for their homework.”

This preliminary feedback suggests that repeated exposure
to Scrum rituals and artifacts equipped students with the
knowledge, tools, and confidence to use Scrum techniques in

Journal of Information Systems Education, Vol. 31(3) Summer 2020

203

future projects. In written responses, the most common theme
was that the Scrum teams and Sprint structure made the class
and homework more enjoyable, efficient, and effective. For
example, one student wrote,

The Scrum and Sprint structure really nailed how
Scrum and agile project management can be applied to
projects because we, the students, were using it
ourselves to complete actual projects. It was very

hands-on and a good/fun way to teach Scrum and agile
project management.

Students also anticipated workplace benefits from learning
Scrum. Comments included “The real world application of
Scrum was very fascinating and helpful. This should be
continued.”

 Figure 4. Deliverable Acceptance Form (Black text indicates “During Sprint Review”

grading and red text indicates post-review comments)

Journal of Information Systems Education, Vol. 31(3) Summer 2020

204

6.2 Impact of Scrum on PMBOK learning
At first, the instructor was concerned that because teams were
allowed to (1) select a subset of possible homework
deliverables and (2) divide up the work on those deliverables in
whatever way they desired, not all students would engage with
and learn how to create all of the assigned PMI-recommended
tools (e.g., project charter and Gantt chart). This concern was
mitigated by three strategies: (1) by identifying and assigning
high point values to “super tools” so that teams would select
them, (2) by assessing individual knowledge of course
concepts, techniques, and tools through quizzes and exams, and
(3) by requiring the whole class to be present for all Sprint
Reviews, which allowed each student to see one or more
applications of each deliverable on two or three different
running cases. One student commented that “Requiring groups
to present their information helps a lot with having to get to
know what you’re working on better, rather than just writing an
assignment down and forgetting about it instantly after.”

6.3 Soft Skills Acquisition through Active Learning and
Reflection – The Self-Organizing Teams
While this course taught traditional project management
concepts, it was structured based on the principles of active
learning, which meant students created meaning through
personal experience. In active learning, after an exercise or
practice session, students reflect on their learning to instill
mindfulness, codify what they’ve learned, and commit that
learning to memory. Students complete this necessary, final
step rather than the instructor summarizing the day’s material.
Retrospection is an important step in active learning as well as
in Scrum, but in Scrum, retrospection helps the team improve
in future iterations. In a Scrum team, members reflect on their
work at multiple points. During the Sprint, each daily Scrum
meeting is an opportunity to discuss what work is complete,
what isn’t, and what is impeding progress. At the end of the
Sprint, students presented their completed work to their peers.
Finally, the Retrospective meeting at the end of each Sprint
served as a formal mechanism for each student to reflect on and
discuss their individual performance in the Sprint – good and
bad – as well as how the team worked together to identify what
they wanted to change to improve their process in the next
Sprint.

A common theme in students’ written reflections was the
accountability and authority within the self-organizing teams.
Six of the 10 comments that addressed this theme spoke
positively of the structure, and 3 suggested improvements. A
student wrote “I really liked that Scrum made all team-members
accountable for part of the group work. It was very easy to
pinpoint if somebody was not pulling their weight and made it
easy to address the issue if it came up” while another
commented that there

needs to be some way to give the team greater authority
to hold social loafers more accountable, while
eventually our teams [sic] social loafer did actually
contribute something meaningful it took them all
semester after many minor confrontations about the
issue to finally contribute meaningful work.

One student suggested that “... the ScrumMaster [should] have
a bigger say in the participation status of the group. In this way
people who care about their grade will put more stock into what

their ScrumMaster is asking of them.” These responses suggest
that effective self-governance was not achieved on their first
attempt, but that students persisted in their refinements, and
even at the end of the semester, were considering ways to
improve the experience. This feedback further supports the
benefits of a semester-long framework as opposed to one or two
in-class exercises on Scrum.

7. CONCLUSION AND CONTRIBUTION

This paper reports on a Scrum-based approach to teach
traditional project management content in an undergraduate IT
project management course. Through repeated practice,
students developed feelings of competence in socially-complex
soft skills, which are one of the most difficult concepts of agile-
inspired project management approaches, yet can have outsized
impact on project success. This framework was implemented
twice: first in a class of 15 students, then in a class of 30. Rooted
in self-organizing teams, this framework makes many other
innovative changes possible, and faculty are encouraged to
adopt, modify, and improve the framework presented in this
paper. For example, faculty choosing to emphasize work
breakdown structures and scheduling could populate the
product backlog presented to the students with assignments
drawn from the PMI Practice Standard for Work Breakdown
Structures (PMI, 2019b) or the Practice Standard for
Scheduling (PMI, 2019a).

In reflecting on our own use of this framework, the authors
have identified several adaptations to adopt in future iterations
of the course. One adaptation appropriate for courses in which
students work on a variety of real projects (not case-based) is to
expand the list of PBIs available to choose from to include items
suited to meet the particular needs of the projects the students
are working on (e.g., user stories for a training handbook).
Another adaptation would be to support the retrospective
process with software to systematize the gathering of feedback
and give the faculty member the ability to monitor that teams
are utilizing the process even when it occurs outside of class.

Finally, we have noticed that students in classes that meet
three times a week appear to feel more comfortable with Scrum
earlier in the semester than students in classes that meet two or
fewer times a week. A possible idea to address this might be to
specify a minimum number of Scrum meetings per week. Other
faculty are invited to adopt and adapt the framework to other
schedules and delivery modalities (e.g., quarter system or
hybrid-delivery).

Due to the limitations inherent in the size of the program
where this approach was applied, several possibilities for
furthering this research would require the participation of the
larger ITPM-teaching faculty community. One opportunity
available in settings with multiple sections of ITPM would be
to teach ITPM using a traditional approach in one section and
with the described framework in a second section, and then
compare student knowledge of agile and soft skills between the
two. For faculty who have the opportunity to sequence one or
more development classes after the ITPM class, one possibility
for future research would be to teach the described Scrum
concepts in ITPM and then apply them in a later software
development class. Such an approach would allow for data to
be gathered on student knowledge and comfort with Scrum at
each stage of the learning and application process, possibly

Journal of Information Systems Education, Vol. 31(3) Summer 2020

205

providing insight into the best manner in which to deploy the
described framework.

One of the strengths of this framework is that the Scrum
structure overlays existing course schedules, lectures, and
homework without crowding out fundamental content. This
structure allows the course to support the rich learning that
occurs in socially-complex Scrum teams without sacrificing
material. Although agile practices are taught in software
development, based on our review of the literature, agile
frameworks have yet to be fully embraced in the IT project
management curricula over the entire course. As a result,
although industry sorely needs agile talent, students are not
developing the confidence and social skills they need to succeed
on agile teams until well after graduation. Therefore, IT project
management instructors may be interested in this framework for
adapting the ITPM course to include a fully agile project. Agile
methods are in high demand, and this paper presents one way
project management curricula can adapt in order to prepare our
students for their agile future.

8. ACKNOWLEDGEMENTS

The authors would like to thank several early readers and
presentation attendees for their comments on this project,
including Jeffrey May, Robert Anson, audience members at
ICIS 2018, and the COBE research brown bag luncheon
attendees. We would also like to thank the editors and
anonymous reviewers who contributed to the development of
this paper, including the suggestions regarding re-titling the
deliverable acceptance form, the inclusion of the PMI’s Practice
Standard guides, and future research to assess students’
subsequent software development effectiveness after taking
project management taught using the described agile
framework.

9. REFERENCES

Allan, G. (1999). Getting Students to Learn about Information
Systems Project Management: An Experiment in Student-
Centered Learning. Research in Post-Compulsory
Education, 4(1), 59–74.

Austin, R., Nolan, R., & O’Donnell, S. (2009). A “Novel”
Approach to the Design of an IS Management Course.
Communications of the Association for Information Systems,
24(1), 315-332.

Baham, C. (2019). Implementing Scrum Wholesale in the
Classroom. Journal of Information Systems Education,
30(30), 141-159.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., Highsmith, J.,
Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,
Mellor, S., Schwaber, K., Sutherland, J., & Thomas, D.
(2001). Agile Manifesto. Retrieved August 6, 2020, from
http://agilemanifesto.org.

Bredillet, C. N., Conboy, K., Davidson, P., & Walker, D.
(2013). The Getting of Wisdom: The Future of PM
University Education in Australia. International Journal of
Project Management, 31(8), 1072–1088.

Chen, K. & Rea, A. (2018). Do Pair Programming Approaches
Transcend Coding? Measuring Agile Attitudes in Diverse
Information Systems Courses. Journal of Information
Systems Education, 29(2), 53-64.

Clarke, N. (2010). Projects are Emotional: How Project
Managers’ Emotional Awareness can Influence Decisions
and Behaviours in Projects. International Journal of
Managing Projects in Business, 3(4), 604–624.

Cubric, M. (2013). An Agile Method for Teaching Agile in
Business Schools. The International Journal of Management
Education, 11(3), 119–131.

Devedzic, V. & Milenkovic, S. R. (2011). Teaching Agile
Software Development: A Case Study. IEEE Transactions
on Education, 54(2), 273–278.

Dybå, T. & Dingsøyr, T. (2008). Empirical Studies of Agile
Software Development: A Systematic Review. Information
and Software Technology, 50(9), 833–859.

Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K.,
Okoroafor, N., Jordt, H., & Wenderoth, M. P. (2014). Active
Learning Increases Student Performance in Science,
Engineering, and Mathematics. Proceedings of the National
Academy of Sciences, 111(23), 8410–8415.

Graml, T., Bracht, R., & Spies, M. (2008). Patterns of Business
Rules to Enable Agile Business Processes. Enterprise
Information Systems, 2(4), 385–402.

Griffiths, M. (2005). Teaching Agile Project Management to
the PMI. In Agile Development Conference (ADC’05), 318–
322.

Hummel, M., Rosenkranz, C., & Holten, R. (2015). The Role
of Social Agile Practices for Direct and Indirect
Communication in Information Systems Development
Teams. Communications of the Association for Information
Systems, 36(1), 273-300.

James, M. (2012). Scrum Reference Card. Retrieved January
30, 2017, from http://scrumreferencecard.com/.

Javadi, E. & Tanner, S. (2018). Design and Implementation of
an Agile Teaching Framework. In Proceedings of the 24th
Americas Conference on Information Systems, New Orleans,
Louisiana.

Kowalkowski, C., Kindström, D., Alejandro, T. B., Brege, S.,
& Biggemann, S. (2012). Service Infusion as Agile
Incrementalism in Action. Journal of Business Research,
65(6), 765–772.

Kropp, M., Meier, A., Mateescu, M., & Zahn, C. (2014).
Teaching and Learning Agile Collaboration. Presented at the
Software Engineering Education and Training (CSEEandT),
2014 IEEE 27th Conference (pp. 139–148), IEEE.

Lang, G. (2017). Agile Learning: Sprinting Through the
Semester. Information Systems Education Journal, 15(3),
14-21.

Larson, D. & Chang, V. (2016). A Review and Future Direction
of Agile, Business Intelligence, Analytics and Data Science.
International Journal of Information Management, 36(5),
700–710.

Linden, T. (2018). Scrum-Based Learning Environment:
Fostering Self-Regulated Learning. Journal of Information
Systems Education, 29(2), 65-74.

Lipman, M. (2003). Thinking in Education (Second Edition).
Cambridge: Cambridge University Press.

Magana, A. J., Seah, Y. Y., & Thomas, P. (2018). Fostering
Cooperative Learning with Scrum in a Semi-Capstone
Systems Analysis and Design Course. Journal of
Information Systems Education, 29(2), 75-91.

Journal of Information Systems Education, Vol. 31(3) Summer 2020

206

http://agilemanifesto.org/
http://scrumreferencecard.com/

Mahnic, V. (2012). A Capstone Course on Agile Software
Development Using Scrum. IEEE Transactions on
Education, 55(1), 99–106.

May, J., York, J., & Lending, D. (2016). Play Ball: Bringing
Scrum into the Classroom. Journal of Information Systems
Education, 27(2), 87-92.

McAvoy, J. & Sammon, D. (2005). Agile Methodology
Adoption Decisions: An Innovative Approach to Teaching
and Learning. Journal of Information Systems Education,
16(4), 409–420.

Owens, D. & Shekhar, G. (2018). Using SCRUM Principles to
Transform the Classroom. In Proceedings of the 24th
Americas Conference on Information Systems, New Orleans,
Louisiana.

Pant, I. & Baroudi, B. (2008). Project Management Education:
The Human Skills Imperative. International Journal of
Project Management, 26(2), 124–128.

PMI. (2013). A Guide to the Project Management Body of
Knowledge (PMBOK Guide), 5th ed.. Newtown Square,
Pennsylvania: PMI Publications.

PMI. (2017a). A Guide to the Project Management Body of
Knowledge (PMBOK Guide), 6th ed. Newtown Square,
Pennsylvania: PMI Publications.

PMI. (2017b). Achieving Greater Agility: The People and
Process Drivers That Accelerate Result, Pulse of the
Profession In-Depth Report. Newtown Square,
Pennsylvania: Project Management Institute.

PMI. (2017c). Agile Practice Guide, New Edition. Newtown
Square, Pennsylvania: Project Management Institute.

PMI. (2019a). Practice Standard for Scheduling, 3rd ed.
Newtown Square, Pennsylvania: Project Management
Institute.

PMI. (2019b). Practice Standard for Work Breakdown
Structures, 3rd ed. Newtown Square, Pennsylvania: Project
Management Institute.

Richmond, A. S., Boysen, G. A., & Gurung, R. A. R. (2016).
An Evidence-based Guide to College and University
Teaching: Developing the Model Teacher. Philadelphia,
Pennsylvania: Routledge.

Saade, R. G. & Shah, S. (2016). Exploring an Agile Learning
Activity to Teach Agile Project Management. In
Proceedings of Informing Science and IT Education
Conference (In SITE) (pp. 95–101). Vilnius, Lithuania:
Informing Science Institute.

Schmitz, K. (2018). A Three Cohort Study of Role-Play
Instruction for Agile Project Management. Journal of
Information Systems Education, 29(2), 93-104.

Schwaber, K. (2004). Agile Project Management with Scrum.
Redmond, Washington: Microsoft Press.

Schwalbe, K. (2016). Information Technology Project
Management, 8th ed. Boston, Massachusetts: Cengage
Learning.

Sharp, J. H. & Lang, G. (2018). Agile in Teaching and
Learning: Conceptual Framework and Research Agenda.
Journal of Information Systems Education, 29(2), 45-52.

Sibona, C., Pourreza, S., & Hill, S. (2018). Origami: An Active
Learning Exercise for Scrum Project Management. Journal
of Information Systems Education, 29(2), 105-116.

Stettina, C. J. & Hörz, J. (2015). Agile Portfolio Management:
An Empirical Perspective on the Practice in Use.
International Journal of Project Management, 33(1), 140–
152.

Taipalus, T., Seppänen, V., & Pirhonen, M. (2018). Coping
with Uncertainty in an Agile Systems Development Course.
Journal of Information Systems Education, 29(2), 117-126.

Tuckman, B. W. & Jensen, M. A. C. (1977). Stages of Small-
Group Development Revisited. Group and Organization
Management, 2(4), 419–427.

Warburton, K. (2003). Deep Learning and Education for
Sustainability. International Journal of Sustainability in
Higher Education, 4(1), 44–56.

West, D., Gilpin, M., Grant, T., & Anderson, A. (2011). Water-
Scrum-Fall is the Reality of Agile for Most Organizations
Today. Forrester Research, 26, 1–15.

AUTHOR BIOGRAPHIES

Daniel E. Rush is an assistant professor of information

technology management at Boise
State University’s College of
Business and Economics. He
earned his Ph.D. in business
administration from the
University of Michigan, where he
studied business information
technology and was part of the
technology and operations
department at the Stephen M.

Ross School of Business. Prior to joining academia, he worked
with IT projects in the health care, real estate,
telecommunications, and high tech industries. Rush researches
applying information systems to challenging interdisciplinary
problems such as environmental sustainability, as well as topics
related to project management and information systems
education. His research has been published in Journal of
Cleaner Production, Communications of the Association for
Information Systems, and Journal of Information Systems
Education.

Amy J. Connolly is an assistant professor of computer
information systems and business
analytics in the College of
Business at James Madison
University. Her doctorate is in
management information systems
from the University of South
Florida. Her research interests
include the role of social media in
volunteer organizations and active
learning and inclusion in

information systems pedagogy. Her research has been
published in journals including European Journal of
Information Systems, Information Systems Education Journal,
and Informing Faculty.

Journal of Information Systems Education, Vol. 31(3) Summer 2020

207

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2020 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 2574-3872

	1. INTRODUCTION
	2. LITERATURE REVIEW
	2.1 Agile in Teaching and Learning
	2.2 What is Agile Project Management?
	2.3 Scrum Methodology

	3. COURSE SETTING
	3.1 Classroom Site
	3.2 Supporting Textbook and Projects

	4. COURSE STRUCTURE
	4.1 Non-Scrum Classroom Time
	4.2 Semester Schedule
	4.3 Scrum Training and Team Formation
	4.4 Five 2-to-3 Week Sprints

	5. USING THE SCRUM METHOD TO TEACH IT PROJECT MANAGEMENT
	5.1 Scrum Description
	5.2 Scrum Applied in the Classroom
	5.2.1 Preparation prior to Sprint. Prior to assigning work to the Scrum teams, the instructor first developed the assignments and organized them into backlog items. In contrast to the user stories common in industry, classroom PBIs were assignments fr...
	5.2.2 ScrumMaster and Sprint planning meeting. At the beginning of each Sprint, the student teams elected a ScrumMaster. Each team member was required to serve as ScrumMaster at least once during the semester, to give every student an opportunity to p...
	5.2.3 ‘Daily’ Scrum meetings. In the classroom, similar to industry daily Scrum meetings, the ScrumMaster lead 5- to 15-minute meetings at the beginning of each class period. The ScrumMaster asked each team member to report: (1) What have I (the membe...
	5.2.4 Sprint review meeting. In the classroom, the Sprint Review was held during class time at the end of each Sprint. Each team presented the end status for each of the PBIs they attempted in the Sprint Backlog. Teams earned full points for those ite...
	5.2.5 Sprint retrospective meeting. Similar to industry but unlike previous implementations of Scrum in the classroom, each team held a Sprint retrospective meeting after each Sprint to reflect on their work processes during the Sprint and to identify...

	5.3 Example Sprint
	5.3.2 Sprint planning meeting, ScrumMaster, and Kanban task board. At the start of each Sprint, a 20- to 30-minute planning meeting was held. During the Sprint planning meeting, each team elected a ScrumMaster, reviewed the Product Backlog, and select...
	If any items were accepted but did not earn full points or if they were not accepted, they could be reattempted for full credit in the following Sprint. In the example deliverable acceptance form shown in Figure 4 (recreated from an actual form to mas...
	5.3.5 Sprint retrospective meeting. Due to limited class time, the Sprint Retrospective meeting was held in class for only the first Sprint, and teams were responsible for holding retrospectives outside of class for all subsequent Sprints, with a writ...

	6. STUDENT REFLECTION AND DISCUSSION
	6.1 Student Reflection on Scrum Mastery
	6.2 Impact of Scrum on PMBOK learning
	6.3 Soft Skills Acquisition through Active Learning and Reflection – The Self-Organizing Teams

	7. CONCLUSION AND CONTRIBUTION
	8. ACKNOWLEDGEMENTS
	9. REFERENCES

