

Journal of
Information
Systems
Education

Volume 31

Issue 2
Spring 2020

Teaching Tip

Teaching Programming to the Post-Millennial
Generation: Pedagogic Considerations for an IS

Course

Madhav Sharma, David Biros, Surya Ayyalasomayajula,
and Nikunj Dalal

Recommended Citation: Sharma, M., Biros, D., Ayyalasomayajula, S., & Dalal, N. (2020).
Teaching Tip: Teaching Programming to the Post-Millennial Generation: Pedagogic
Considerations for an IS Course. Journal of Information Systems Education, 31(2), 96-105.

Article Link: http://jise.org/Volume31/n2/JISEv31n2p96.html

Initial Submission: 2 January 2019
Accepted: 3 October 2019
Abstract Posted Online: 3 March 2020
Published: 4 June 2020

Full terms and conditions of access and use, archived papers, submission instructions, a search tool,

and much more can be found on the JISE website: http://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

http://jise.org/Volume31/n2/JISEv31n2p96.html
http://jise.org/

Teaching Tip
Teaching Programming to the Post-Millennial Generation:

Pedagogic Considerations for an IS Course

Madhav Sharma
David Biros

Surya Ayyalasomayajula
Nikunj Dalal

Department of Management Science and Information Systems
Spears School of Business
Oklahoma State University
Stillwater, OK 74075, USA

madhav.sharma@okstate.edu, david.biros@okstate.edu, surya.ayyalasomayajula@okstate.edu,
nik@okstate.edu

ABSTRACT

Teaching introductory programming to IS students is challenging. The educational, technological, demographic, and cultural
landscape has changed dramatically in recent years. The post-millennial generation has different needs and expectations in an era
of open resources. Learning to program is perceived as difficult, teaching approaches are diverse, and there is little research on
what works best. In this paper, we share our experiences in developing, testing, and implementing a new design for teaching
introductory IS programming at the undergraduate level. We describe pedagogic considerations and present teaching tips for a
blended course that combines best practices with experimentation. Our approach recognizes the changing nature of the student
body, the needs of an IS major in the current environment, and the worldwide shift in education from instructor-centered to student-
centered learning.

Keywords: Teaching tip, Introductory programming, Introductory course, Instructional pedagogy, Blended learning

1. INTRODUCTION

An introductory programming course is an important
foundation for Information Systems (IS) students. As the first
exposure to programming for IS majors and a prerequisite to
other advanced courses, it is important that this course be an
effective learning experience to lay the groundwork for the
future.

Historically, educators have found teaching programming
to be a challenging experience. Learning to program is
perceived as “difficult” even by students enrolled in IT-related
majors (Ali and Smith, 2014). There is considerable diversity
in teaching approaches and in the presentation of various
textbooks. However, there is little research about effective
pedagogies for teaching programming, let alone the question of
whether IS students may have different needs from computer
science students. A widely-cited survey on the curriculum,
pedagogy, and languages for teaching introductory
programming (Pears et al., 2007, p. 204) concludes “that despite
the large volume of literature in this area, there is little
systematic evidence to support any particular approach.”

Compounding these formidable challenges is that the
educational, technological, demographic, and cultural
landscape has changed dramatically in recent years. One big
change is the new generation of students, also called Generation
Z, loosely defined as people born from the mid-1990s to the
early 2000s, who make up 25% of the U.S. population, a larger
cohort than the Baby Boomers or Millennials (Dill, 2015). We
have to question whether classical methods of teaching are still
as relevant today for the post-millennial generation of students,
who are essentially digital natives living in a wired world of
gadgets and open resources.

In this paper, we share our experiences in developing,
testing, and implementing a new design for teaching
introductory IS programming at the undergraduate level. We
designed and delivered an introductory programming course in
the IS curriculum at a comprehensive state university in Fall
2018 based on several considerations, among which are the
changing nature of the student body, the needs of an IS major
in the current environment, and the worldwide shift in
education from instructor-centered to student-centered
learning. We made significant changes in the curriculum to

Journal of Information Systems Education, Vol. 31(2) Spring 2020

96

mailto:madhav.sharma@okstate.edu
mailto:david.biros@okstate.edu
mailto:surya.ayyalasomayajula@okstate.edu
mailto:nik@okstate.edu

adjust the course to student behaviors so that students stayed
motivated and learned core concepts of programming. From our
vantage point as educators teaching undergraduate business
students in an IS curriculum, we started with a relatively clean
slate design, posing some fundamental questions: What would
be the differences between classical teaching methods and
methods for teaching post-millennials? What should be the
differences, if any, between teaching IS students and Computer
Science students? How would we teach introductory business
programming differently from advanced programming? How
much of the course should focus on teaching a programming
language versus teaching more general computational thinking
skills? Upon reviewing the research, it became increasingly
clear that there were no conclusive answers to these questions,
and what was needed was a fresh approach guided by available
evidence of best practices combined with ample
experimentation.

2. THEORETICAL BACKGROUND

Computational thinking, a term envisioned by Wing (2006), has
been proposed as a fundamental skill for problem-solving in the
new age of technology. It is broadly defined as a set of cognitive
skills and problem-solving processes that includes but is not
limited to decomposition, pattern recognition, data
representation, abstraction, generalization, and algorithms.
While this type of learning is typically first introduced at the K-
12 stage, once the student is in college, the introductory
programming course is important as a gateway to imparting,
reinforcing, and strengthening computational thinking skills
using symbolic representation, iteration, decision structures,
and logical, algorithmic operations. Emphasis on computational
thinking and problem-solving is somewhat different from
programming instruction focused mainly on the mechanics of a
language. How best should computational thinking skills be
imparted at the college level?

With the help of a committee of seasoned instructors and
practitioners, we came up with four learning goals and
corresponding objectives. First, students should have a basic
understanding and appreciation for programming as a problem-
solving approach. Second, students should understand the logic
of common programming constructs and structures used to
build programs such as if-then-else, for-loop, while-loop, and
others. Third, students should be able to write and debug the
procedural code with moderate proficiency. Fourth, students
should have an introductory knowledge of the concepts of
object-oriented programming. We ended up having to balance
the theoretical overarching pedagogic goals of developing
computational and algorithmic thinking skills in the students
with the practical need to introduce a vocationally useful
programming language and environment.

In the traditional model of classroom instruction, the lecture
is the main event of the class, and the educator is the primary
disseminator of knowledge. “Homework” assignments are done
out of class independently by students. In the modern age,
where learning resources are readily available and digitally-
plugged in students are used to looking online for answers, the
flipped classroom model reverses the traditional approach by
delivering lecture-type content online before class and by
placing activities such as discussion and exercises in the
classroom. The flipped class model is designed to be learner-

centered, where students actively take responsibility for their
learning. In the context of teaching programming, Mok (2014)
has implemented a flipped class model and observed that
students found the experience effective, helpful, engaging, and
empowering.

For this introductory programming class, the instructors
recognized the need for close guidance to shape students’
programming ability offered by the traditional model of the
classroom and exposure to the open resources available online
offered by the flipped classroom. Between the two ends of a
classical lecturer-centered model and a completely flipped
classroom model, one can envision hybrid courses that fall at
various places on a “blended” spectrum where online lectures
replace a portion of traditional face-to-face instruction. The
instructors also saw a high variance in student skills in the initial
classes and, hence, had to make adjustments to fulfill the
student needs. Our design choice of where to fall on the
spectrum is discussed in the next section in the context of
various pedagogic considerations and adjustments made to the
curriculum to accommodate skill variance.

3. TEACHING TIPS

In this section, we present teaching tips based on several
pedagogic considerations. We started this class with the flipped
classroom approach, where we shared some videos related to
core concepts before the class and expected the students to view
them. The classroom activity contained an in-class exercise. In
the first class, we asked the students to submit a small
introduction as an assignment where they were asked about
their exposure to computer programming. We noticed a high
variance in exposure to programming across students. As the
class proceeded, we noticed that the gap between student skills
continued to increase. A few students were able to follow the
videos and reproduce what they learned in the in-class exercise
with the instructor’s supervision. However, other students
struggled to do the same. In order to assess this issue, we
conducted a formative survey to get some feedback from
students about the class. According to those results, we made
certain adjustments to our curriculum (as shown in the
following tips). Some of the considerations are common sense
and obvious, but we discuss them here in a more specific and
subtler context of teaching introductory programming to IS
undergraduate students.

3.1 Aligning Instruction to Student Expectations
Our students were largely post-millennial digital natives who
had grown up with smartphones and computers. Given the ease-
of-use of graphical user interfaces (GUI) and touch screens,
some students saw programming as an unnecessarily
complicated and tedious use of computers. As instructors, we
had to prepare the student to realize the importance of
programming in the development of practical applications and
their potential role as a contributor to the process.

A challenge that we faced in our class was the varying
levels of programming knowledge at the beginning of the
semester. Based on the student introduction (submitted as an
assignment), we identified three levels of programming
expertise: the absolute beginners or novices, the continuing
learners, and the budding experts. The absolute beginners were
students who used computers for mostly hedonic purposes such

Journal of Information Systems Education, Vol. 31(2) Spring 2020

97

as gaming, social media, and web-browsing. These students had
used spreadsheets (Excel) but had little or no exposure to any
programming language. The continuing learners were students
who had been exposed to a programming language in
middle/high school. These students were enthusiastic about
programming. The budding experts were students who were
somewhat experienced in programming. In the first few weeks
of the class, the budding experts were able to complete the in-
class exercises with ease. As we could monitor their activity on
our learning management system, we could see that these
students were able to do the initial exercises without watching
the videos. The continuing learners were able to finish these
exercises, albeit with some effort. The absolute beginners were
not able to do these exercises and were not motivated to watch
the videos either. Observing these changes, we decided to
conduct a formative survey where we asked open-ended
questions gauging students’ perceptions of these classes. We
got a mixed response as exhibited by responses from three
different students:

• “To be honest, I feel like the course is moving too

slow.”
• “More time and more instruction on in-class exercises.”
• ”It is a me thing, I need to learn, and the videos are not

so helpful.”

Based on these responses, and in order to accommodate the

students’ high skill variance, we decided to change the
curriculum from a flipped class approach. We needed a
curriculum architecture that could fulfill the following two
needs: first, the need for close step-by-step guidance for the
absolute beginners and continuing learners; second, the need to
provide students with exposure to various online resources and
the ability to pick up other languages. These needs made us
consider a blended teaching approach.

3.2 Consider a Blended Teaching Approach
Given widely different levels of programming knowledge and
the nature of the students, a classical lecture-based format
delivering identical instruction to all was not seen as
appropriate. A flipped classroom was considered due to its
merits, such as pacing and effectiveness with courses requiring
information literacy (Davies, Dea, and Ball, 2013; Mok 2014).
However, findings from our initial formative survey (at the end
of week 4) showed that only 38% of students were watching the
lecture videos shared before class. As a result, students often
found practice-based instruction to be fast and hard to follow.

Because of the student behaviors, we adopted a blended
instructional approach (as shown in Figure 1) at the end of week
4. The blended instructional approach combines the use of
online videos to be watched before class, with a condensed
lecture that includes the concepts from the videos and
clarification, followed by in-class exercises in a face-to-face
class, and finally ending with a weekly homework assignment.

The class sessions also involved the experimental use of
best practices, such as live-coding, the use of authentic tasks,
peer instruction, and a semi-structured project to normalize the
skills gap between students. More specifically, the blended
teaching approach we used was as follows. Students were asked
to view the video for a concept (such as data types or loops)
before coming to class. During class, instructors explained the
concept and responded to questions. Next, they explained an
authentic task or problem which was followed by a discussion
of a solution in the form of an algorithm using inputs from class
participation. After this, the instructor coded the program live
while students followed. The instructor took the time to code
and explained the reasoning behind the code with profuse
commenting. An in-class exercise based on the same concept
and code skeleton was then given to students to do on their own.
The goal of this exercise was to make students think about the
concepts taught in class in a slightly different programming
context. These exercises were less complex than the code
covered by the instructor but required significant modifications

Figure 1. A Blended Instructional Approach

Journal of Information Systems Education, Vol. 31(2) Spring 2020

98

for the proper output. The instructors went around the class to
help students debug their programs and ask any questions they
might have. Finally, students were given a weekly homework
assignment which built upon the cumulative work done so that
students could continually practice all the constructs they
learned in previous weeks, in contrast to in-class exercises
which are specific to a single construct. Thus, in a typical week,
the student was involved in working with three programs
independently: two in-class exercises and a homework
assignment.

This approach turned out to be more effective. The students
who watched the videos were able to practice the code in the
class, and the students who were not motivated to watch the
videos before the class could catch up with instructions very
well. The instructors observed that the complaints about
instruction being too fast were reduced, and students were able
to follow the adjusted pace of the class. The relatively more
complex homework programs served as a practice for students
rather than a first-time attempt. Students also responded more
positively to this structure; for example, one of the responses
was: “The Homework assignments were a good comprehensive
way to utilize what we learned during the class period.”

3.3 Integrating Existing Sources from the Internet
The basic structure of the course was adapted from a tried-and-
tested source. Initially, various textbooks and online resources
were considered during the course redesign process. We found
helpful ideas in many textbooks, but they did not align with our
goals. Books about programming are version-specific, leaned
heavily on granularities of the language, and adopting them as
official textbooks risked losing the critical and computational
thinking dimensions. Our goal, on the other hand, was to
introduce students to programming as a thinking process such
that they can read and understand programs, customize code,
build algorithms, and execute tasks using any computer
language or platform.

Given the blended course environment, we organized the
flow of concepts according to the acclaimed Microsoft Visual
Academy’s (MVA) C# for Absolute Beginners course by Bob
Tabor (https://mva.microsoft.com/en-us/training-courses/c-
fundamentals-for-absolute-beginners-16169). According to the
course creator, this free open online course was in its sixth
iteration since 2005 and had incorporated feedback from
thousands of students. The course website consisted of short 15
to 30-minute videos laid out in sequence, transcripts of the
videos, short quizzes, program resources, and discussion
forums. According to the instructors, the videos seemed to have
an organic build-up of concepts on an as-needed basis. For
example, it makes sense to not do all the loop constructs all at
once, unlike what textbooks typically do. Rather, introduce
students to one kind of loop construct (FOR loop) for a specific
problem, let them chew on it and digest it, and then two weeks
later, introduce them to the DO/WHILE loop, showing why it
is necessary for a slightly different problem.

With the rise of massive open online courses (MOOCs),
such as MVA, Udemy, and Coursera, and ever-expanding
crowdsourced programming communities like StackOverflow
and GitHub, students have many free resources at their disposal
to learn any programming language of their choice (Hew and
Cheung, 2014; Zagalsky et al., 2015). Our course’s
organization aimed at not only introducing students to

programming but also at making them aware of these resources
and how to use them. We shared the videos on the course
website and asked students to view them before covering the
same topics in class using simple slides and experiential in-class
exercises. The videos provided detailed explanations on code
blocks targeted to novices, letting instructors focus in class on
underlying concepts of the code blocks and how they can be
used to solve problems with critical thinking. The MVA videos
provided a tried and tested de-facto structure for us to cover all
major code blocks in a sequence consistent with our learning
goals and objectives. The videos could be re-watched, and
students had the opportunity to consult additional resources and
participate in a larger discussion forum. Besides MVA, we also
shared selective open-source content such as textbook chapters,
videos, and web-links for students’ reference.

Using these resources had two major desirable outcomes.
First, students did not have to buy a textbook. Textbooks on
programming are comprehensive and can offer good guidance
to students if used properly. However, research has repeatedly
recognized motivating students to read textbooks as challenging
(Murden and Gillespie, 1997; Burchfield and Sappington,
2000). Textbooks for C# programming cost $50 and up, and,
thus, were considered not worth the cost. Second, students got
exposure to a breadth of online resources for programming.
Students in the IS curriculum are expected to have a working
knowledge of programming. MOOCs and online resources are
becoming an integral part of the programmer’s ecosystem.
Understanding how to learn about new languages, libraries, and
customizing pre-made codes will help students immensely in
their careers.

3.4 Communicate Frequently and Offer Optional Lab
Hours
Although obvious, this teaching tip has particular applicability
for undergraduate programming students enrolled in a hands-
on, blended course. We provided clear and frequent
communication using multiple channels. Students were
contacted and kept informed about the dates of exams,
assignments, and lab and office hours via classroom
announcements, e-mail, and the class learning management
system (LMS).

Students can lose interest if they have trouble running a
program and experience a lack of opportunities to get help in
keeping up with the rest of the class. Instructors were able to
interact one-on-one with at least 80% of the students who asked
for help. Though students were strongly encouraged to ask
questions using email or set up additional appointments if
necessary, some students were reluctant to ask questions to the
instructor directly.

From week 4, adjusting to student behaviors, the instructors
arranged for the availability of optional lab hours that students
could come to and work on their homework, project, or in-class
exercise in case they needed to do so. These lab hours were
completely optional for students, and at least one instructor was
around to help students debug programs or answer any
questions they had. Though they were intended to be time for
extra help, the instructors observed a steady increase in the
attendance of students in these lab hours. In the initial four
weeks, only 10-15% of students showed up; after that point, the
attendance grew to about 75% of the class. Students often came
in groups with similar problems in their code. Such students

Journal of Information Systems Education, Vol. 31(2) Spring 2020

99

https://mva.microsoft.com/en-us/training-courses/c-fundamentals-for-absolute-beginners-16169
https://mva.microsoft.com/en-us/training-courses/c-fundamentals-for-absolute-beginners-16169

benefitted from receiving help from peers, a process that was
encouraged by the instructors. Working in groups is an
important part of programming experience. In the industry,
where the students are expected to work later in their careers,
seeking help from peers in debugging programs is deemed
essential (Vidgen and Wang, 2009; Porter et al., 2013). This
type of peer help was a win-win situation as it gave
knowledgeable students a chance to participate in class (after
their programs were completed) and helped them improve their
understanding of the concepts. As the following student
response shows, the lab hours were also found to be very
effective by the students: “The work hours on Friday were very
helpful to me because it gave me a chance to catch up on any
[In-Class exercise] that I didn’t get done that week and also
helped me with the HW.”

3.5 Use Authentic Tasks
Students must see programming as a useful tool for problem-
solving rather than as a series of tedious tasks. This problem-
solving focus is a recognition that students’ understanding of
programming at the introductory level should be logic-oriented
and not dependent on any specific programming language.
Early in the semester, we discussed a theoretical problem-
solving model in class – showing students why and how
programming was essentially a problem-solving process, and
how it fits into the overall context of the systems development
life cycle (SDLC).

One of the recognized practices used in this class was
giving students authentic problems to solve (Falkner and
Palmer, 2009; Thomas, Ge, and Greene, 2011). Authentic tasks
are problems with real-world relevance with which students are
familiar and can devise a solution with minimal explanation
(Herrington, 2006). We designed in-class exercises for every
class session and a homework assignment for every week based
on the logical concept covered in class during the week. The in-
class and homework exercises were developed from familiar
practical problems. Recurring themes included: calculating
GPA (as shown in Appendix 1), planning supplies for a get-
together, making payments in a grocery store, and toll booth
payments. Students solved these problems using the code
blocks they were learning. The problem complexity grew with
their knowledge of advanced concepts and code blocks. For
example, students were introduced to a common problem, such
as calculating their GPA, in the early weeks. An earlier solution
to this problem involved the use of the ‘if statement.’ The same
problem was continued later with solutions based on arrays, for-
loop, and while-loop. The students were able to see how the
same problem can be solved in different ways.

We provided students with several practical problems in
their in-class exercises and homework over the semester. The
first part of every homework assignment was about building an
algorithm to solve the given problem. The algorithm was
implemented using comment-first coding (Sengupta, 2009), a
scaffolding strategy in which the programming logic is
specified via plain English (or any other natural language)
inside comments. Once the logic is completely specified, the
code is then written using those comments. This approach
creates a necessary separation between the thinking needed for
programming logic and the mechanics of writing code in a
specific language (Barr and Stephenson, 2011).

3.6 Provide a Semi-Structured Project
Continuing the theme of challenging students with algorithmic
thinking problems, the second half of the semester involved
work on a semi-structured project. We define a semi-structured
project as a project where we assign a broad problem to students
to solve using programming without giving them specifics
about deliverables. The students were familiar with most code
blocks used in C# by this point in time. The project involved a
practical problem scenario (not simply a task) with which
students were familiar – coming up with a system to manage a
parking lot on campus. The students were tasked to observe the
parking lot, understand the problem in-depth, and specify
issues. They were further asked to separate the issues resolvable
by programming solutions. In the next phase, they were tasked
to propose logical designs to address those issues. In the final
phase, they had to develop a small application in C# to
implement the logical design. To better manage and understand
the development process, the project was broken down into four
deliverables, each corresponding to a phase. For the final
deliverable, students could employ the instructor’s help in
debugging their programs and improving their application. The
use of a semi-structured project, where some components were
left to the students’ initiative, helped them to create unique
applications and appreciate creativity in the programming
process.

According to the first and second deliverables, the
instructors suggested potential ways students can execute their
proposed solutions using programming. The instructors
observed that students got increasingly engaged in this project.
As a student noted in our survey: “I think the project we are
working on right now has been very effective in learning
different aspects of programming.”

3.7 Use Live Coding
Live coding is defined as “the process of designing and
implementing a project (involving programming) in front of the
class during the lecture period” (Paxton, 2002, p. 52). It is a
renowned best practice that was adopted for this class to slow
down the teaching and focus on the problem-solving aspects.
Students, though familiar with typing for short sentences, have
variable typing speeds. Live-coding gives ample time for
students to catch up with the instructor in writing the code.
Additionally, the process of live-coding was also able to
generate significant classroom participation. Students more
knowledgeable in programming were able to provide some peer
help to others during live-coding sessions. Many instructors
have used this technique for teaching programming (Paxton,
2002; Rubin, 2013). We can confirm that it is extremely
effective by the following student responses:

• “I really liked when the days when we were given
examples for the problems and were able to type the
code with (the instructor).”

• “I think the best part of this class was that we had
computers in front of us to follow along with
programming as the lecturer was doing it on the
projector.”

Journal of Information Systems Education, Vol. 31(2) Spring 2020

100

4. EFFECTIVENESS

Looking at effectiveness, we have to consider two factors: the
course design and its implementation. The two factors need to
be assessed separately because what, in principle, is a good
course component may still suffer from a weak implementation.
Based on our experiences, the course design was found to be
operationally feasible, robust, flexible, evolutionary, and
drawing upon best practices and the needs of the students. This
was borne out by data collected from two anonymous surveys:
a formative survey at the end of the fourth week of instruction
and a survey at the end of the semester. In terms of
implementation, our efforts were largely successful though we
faced some challenges. Considering the exploratory design and
evolving adaptive delivery of instruction, a pre-post survey is
not appropriate to analyze our overall approach. However, we
can make several observations based on our experiences and
student feedback obtained through anonymous surveys.

Students tend to have an expectation from every class based
on their peers’ prior experiences and information from their
advisors. Due to our modifications to the course, students took
time to adapt to the class. Though most key concepts were
covered in the lecture, they were expected to watch the videos
in advance. In weeks leading up to the first survey, students
were introduced to coding in IDE, displaying and inputting
messages and values using different data types and the ‘if
statement.’ The first formative survey suggested over 80% of
students (n=41) found the in-class exercises and homework
assignments useful in understanding problem solving and
programming with C#, which was an encouraging signal for the
two main components of the course. Responses on some
questions were mixed, suggesting skill variance among
students. For example, when it came to the pace of instruction,
two responses were:

• “Slowing (sic) down during instruction, sometimes it

goes too fast, and most of us cannot keep up.”
• “To be honest I feel like the course is moving too slow.”

Based on the early formative survey, we made some

changes. For example, issues faced by students with the speed
and format of live-coding were addressed by fine-tuning the
pace and form. Student feedback on live coding and exercises
were two parameters to assess effectiveness. The students
practiced three to five problems a week in building logic,
writing code, and executing code. Two of the programs were
examples that instructors coded live along with an
accompanying presentation of concepts. The other three
programs were included in the in-class exercises and
homework. The structure of the class enabled us to strategically
increase the complexity of programs and employ concepts that
build on each other. Students were autonomously able to build
logic and write the initial skeleton of codes. The instructors and
their peers helped them decode it for execution. Students
gradually warmed up to these exercises as reflected in students’
comments such as:

• “The [In-class exercises] I found effective because they
gave us practical application of what we are learning in
the course. The homework assignments were a good
comprehensive way to utilize what we learned during
the class period.”

• “The homework assignments were also extremely
effective in my opinion. They built upon what you were
taught and created with the [In-class exercises] and
increased the understanding of what was taught.”

Although the course design was strong, the implementation

was not without its challenges. First, not all students watched
the MVA videos regularly in advance, despite our urging.
While the MVA videos were informative, some of the later
videos discussed granularities of Microsoft’s libraries and the
.NET framework which were not directly relevant to the goals
of the course. Students had to learn what to focus on while
watching videos. We addressed this aspect by selectively
showing portions of a few videos in the first week, though the
videos were used to complement the class sessions and never as
a replacement. Also, we provided alternative, supplementary
options such as references to specific book chapters. The
second challenge was an uneven attendance after the first half
of the course. We believe this was a general trend with many
other classes and it was due to some forces beyond our control.
A potential solution to counter this problem would be to
allocate a part of the grade to attendance.

This introductory programming class was deemed to be one
of the early steps in shaping the students into well-rounded IS
practitioners. Our objective for this class was to introduce
students to programming as a problem-solving process so that
they can read and understand code, build algorithms, and write
programs for basic problems. For testing a student’s ability to
read and understand code, a test for recognition is preferable
(Simkin and Kuechler, 2005). The midterm exam constituted
25 multiple-choice questions. As the students gained more
hands-on experience, we decided to test them on their ability to
build algorithms and write code. The final exam constituted 15
multiple-choice questions and a code writing question.
Consistent with the findings of Kuechler and Simkin (2003), we
found that the student scores on multiple-choice questions and
code writing were correlated. The tests constituted slightly less
than one-third of their total grade. Besides tests, continuous
assessment took place in the form of iterative in-class and
homework exercises. These in-class and homework exercises
contained two components: a thinking component and a coding
component. The thinking component usually constituted
writing an algorithm for a task or defining a concept in their
own words. We believe the in-class exercises, homework,
project, and exams collectively were able to test the logical
understanding of students along with their basic programming
skills.

Though there has been considerable debate over the
relevance and requirement of programming in an IS program
(Saulnier and White, 2011; Bell, Mills, and Fadel, 2013), the
industry expects IS graduates to have the ability to solve
problems using computational thinking and comprehend code
to some degree (Wilkerson, 2012). Through this method of
course delivery, we were able to teach students how
programming can be used to solve authentic everyday
problems. In doing so, we also noticed that students understood

Journal of Information Systems Education, Vol. 31(2) Spring 2020

101

the need for learning programming. In our second formative
survey at the end of the semester, 90% of the students agreed
that programming is a useful tool for problem-solving.

5. CONCLUSIONS

Our goal was to design and deliver an introductory
programming course suitable for the post-millennial generation
of undergraduate IS students. Toward this end, we have
described an innovative blended course design and its
implementation that combines best practices with
experimentation. The design is flexible in how it may be
implemented, keeping in mind the needs of a specific student
body. Given the paucity of research on effective pedagogy to
teach programming and the different needs and the differing
expectations of post-millennials in an era of open resources and
changing technologies, we believe the pedagogical
considerations and teaching tips described in this article will be
helpful to course designers and instructors of programming in
undergraduate IS curricula.

6. REFERENCES

Ali, A. & Smith, D. (2014). Teaching an Introductory

Programming Language in a General Education Course.
Journal of Information Technology Education: Innovations
in Practice, 13, 57-67.

Barr, V. & Stephenson, C. (2011). Bringing Computational
Thinking to K-12: What is Involved and What is the Role of
the Computer Science Education Community? Inroads, 2(1),
48-54.

Bell, C., Mills, R., & Fadel, K. (2013). An Analysis of
Undergraduate Information Systems Curricula: Adoption of
the IS 2010 Curriculum Guidelines. Communications of the
Association for Information Systems, 32(1), 73-94.

Burchfield, C. M. & Sappington, J. (2000). Compliance with
Required Reading Assignments. Teaching of Psychology,
27(1), 58-60.

Davies, R. S., Dean, D. L., & Ball, N. (2013). Flipping the
Classroom and Instructional Technology Integration in a
College-Level Information Systems Spreadsheet Course.
Educational Technology Research and Development, 61(4),
563-580.

Dill, K. (2015). 7 Things Employers Should Know About The
Gen Z Workforce. Forbes. Retrieved May 27, 2020, from
https://www.forbes.com/sites/kathryndill/2015/11/06/7-
things-employers-should-know-about-the-gen-z-
workforce/#20de51f0fad7.

Falkner, K. & Palmer, E. (2009). Developing Authentic
Problem-Solving Skills in Introductory Computing Classes.
ACM SIGCSE Bulletin, 41(1), 4-8.

Herrington, J. (2006). Authentic E-Learning in Higher
Education: Design Principles for Authentic Learning
Environments and Tasks. In E-Learn: World Conference on
E-Learning in Corporate, Government, Healthcare, and
Higher Education (3164-3173).

Hew, K. F. & CheunG, W. S. (2014). Students’ and Instructors’
Use of Massive Open Online Courses (MOOCs):
Motivations and Challenges. Educational Research
Review, 12, 45-58.

Kuechler, W. L. & Simkin, M. G. (2003). How Well do
Multiple Choice Tests Evaluate Student Understanding in
Computer Programming Classes? Journal of Information
Systems Education, 14(4), 389-400.

Mok, H. N. (2014). Teaching Tip: The Flipped Classroom.
Journal of Information Systems Education, 25(1), 7-11.

Murden, T. & Gillespie, C. S. (1997). The Role of Textbooks
and Reading in Content Area Classrooms: What are Teachers
and Students Saying. In Linek, W. & Sturtevant, E. G.
(Eds.), Exploring Literacy (pp. 87-96). College Reading
Association.

Paxton, J. (2002). Live Programming as a Lecture Technique.
Journal of Computing Sciences in Colleges, 18(2), 51-56.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams, E.,
Bennedsen, J., & Paterson, J. (2007). A Survey of Literature
on the Teaching of Introductory Programming. ACM
SIGCSE Bulletin, 39(4), 204-223.

Porter, L., Guzdial, M., McDowell, C., & Simon, B. (2013).
Success in Introductory Programming: What
Works? Communications of the ACM, 56(8), 34-36.

Rubin, M. J. (2013). The Effectiveness of Live-Coding to Teach
Introductory Programming. In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education (651-
656).

Saulnier, B. & White, B. (2011). IS 2010 and ABET
Accreditation: An Analysis of ABET-Accredited
Information Systems Programs. Journal of Information
Systems Education, 22(4), 347-354.

Sengupta, A. (2009). Teaching Tip: CFC (Comment-First-
Coding) – A Simple yet Effective Method for Teaching
Programming to Information Systems Students. Journal of
Information Systems Education, 20(4), 393-400.

Simkin, M. G. & Kuechler, W. L. (2005). Multiple‐Choice
Tests and Student Understanding: What is the Connection?
Decision Sciences Journal of Innovative Education, 3(1), 73-
98.

Thomas, M. K., Ge, X., & Greene, B. A. (2011). Fostering 21st
Century Skill Development by Engaging Students in
Authentic Game Design Projects in a High School Computer
Programming Class. Journal of Educational Computing
Research, 44(4), 391-408.

Vidgen, R. & Wang, X. (2009). Coevolving Systems and the
Organization of Agile Software Development. Information
Systems Research, 20(3), 355-376.

Wing, J. M. (2006). Computational Thinking. Communications
of the ACM, 49(3), 33-35.

Wilkerson, J. W. (2012). An Alumni Assessment of MIS
Related Job Skill Importance and Skill Gaps. Journal of
Information Systems Education, 23(1), 85-97.

Zagalsky, A., Feliciano, J., Storey, M. A., Zhao, Y., & Wang,
W. (2015). The Emergence of GitHub as a Collaborative
Platform for Education. In Proceedings of the 18th ACM
Conference on Computer Supported Cooperative Work &
Social Computing (1906-1917).

Journal of Information Systems Education, Vol. 31(2) Spring 2020

102

https://www.forbes.com/sites/kathryndill/2015/11/06/7-things-employers-should-know-about-the-gen-z-workforce/#20de51f0fad7
https://www.forbes.com/sites/kathryndill/2015/11/06/7-things-employers-should-know-about-the-gen-z-workforce/#20de51f0fad7
https://www.forbes.com/sites/kathryndill/2015/11/06/7-things-employers-should-know-about-the-gen-z-workforce/#20de51f0fad7

AUTHOR BIOGRAPHIES

Madhav Sharma is a Ph.D. student studying management

science and information systems at
Oklahoma State University. His
research interests include diffusion
of innovation, use and implications
of artificial intelligence, machine
learning, and Internet of Things.

David Biros is an associate professor of management science

and information systems and
Fleming Chair of Information
Technology Management at
Oklahoma State University. A
retired Lieutenant Colonel of the
United States Air Force, his last
assignment was as Chief
Information Assurance Officer for
the AF-CIO. His research interests

include deception detection, insider threat, information system
trust, and ethics in information technology. He has published in
MIS Quarterly, Journal of Management Information Systems,
Decision Support Systems, Group Decision and Negotiation,
MISQ Executive, Journal of Digital Forensics Security and
Law, and other journals and conference proceedings.

Surya Ayyalasomayajula is a Ph.D. student studying

management science and
information systems at Oklahoma
State University. His research
interests include healthcare
analytics, use and implications of
deep learning in healthcare
contexts, and optimization of
operations. He has extensive
experience in software development

and training.

Nikunj Dalal is professor emeritus of management science and
information systems in the Spears
School of Business at Oklahoma
State University. His research
interests involve practical wisdom,
learning, philosophical issues in
information systems, modeling,
and web perception. His work has
been published in journals such as:
Information Systems Journal,
Communications of the ACM,
Decision Sciences, European

Journal of Information Systems, and International Journal of
Human-Computer Studies, among others.

Journal of Information Systems Education, Vol. 31(2) Spring 2020

103

APPENDIX

Concept Exercise Solution
If Statement You are applying for a scholarship. You

have to make a C# application that
calculates your GPA for 3 courses.

//Getting Course information for Course 1
 Console.WriteLine("Course 1");
 string course1 = Console.ReadLine();
//Getting Grade information for Course 1
 Console.WriteLine("Grade in Course1");
 string grade1 = Console.ReadLine();
//Declaring and reading integer variable for quality points
 int qp1 = 0;
//Declaring and reading if statements course1
 if (grade1 == "A") qp1 = 4;
 if (grade1 == "B") qp1 = 3;
 if (grade1 == "C") qp1 = 2;
 if (grade1 == "D") qp1 = 1;
 if (grade1 == "F") qp1 = 0;
//Getting Course information for Course 2
 Console.WriteLine("Course 2");
 string course2 = Console.ReadLine();
//Getting Grade information for Course 2
 Console.WriteLine("Grade in Course 2");
 string grade2 = Console.ReadLine();
//Declaring and reading integer variable for quality points
 int qp2 = 0;
//Declaring and Reading if statements course 2
 if (grade2 == "A") qp2 = 4;
 if (grade2 == "B") qp2 = 3;
 if (grade2 == "C") qp2 = 2;
 if (grade2 == "D") qp2 = 1;
 if (grade2 == "F") qp2 = 0;
//Getting Course information for Course 3
 Console.WriteLine("Course 3");
 string course3 = Console.ReadLine();
//Getting Grade information for Course 3
 Console.WriteLine("Grade in Course3");
 string grade3 = Console.ReadLine();
//Declaring and reading integer variable for quality points
 int qp3 = 0;
//Declaring and reading if statements course1
 if (grade3 == "A") qp3 = 4;
 if (grade3 == "B") qp3 = 3;
 if (grade3 == "C") qp3 = 2;
 if (grade3 == "D") qp3 = 1;

if (grade3 == "F") qp3 = 0;
//Performing calculation on integer

int GPA = (qp1 + qp2 + qp3)/3 ;
// Declaring and Reading if statements for qualification.

string qualmessage = "";
if (GPA >= 3) qualmessage = "You qualify for our
scholarship";
if (GPA <= 3) qualmessage = "You do not qualify for our
scholarship";
Console.WriteLine(qualmessage);
Console.ReadKey();

Journal of Information Systems Education, Vol. 31(2) Spring 2020

104

For Loop You are applying for a scholarship, and
Excel has decided to update. You want
to write a quick C# program that
calculates your GPA for 5 courses and
returns a message if you qualify for the
scholarship. The program you made
before was functional but too lengthy to
use again. Write this program using the
‘for statement.’

//Declaring a float variable for quality points
 float qp = 0;
 float totalqp = 0;
//For loop for taking inputs and adding quality points for 5 iterations
 for (int i = 0; i < 5; i++)
 {
 Console.WriteLine("What is your course grade" + i + "?");
 string grade = Console.ReadLine();
 if (grade == "A") qp = 4;
 if (grade == "B") qp = 3;
 if (grade == "C") qp = 2;
 if (grade == "D") qp = 1;
 if (grade == "F") qp = 0;

 totalqp = totalqp + qp;
 }
 {
//calculate GPA
 float gpa = totalqp / 5;
 Console.WriteLine(gpa);
 string qualmessage = "";
 if (gpa >= 3) qualmessage = "You qualify for our
scholarship";
 if (gpa <= 3) qualmessage = "You do not qualify for our
scholarship";
 Console.WriteLine(qualmessage);
 Console.ReadKey();

Arrays Your application did not go through.
Even though your qualification was
decided, your program did not store
which course had what grade. Use ‘for
loop’ and ‘arrays’ to make a program
that displays what grades you got in
what course.

//Declare Course
 string[] CourseName = new string[5];
 string[] CourseGrade = new string[5];
//For loop to get course and grade information

for (int i =0; i<5; i++)
{
Console.WriteLine("Enter Course name " + i);
string CourseName[i] = Console.ReadLine();
Console.WriteLine("Enter Grade for Course name " + i);
string CourseGrade[i] = Console.ReadLine();
}

 // Display course and grade
 for (int i =0; i<5; i++)
 {
 Console.WriteLine("Course: " + CourseName[i] + "
 Grade: " + CourseGrade[i]);
 }
 Console.Readkey();

Table 1. Examples of Authentic Tasks Solved in Different Ways

Table 1 shows three exercises dealing with similar information: courses, grades, and GPA. As we moved from week to week to
more advanced topics (for example, ‘if statement’ to ‘for loop’), the solutions for these problems started becoming smaller and
more parsimonious. A key take-away we wanted our students to get was that the same problem could be solved in different ways
such that they strived to construct the most parsimonious solution.

Journal of Information Systems Education, Vol. 31(2) Spring 2020

105

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2020 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 2574-3872

	1. INTRODUCTION
	2. THEORETICAL BACKGROUND
	3. TEACHING TIPS
	3.1 Aligning Instruction to Student Expectations
	3.2 Consider a Blended Teaching Approach
	3.3 Integrating Existing Sources from the Internet
	3.4 Communicate Frequently and Offer Optional Lab Hours
	3.5 Use Authentic Tasks
	3.6 Provide a Semi-Structured Project
	3.7 Use Live Coding

	4. EFFECTIVENESS
	5. CONCLUSIONS
	6. REFERENCES
	AUTHOR BIOGRAPHIES
	APPENDIX

