

Journal of
Information
Systems
Education

Volume 31

Issue 1
Winter 2020

Experiences in Using a Multiparadigm and
Multiprogramming Approach to Teach an Information

Systems Course on Introduction to Programming

Juan Gutiérrez-Cárdenas

Recommended Citation: Gutiérrez-Cárdenas, J. (2020). Experiences in Using a Multiparadigm
and Multiprogramming Approach to Teach an Information Systems Course on Introduction to
Programming. Journal of Information Systems Education, 31(1), 72-82.

Article Link: http://jise.org/Volume31/n1/JISEv31n1p72.html

Initial Submission: 23 December 2018
Accepted: 24 May 2019
Abstract Posted Online: 12 September 2019
Published: 3 March 2020

Full terms and conditions of access and use, archived papers, submission instructions, a search tool,

and much more can be found on the JISE website: http://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

http://jise.org/Volume31/n1/JISEv31n1p72.html
http://jise.org/

Experiences in Using a Multiparadigm and
Multiprogramming Approach to Teach an Information

Systems Course on Introduction to Programming

Juan Gutiérrez-Cárdenas
Faculty of Engineering and Architecture

Universidad de Lima
Lima, 15023, Perú

jmgutier@ulima.edu.pe

ABSTRACT

In the current literature, there is limited evidence of the effects of teaching programming languages using two different paradigms
concurrently. In this paper, we present our experience in using a multiparadigm and multiprogramming approach for an
Introduction to Programming course. The multiparadigm element consisted of teaching the imperative and functional paradigms,
while the multiprogramming element involved the Scheme and Python programming languages. For the multiparadigm part, the
lectures were oriented to compare the similarities and differences between the functional and imperative approaches. For the
multiprogramming part, we chose syntactically simple software tools that have a robust set of prebuilt functions and available
libraries. After our experiments, we found that the students were strongly biased towards memorizing the syntax of these
languages, jeopardizing their ability to learn to think algorithmically and logically in order to solve the given problems. We
believe that teaching students using multiparadigm and multiprogramming techniques could be discouraging, especially for those
students with no programming experience. In this research study, we present the results of applying this approach together with
the achievements, failures, and trends of the students who were taught with this multipath system.

Keywords: IS education, Introductory programming, Multiparadigm, Multiprogramming

1. INTRODUCTION

Teaching different programming languages, irrespective of
their multiparadigm features, is encouraged by the ACM
Computing Curriculum (2013). This is part of a strategy to
prepare students to adapt to situations that require the ability
to self-teach new material and content. Wang (2002) proposed
the above-mentioned approach as part of efforts to develop
students’ ability to self-learn, even after they have finished
their undergraduate studies.

We based our proposal on the teaching of paradigms. A
paradigm is a set of methods that could be effective in a
certain problem domain (Bal, 1994). The programming
languages are viewed only as tools for putting the students’
ideas (paradigms) into practice. It is worth mentioning that
following a paradigm approach will eventually help students
cope with any new languages they encounter as part of the
established paradigms. In addition, the paradigm approach will
enable the students to solve tasks better by using the most
appropriate paradigm for each specific scenario.
Consequently, we aimed to give the students a broader view of
what learning a language paradigm encompasses, independent
of the syntaxes and add-on libraries of each programming
language. Equally important, we also oriented our students to
the idea that there is no programming language that is better or

worse than another (ACM, 2013), but that each paradigm
comprises a set of programming languages even though they
use different rationale or logic. The paradigms chosen for our
research were imperative and functional programming.

The imperative paradigm, with its structure of performing
a set of operations over a flow of data, closely resembles a
computer’s internal representation of information and is one of
the most widely understood paradigms (Zanev, 2011). In
addition, this paradigm is better suited to the human brain’s
schema for performing tasks (Bal, 1994; Vujošević-Janičić
and Tošić, 2008). According to Westbrook (1999), students
who had previously taken an imperative approach were unable
to recognize it as such in their courses. However, this is likely
a direct consequence of how attention was focused solely on
the software tool rather than on the underlying paradigm. With
this in mind, we decided to teach an introductory
programming course with a first part that was based on the
imperative paradigm. Our approach focused on explaining the
detail-oriented approach of the imperative paradigm and how
it relates directly to the inner functioning of a computer (Bal,
1994; Zanev, 2011). In addition, we lectured on the imperative
paradigm itself, independent of the programming language
needed to teach its particularities.

The second part of our course was based on the functional
paradigm. We taught this paradigm by succinctly describing

Journal of Information Systems Education, Vol. 31(1) Winter 2020

72

mailto:jmgutier@ulima.edu.pe

its features – its mathematical foundation, simplicity, and use
of important features such as referential transparency (Luker,
1989) – and leading students away from the inner
requirements of a computer’s state flow (Vujošević-Janičić
and Tošić, 2008). Equally important, we compared the
characteristics of functional languages with the predominant
characteristics of imperative languages, such as the side
effects and instructions related to the data flow in a
computer’s architecture (Budd, 1995). It is worth noting that
each paradigm was taught using a programming language
suited for the characteristics of that paradigm, so the course
taught multiple programming languages.

In addition, we found that the central problem with
teaching multiple programming environments, unlike the
multiparadigm approach, relates to the students’ ability to
cope with the syntax of each programming language.
Therefore, the students found it difficult to abstract the main
characteristics of the paradigms taught. During our course,
students commented on and frequently complained about
certain languages having a simpler syntax than others (e.g.,
reading or writing data from/to a text file). Nevertheless, the
students understood the processes of both the functional and
imperative paradigms, but they preferred the imperative
paradigm due to the simpler grammar of the chosen language.
Regarding this last point, we hypothesize that ease of
understanding might depend heavily on the programming
language selected. For example, it is generally easier for
students to remember the fopen instruction in Python rather
than Java’s BufferedReader and Exception treatments, even
though both programming languages perform the same task
within the same paradigm. When deciding on the paradigm to
use for this introductory programming course, a group of
teachers voted for the imperative paradigm, while another
group voted for the functional one. An idea raised by some
teachers was to teach two paradigms while making
comparisons of their similar features.

In light of our findings, we decided to take a
multiprogramming approach in our introductory programming
course, using two programming languages. Thus, we chose
Python because of its simplified syntax, ease of learning, and
other characteristics suitable for beginner programmers
(Grandell et al., 2006; Necaise, 2008; Mason, Cooper, and de
Raadt, 2012). We also chose Scheme because of its ease of use
and set of prebuilt functions. Therefore, we established both
programming languages as implementation tools for lectures
on the imperative and functional paradigms, respectively. It is
worth mentioning that we could have used Python only, as it
supports both imperative and functional paradigms. However,
we opted to use two languages instead of only one with
multiparadigm characteristics (Budd, 1955) to provide
students with an opportunity to try a language that matched
their individual styles. In addition, this would allow them to
fulfill the requirements of lifelong learning (after graduation)
and exposure to multiple languages, as stated in ACM (2013).
There was an initial concern that since this was the first
programming language experience in a university context for
most students, they might spend more time memorizing the
syntax of each language rather than focusing on the relevant
characteristics of each paradigm. Thus, we chose to use a
couple of light-syntax programming languages so that we
could rely on the intuitiveness of both environments, relieving

the students of the need to focus on learning the syntax of the
tools. For example, students did not have to learn how to use
static typing or ‘for-iteration’ statements relying on
conditionals (such as in the C-family programming
languages), which cause extra learning difficulties for students
(Stefik and Siebert, 2013). Consequently, beginning students
exposed to these light-syntax tools would be able to focus
more on the logic and algorithmic parts. The integrated
development environments (IDEs) used for our lectures were
Racket (for Scheme) and WinPython (for Python). Both IDEs
manage errors adequately and have automatic code-filling
features that often help students implement their ideas.
Regarding whether the teaching of Scheme could generate
student enthusiasm for computer science topics later in their
careers (Berman, 1994), we hypothesize that this mostly
depends on how useful the students find the concepts learned
in this course, regardless of the programming language
studied. As we will show, the students’ perceptions changed,
preferring one paradigm over another, and therefore a different
programming language to solve a particular computational
problem. This preference was directed more by syntactic and
language features than by algorithmic or paradigmatic ones.

In Peru, there is a noticeable tendency to mostly teach
languages that are industry-oriented or ‘hot’ in the
marketplace, but we believed we should focus more on
environments that are easier to teach for pedagogical reasons
(Mason, Cooper, and de Raadt, 2012). For example, a study in
Australia (Mason and Cooper, 2014) by a group of universities
identified the change from industry needs to pedagogical
benefits. Even though there is no intention to diminish the
importance of programming tools such as C or Java, we
wanted (as previously stated) a more suitable environment.
Consequently, we needed tools that would not immerse the
students in a language’s requirements and characteristics, but
would guide their solution implementations by focusing more
on problem-solving logic than on the programming tool. In
summary, our choice of Scheme and Python was due to their
simple syntax and the fact that the programming does not need
to be typed. These benefits have been discussed previously in
the existing literature on this topic (Bloch, 2000; Heliotis,
2011; Zanev, 2011; Agarwal, 2012). Furthermore, in our
course, we also tried to debunk the myth that computer science
relates only to programming (Denning, Tedre, and
Yongpradit, 2017), a misconception that frequently leads to
the lack of student applications to programs related to
computer science (CS) or information systems (IS). The
inclusion of programming in IS curricula not only helps
undergraduate students acquire a new set of skills needed for
their careers but also (through algorithmic and computational
thinking) enables IS practitioners to identify processes that can
benefit from computational techniques (Topi, 2008).

Numerous approaches encourage the teaching of
multiparadigm schemas and, as such, different programming
languages (ACM, 2013). These range from using different
paradigms, such as object-oriented programming (Striegnitz
and Davis, 2008), to using two different paradigms to solve
parallel problems (Pankratius, 2012). Even though we agree
that these schemas should be presented to undergraduate
students, we hypothesized that positive results could be
equally achieved by teaching two paradigms concurrently in
an introduction to programming course. Based on our results,

Journal of Information Systems Education, Vol. 31(1) Winter 2020

73

we believed that it would be possible to teach multiple
paradigms, but that this would also depend greatly on the
students’ background in some topics (e.g., functional
programming requires a slightly stronger background in
mathematics than imperative programming). Regarding the
selection of a programming language, some authors proposed
using a single programming language that has multiparadigm
characteristics (Budd, 1995; Agarwal, 2012). However, we
believed this approach would push students to mimic the
characteristics of the studied paradigm that do not specifically
belong to the selected language. For example, students might
be encouraged to simulate tail recursion in Python without
using the full set of functions for manipulating lists that
functional languages have, or without trying to make concise
compose functions. In conclusion, in this research study we
will determine whether the students were able to absorb the
material and understand each paradigm, or whether they got
stuck on the specific learning challenges presented by each
programming language.

2. CLASSROOM METHODOLOGY

The course was developed as an introductory course to
programming for students who will major in information
systems, but who mostly have little or no background in
computer programming. The expected learning outcomes of
the proposed course were the following:

• By the end of the course, the student will be able to
use introductory concepts in algorithm analysis to
develop solutions for simple computational problems.

• To implement their solutions, the students will be able
to use a programming language based on an
imperative or functional paradigm.

Our course is designed to encourage the analysis of

solutions to problems that can be solved using a computer and
to teach simple algorithms, data structures, and programming
paradigms. Additionally, we expect that our course will
inspire students to be curious about different paradigms and
programming approaches. This exposure to different
paradigms and programming characteristics will therefore
enable students to adapt to different types of programming and
paradigm types that they may encounter in the future. These
objectives were aimed at achieving what ACM’s computer
science curriculum (ACM, 2013) calls a “commitment to life-
long learning.”

We decided to follow the structure of the topics presented
in Felleisen et al. (2001) with some subtle variations so that
the course would be interesting and useful for students
planning careers in information systems, but not necessarily as
developers, a track considered by (Topi, 2010).

The topics we taught included the following:

• Variables and expressions
• Functions and anonymous functions (optional

lecturing of lambda calculus)
• Selection
• Recursion types
• Iteration as a contraposition to recursion
• Lists

• Data search: sequential and binary search algorithms
• Divide and conquer techniques
• File manipulation
• Programming language paradigms

We taught the functional and imperative paradigm

approaches using Scheme and Python. Some topics such as
tail recursion were oriented to just one paradigm since it is a
technique that belongs to functional languages and has no
equivalent in Python. Nevertheless, focusing on a single
paradigm was infrequent during our course.

We pointed out the static and dynamic natures of each
paradigm (Baber, 2011), explaining the functional paradigm as
describing something without saying specifically how it
works. For this paradigm, we tended to define and exemplify
the cases using mathematical notation. In addition, we felt that
we had an advantage by teaching our course in conjunction
with an Introduction to Discrete Structures course. That course
helped the students to connect information from the
mathematical and the programming parts of the course. The
description of the imperative paradigm was related to the
dynamic nature of this model, in which each instruction is
defined as a command (Baber, 2011). In addition, we
emphasized that one characteristic of this paradigm involves
the user’s knowledge of the data flow at a machine level. On
the other hand, we purposely skipped some topics in this
paradigm because of the nature of the language taught. For
example, we omitted the static typing and pointer operations
present in some imperative languages, such as C.

We covered certain functional topics, such as the use of
functions and recursion, earlier than they are usually taught in
imperative approaches. The use of mathematical expressions
was a must. For example, when teaching how to solve a
factorial we presented the students with the classic formula:

𝑛𝑛! = 𝑛𝑛 ∗ (𝑛𝑛 − 1)!, and when presenting an example of how to
create a program that sums a list of numbers we used the
formula:

�𝑖𝑖
𝑛𝑛

𝑖𝑖=1

= �𝑖𝑖 + 𝑛𝑛
𝑛𝑛−1

𝑖𝑖=1

For the examples mentioned above, the imperative part
consisted of how to solve both problems by using loops in
Python. In general, the students responded well to this
approach, but occasionally they leaned towards another
approach relying on syntactic issues.

Let’s look at another example used in teaching a file
manipulation case. The student was presented first with a
functional approach:

Journal of Information Systems Education, Vol. 31(1) Winter 2020

74

This was followed by an imperative approach in Python:

Some students commented that the imperative version was
more straightforward than the functional one but that they
understood how the program behaves in its functional
paradigm form. The students also felt that the Python syntax
was simpler than the Scheme syntax in most of the
programming situations that they encountered. To overcome
this tendency to base a problem’s solution on syntax only, we
constantly encouraged students to look for simple ways to
implement solutions based on the use of the correct paradigm
and not on the particular features of a programming language.

The subjects of this experiment consisted of three
undergraduate groups pursuing Information Systems degrees;
each group had approximately 30 students. A different lecturer
taught each group, but each strictly adhered to the same course
outcomes, topics, and timelines for the material taught. After
the first scored assessment, two teachers decided to withdraw
from the experiment. The lecturers continued to adhere to the
syllabus requirements, but only used one paradigm and one
programming language. The main reason for this was that, on
average, 40% of the students in each group were unable to
cope with this multiparadigm and multiprogramming
approach. This was reflected in the low grades achieved after
the first practical test. Only one group of twenty-seven
students remained a part of the experiment, and the research
results described in this study reflect this proof-of-concept.

3. EVALUATION

The assessment consisted of four graded practical tests, a
midterm exam, a final exam, and the presentation of a final
project that incorporated the paradigms taught in the course. In
the four practical tests, students were asked to solve three to
five programming tasks using the concepts learned during the
previous lectures. All evaluations were conducted using a
computer in a lab, and we encouraged the students to submit
their solutions even if the program could not be compiled. In

this case, we awarded points for the logic presented in their
draft solutions. The topics of the four practical tests are shown
in Table 1.

Practical Test Topics Assessed
Practical Test 1 Variables, Expressions, Data Flow:

Sequentiality, Selection, Functions,
Basic Algorithms

Practical Test 2 Recursion, Iteration, Introduction to
Lists

Practical Test 3 Recursion in Lists: Graphs
Practical Test 4 Tail Recursion, Accumulators,

Binary Search, File Manipulation
Table 1. Practical Test Topics

In some of the tests, students were asked to select and use

one paradigm – imperative or functional – based on the
methodology they thought would best serve the task at hand.
The purpose of this was to assess the students’ capacity to
select and use the most appropriate paradigm and therefore the
most appropriate technique for solving a specific problem (for
example, using higher-order functions to exhaust a list that
uses a map function instead of iterating over all the elements
or being aware that iteration avoids the overhead caused by
recursive functions). In other situations, students were asked
to use a specific technique, such as recursion, so that we could
measure the knowledge absorbed from specific parts of the
course. After the midterm exam, students were generally free
to choose from the paradigms taught and the available
software tools, but they needed to consider the specificities of
each programming language. This approach was not easy for
students since most instinctively worried about syntax and
why a program was not executing even though their logic
seemed correct. To overcome this problem, we decided to
grade their assignments more on the logic involved than on the
execution of the program.

In a few of the assignments carried out in lab sessions, we
found that a group of students tended to follow colleagues
who were better at making their code executable even though
their solutions may have been logically incorrect. This
problem, also described in Bloch (2000), caused fewer logical
ideas to be generated in the classroom as it fostered the feeling
that a solution is right only if it executes in a computer. We
addressed this situation by pointing out cases in which the
computer execution of a program can lead to a wrong answer
due to poor logical or algorithmic design. We also encouraged
all of the students in the class to participate in the solution
design phase. During the implementation part of the
assignment, the teacher was more of a “syntax advisor,” there
to help correct coding mistakes.

Each test corresponded to a specific practice and measured
the knowledge gained during different parts of the course. The
following is an example of the second practical test:

Topic: Lists
1. Consider any list, for example: [1,2,4,10,11,5].

Implement a program that prints the sum of the odd
numbers in the list.

2. Code a solution that reverses a given list of numbers.

Journal of Information Systems Education, Vol. 31(1) Winter 2020

75

Topic: Recursion vs. Iteration
1. Imagine a triangle made up of blocks and arranged in

rows; the first row has one triangle, the second row
has two (making a total of three triangles), and so on.
Implement a solution that will enable a user to count
the total number of triangles by inputting a row
number.

2. Assume that we have a word stored in a list; for
example: [h,e,l,l,o]. Code a program that prints an
asterisk (*) if it finds two identical characters next to
each other. In our example, the program should print
‘hel*lo’.

In the above example, the students were required to show
their knowledge of list-related topics such as basic data
structures, recursion, and iteration. Regarding recursion and
iteration, we wanted to measure how many students preferred
iteration over recursion and to determine if recursion was
indeed a more difficult technique for first-semester
undergraduate students to understand. (For an analysis of how
well recursion is understood by undergraduate students, refer
to Lurlyn (2010)).

In addition, we informed our students that they could
submit their solutions even if they did not execute as long as
they believed their answers were logically and algorithmically
correct. The intention was to encourage students to complete
most of the tasks during the allotted time. Sometimes, teachers
put programming examples in an addendum to help students
grasp the syntactic constructors during a test. In this case,
students had to submit a fully working version of the solution.
As a way to contribute to the learning of our students, we also
established the following mechanisms:

a) In addition to lectures, time was allotted in each
session for students to work in pairs to solve a set of
given exercises; afterward, we shared the correct
answers with the classroom. In these sessions, the
teacher also acted as a moderator.

b) A Moodle-based virtual education environment was
used in which students could submit their questions.

c) There were also opportunities for students who
demonstrated mastery of a topic to act as a teaching
assistant, with time allocated to help students having
difficulty in the course.

However, this last opportunity only resulted in a couple of
extra sessions, since the designated students had other
academic responsibilities that limited their ability to provide
this mentorship.

4. RESULTS

4.1 Practical Tests
The practical tests assessed students’ knowledge of the topics
covered up to the test. For nearly all questions, students were
free to choose the paradigm and implementation programming
language. Additionally, an exam appendix was included that
provided the syntax of some instructions along with small
examples of code. The purpose of this aid was to assist
students when they were unable to recall the syntax of the
chosen language. It is worth noting that there were 27

registered students at the beginning of the course, but only 17
students completed all 4 evaluations required by this course.

4.1.1 Practical test 1. The questions in practical test 1 were
related to implementing solutions for simple computational
problems, such as calculating sales tax or the area of a
geometric figure. The goal was to examine whether students
successfully learned the concepts of modularization with
functions, selection, and coding of small algorithms for
solving computational problems.

The number of students who failed to attend this first
examination was not high, but these students did subsequently
drop the course.

4.1.2 Practical test 2. The topics in practical test 2 were
related to list manipulation and the use of recursion or
iteration in creating solutions for a given set of problems.

There was a dramatic drop in the number of students
attending the course as 81% took practice test 1, but only 59%
were present to take practice test 2. That said, the percentage
of students who passed this exam was fairly high – almost
93%.

4.1.3 Practical test 3. Practical tests 3 and 4 were given after
the midterm exam. Practical test 3 focused on evaluating skills
in recursion and list manipulation using the functional
paradigm. The first three questions were about performing
operations on lists by traversing their elements. The last
question required modification of a functional program that
returned the number of vertices adjacent to a vertex given as
the input to a function. A code sample to be used as a template
was included in the test. Interestingly, we found that
approximately 88% of the students who took this test were not
able to interpret or modify a given program. Another
noteworthy result was that 16% of the students used
memorized solutions of problems studied in class. An example
of one of the questions asked is the following:

Given a list with positive and negative numbers, develop a
program that puts the positive numbers in one list and the
negative numbers in another list. At the end, your program
should return a join of both lists, for example:
>(splitLists ‘(1 -4 1 -6, 2 3) ‘() ´())

 (1 1 2 3 -4 -6)

The students mentioned that they tried to use a binary
search program tree made in class because they noticed the
similarity between (splitLists ‘(1 -4 1 -6, 2 3) ‘() ´()) and the
representation of a binary tree made in a functional language
(search 9 '(5 (3 (1 () ()). We believe this is a common mistake
made by undergraduate students and is one that we frequently
see in our research. Consequently, the students strive to
produce a running program instead of thinking of an algorithm
that will solve the problem at hand.

In another question about reversing list elements, 27% of
the students used the reverse() instruction even when they
were prompted not to use it but were encouraged instead to
develop a function that could emulate that task. In this
problem, we saw the students’ proclivity for using the features
of a programming language which limits their logic and makes

Journal of Information Systems Education, Vol. 31(1) Winter 2020

76

them directly dependent on that language. In general, the most
frequent errors in this test were:

4.1.4 Practical test 4. Practical test 4 had three questions: 1)
traversing and performing operations on a list using iteration,
recursion, or tail recursion; 2) transforming a binary search
program created in functional mode into its imperative
counterpart; and 3) counting the number of occurrences of a
given word in a text file. For this last question, students could
use any paradigm they thought best. Of the 17 students who
took the test, only 35% managed to pass. At the end of the
test, the students were asked to explain why they chose one
paradigm and programming language over another. The
results are shown in Table 2 for each question:

Trends Found Percentage
Use of Scheme in a functional mode for
traversing the list.

82%

Conversion of a given program from one
paradigm to another.

35%

Read and manipulate the contents of a
file successfully.

41%

Table 2. Programming/Paradigm Trends followed by
Students during Practical Test 4

At this point, students reported that they were able to do
recursion over iteration but that the requirements of the chosen
functional programming language were cumbersome – e.g.,
the excessive number of parentheses (Vujošević-Janičić and
Tošić, 2008; Zanev, 2011). Students manipulated the file using
the imperative paradigm with Python, and the general
comment was that the Scheme syntax was too complicated to
remember for such a simple task. As such, we can conclude at
this point that the students had a noticeable tendency to pay
more attention to the syntax and extended functionality of a
program. It is important to note that a student’s focus on the
syntax of a particular programming language will lead to an
inability to cope with fundamental programming concepts
(Mason and Cooper, 2012). Thus, it will be difficult for
students to successfully implement the algorithmic parts, and
this could lead to an increased failure rate in these
introductory courses.

4.2 Midterm and Final Examinations
The midterm exam questions corresponded to topics evaluated
in practical tests 1 and 2, and the final exam corresponded to
topics evaluated in practical tests 3 and 4.

4.2.1 Midterm examination. This evaluation consisted of
theoretical questions about general concepts and two practical
programming questions related to: 1) selection and lists for
calculating the wages of a group of workers under certain
conditions, where the working hours of employees were
provided in a list structure; and 2) solving an arithmetic series
using recursion. A third question asked students to solve a
very basic medical diagnosis system using only nested
selection instructions. The trends we found are presented in
Table 3 below.

Questions/Trends Percentage
Question 1
The student does not use lists when
required.
Use of iteration instead of lists.

68%

9%
Question 2
Proper use of recursion 27%
Question 3
Use of ‘cond’ over ‘if’
instructions(*)
Use of nested ‘if’ statements

18%

9%
Other issues found in the mid-term exam
Syntax issues
Use of memorized patterns learned
in class
Use of constant values
Use of Python in an imperative way
Use of Scheme in most of the
questions

18%
4%

9%
27%
45%

(*) ‘Cond’ is a type of selection instruction similar to ‘if’, in
which a set of instructions to follow after a conditional are
gathered together. Equivalents in other languages are the
‘switch’ or ‘case’ instruction.

Table 3. Programming and Paradigm Trends Found
during the Midterm Examination

In this exam, students were prompted to use an imperative
Python or functional Scheme. In Question 2, they were told to
use recursion to solve the arithmetical summation series. Only
27% used recursion correctly, which is a poor result
considering that most of the concepts using that technique had
been taught (we had emphasized these concepts in the lectures
on the recursion topic). We also found that 45% of the
students in the class used Scheme with a functional approach,
in contrast with the only 27% who attempted to use Python.
The remaining percentage used a mix of imperative and
functional approaches, not answering any question in a clear,
algorithmic manner. Additionally, approximately 68% of the
students did not remember how to extract the elements of a list
for the first question so they processed the data as if the list
elements had been entered one-by-one into the program. The
functional way of processing a list – with the ‘car’ and ‘cdr’
instructions – along with the imperative way of extracting its
elements using indexing seemed to have confused the
students, which was reflected in the results obtained.

4.2.2 Final examination. The final exam had two questions
for which students had to choose a paradigm to use (recursion
or iteration). The topics covered were the use of selection, the
use of lists as a data structure, and the design of bug-free
programs. The first question involved adding or subtracting
elements of a list according to a previously defined condition.
The second question asked students to derive the sum of
quantities sold by a seller and to eliminate any duplicate data
that could appear on a list. We decreased the difficulty level of
the questions and addressed only the minimum concepts
students would need to know for the next course.

Table 4 shows the drawbacks we found in the final
examination (for each question):

Journal of Information Systems Education, Vol. 31(1) Winter 2020

77

Drawback Percentage
Choice of recursion over iteration
Traversal of a list is done adequately
Recursion is done adequately
Use of constants
Choose of imperative vs. functional
paradigm
Logic correct, but syntax problems found
Use of unrelated functions
Use of unnecessary/wordy instructions

50%
60%
46%
20%
20%

53%
6%
73%

Table 4. Drawbacks and Trends Found during the Final
Examination

The results revealed that 50% of the students used

recursion over iteration, while only 10% chose iteration over
recursion. The other 40% proposed solutions that failed to use
recursion or iteration appropriately, revealing that there was
confusion about the correct use of recursion and iteration. The
problem of the use of constants is related to the students’
inability to generalize their solutions for any input. Moreover,
the students forced their solutions to work only with the data
given to answer the questions on the exam. The use of
additional or wordy instructions refers to things such as a
student adding a zero value or trying to use additional lists for
storing data. Regarding the number of students who
successfully passed this exam, we can see that it is about the
same as those that passed the midterm exam, but that there
was a significant drop in the number of students who took the
exam (81% of the class took the midterm exam while
approximately 55% took the final exam). The overall results
of both examinations are presented in Table 5.

Midterm
Exam

Final
Exam

Students who took the exam 81% 55%
Students who passed the exam 55% 60%

Table 5. Overall Results for the Midterm and Final
Examinations

At this point, we can discuss why a considerable number

of students declined to use recursive patterns instead of their
iterative counterparts. We hypothesize that the direct reason
for this is because the functional paradigm was unclear, and
more effort was required to recall the solutions and algorithms
taught for solving a set of problems. We found that the
students included in this study had (as we previously
hypothesized) a marked tendency to focus on the syntactic
issues of a programming language instead of first developing
algorithmic solutions to the problems at hand.

4.3 General Results
The general results obtained are summarized in Figure 1.

Figure 1. Percentage of Students that Passed/Failed the
Course

For the general results presented above, we used what we

call “raw” grades, meaning that we have not done things such
as rounding up final grades or increasing grades for individual
homework assignments since we discovered that these were
done with the help of other students. We believe those types of
situations would have biased the true grades achieved by
students in the course.

Therefore, we have divided the number of students who
failed the course into two categories: regular students (those
who attended the course regularly with no significant
absences) and irregular students (per the internal rules of our
institution, those students who were absent for more than 28%
of the term). Of the students who took the course more than
once (25%), only one managed to pass. We hypothesize that
whether a student has taken this course before has little
significance because the previous course content focused on a
Java-based gaming programming language. So the students
who were retaking the course encountered significantly new
content, such as the topics of the functional programming
paradigm, data input, and file manipulation.

5. EVALUATION AND DISCUSSION

We hypothesized that with this new multiparadigm and
multiprogramming approach, greater than half of the students
enrolled in our course would fail due to the difficulties that we
discussed earlier. We have applied a binomial test in R for the
aforementioned number of students, as seen in Table 6.

19%

26%33%

22%

Number of
students retired

Number of
students that
passed the
course

Number of
regular students
that failed the
course

Number of
irregular
students that
failed the course

Journal of Information Systems Education, Vol. 31(1) Winter 2020

78

H1 = More than 50% of
students will fail the course

Exact Binomial
Test

p-value 0.009579

Probability of success 74%
Table 6. Binomial Test

Thus, it can be seen that our alternative hypothesis is
supported, enabling us to assume that using a
multiprogramming and multiparadigm approach to teach
beginning students could be very challenging for them.

To corroborate our assertions, we selected a parallel
classroom that acted as a control group (we will call it Group
B). We gave these students the same type of examinations,
with the only difference that the teacher used only one
paradigm and one programming tool in the course. We chose
the imperative paradigm supported by the Python
programming language for group B.

We evaluated both groups at the beginning of this
experiment. The evaluation was aimed at measuring the
students’ initial knowledge of programming and algorithmic
thinking. The results for both groups indicated that
programming knowledge was lacking. Apart from a
familiarity with very basic computing tools such as the use of
a GUI operating system such as Windows, or the use of a
word processor or spreadsheet program, no relevant
programming skills were found among both groups. A
previous study by Gutierrez and Sanders (2009) noted this
same issue. In Peru, favoring the use of information
technology tools in grades K-12 instead of strengthening logic
or programming skills has made computer science in early
education “sterile and uninteresting” (Gutiérrez and Sanders,
2009).

The structure of this initial exam is presented below:

Question 1: Describe your previous experience with
programming. What tools have you used before?

Question 2: What is a paradigm in programming?
Question 3: Solve the following problem using the basic

constructs of data flow (the case was chosen at
random).

Question 4: Solve the following problem using functions
or by modularizing your proposed solution (the case
also chosen at random).

We noticed some confusion with Question 1.
Approximately 75% of the students in group A answered that
they knew some programming tools, but they mentioned office
utilities, such as Word or Excel, which are not real
programming languages. In group B, only one student
mentioned previous experience with Visual Basic, but he/she
was not able to recall its syntax. The other 25% of group A,
the students that were retaking the course, mentioned a Java
tool for programming games that they used in previous
semesters, but they failed to solve the programming problems
in Questions 3 and 4. In both groups, the questions about
programming were left blank; the same was observed with
Question 2 regarding programming paradigms.

We compared the results from both groups and created the
box and whisker plot presented in Figure 2.

Figure 2. Box and Whisker Plot Showing the Quartile
Differences between Group A (Multiparadigm Approach)

and Group B (Single Paradigm Approach)

The marks in Figure 2 are in percentages; a mark above
55% indicates that the student passed the course. We can
observe that the median for the multiparadigm group (red) is
lower than the one for the single-paradigm group (blue).
Additionally, the marks achieved by the latter group are
significantly higher than the ones achieved by the students in
Group A.

Using the data collected we applied a Wilcoxon test. We
applied this nonparametric technique because our data did not
follow a normal distribution. Our null and alternate
hypotheses, followed by the results obtained in R, are
presented in Table 7.

H1 = Samples come from
different populations

Wilcoxon rank with
sum correction

p-value 0.006177
W (sum of ranks) 122

Table 7. Wilcoxon Test

An analysis of the p-value in the above results confirms
that we can reject the null hypothesis, so our data do come
from different or unrelated populations. After this test, as an
alternative to the Fisher exact test, we performed a Barnard
test (code available at: https://www.r-statistics.com/wp-
content/uploads/2010/02/Barnard.R.txt) since it is the
recommended test for 2x2 tables (Mehta and Senchaudhuri,
2003). The results are presented in Table 8:

Journal of Information Systems Education, Vol. 31(1) Winter 2020

79

Contingency
table

Multiparadigm
approach

Single paradigm
approach

Passed 26% 56%

Failed 74% 44%

2x2 matrix for Barnard’s exact test: 100 28x19 tables were
evaluated

Barnard’s Exact Test

Wald statistic 2.0084

Nuisance parameter 0.78782

p-values 1-tailed = 0.022846
2-tailed = 0.045693

Table 8. Barnard Test

Based on the results obtained from Barnard’s exact test,
we can conclude that there is a significant difference between
the students who failed the course using the multiparadigm
approach and those that failed the course using the single
paradigm approach. We can also state that failure or success in
this introductory course has a significant relationship with the
paradigm used.

It is also worth noting that some additional factors could
be the weak logical and mathematical preparation at the
secondary school level, which imposes additional learning
burdens for students trying to understand the concepts
presented in this course. For example, functional programming
requires a basic but solid mathematical foundation, while the
imperative approach requires an algorithmic and detailed step-
by-step logic that is not taught at all in pre-university
education. This research only reinforces the findings by
Mason, Cooper, and de Raadt (2012) that the learning of
multiple programming languages could be a burden for novice
students and those with weak backgrounds in this area. This
situation could be aggravated by teaching very different
programming paradigms at the same time.

Programming is a difficult task. According to du Boulay
(1989), there is a set of identifiable areas of difficulty that
seem relevant to our research. These include the difficulties
students have with relating computer-performed operations to
human-commanded actions, with the syntax and semantics of
the various programming languages, and with learning the
basic constructs to perform simple tasks.

A student’s difficulty in relating how a computer works
internally with how his program affects the computer’s
behavior depends heavily on the paradigm chosen. For
example, the imperative paradigm follows a model closer to
the Von Neumann model, in which the flow of control or
change of states follows a step-by-step sequence. In contrast, a
functional paradigm’s method of control does not require the
programmer to follow a change-of-state sequence because the
level of transparency is higher. For example, consider how
each paradigm deals with the use of variables. In an
imperative paradigm, a variable represents a memory value
and is subject to change depending on the program’s current
state. This characteristic allows the use of different types of
variables, such as local and global ones. However, this
characteristic does not apply in the functional paradigm,
because a variable represents only a value, and a function (the

main building block of this paradigm) will always return the
same value no matter how many times it is called. This issue
of the temporal value of a variable and how students have
difficulties with this concept was also addressed by du Boulay
(1989).

Another example would be how the changes in the values
of variables (due to state changes) allow the construction of
loops in the imperative paradigm, while in the functional
paradigm one needs to resort to recursion to perform a similar
task. These characteristics and more reveal the fundamentally
opposite nature of the imperative and functional paradigms.
Thus, we can conclude that if we apply a multiparadigm
approach, we will oblige novice students to learn to abstract
on different levels. One level must consider the changes in the
internal state affecting the variables during program execution,
and the other level must consider the construction of
mathematical functions in which the internal state is irrelevant.

Lister (2011) performed a set of experiments to
demonstrate the evolution of novice students in the field of
programming. His results enable us to analyze how the
teaching of multiple paradigms and programming languages
could be a difficult task for beginning students. By way of
background, we should discuss a difference between the
Piagetian classical model and the Neo-Piagetian model. The
former is solely focused on the evolution of a child’s
intellectual development, while the latter contends that this
evolution progresses throughout a person’s life (Lister, 2011).
These theories can also be considered in the context of
computer programming: one can determine how novice
learners begin to acquire more competences and observe how
they evolve through the different stages of the Neo-Piagetian
theory.

The Neo-Piagetian theory recognizes three stages that can
also be applied to the field of programming (Lister, 2011;
Teague and Lister, 2014). The first is called the sensorimotor
stage, in which the student adheres to the syntax and basic
constructs of a specific language. The second is the
preoperational stage, in which the student is attached to values
and still is not able to see relationships between the different
parts of a program. The third stage is the concrete operational
level, in which the student’s level of abstraction enables the
development of a sound solution to a given problem (Lister,
2011; Teague and Lister, 2014).

The sensorimotor stage, in which the student is getting
used to the syntax of a program, could be more demanding if
exposed to two programming languages simultaneously. We
observed this difficulty at the beginning of the course all the
way through to the final examination. In the final exam,
approximately 53% of the class was still dealing with syntactic
issues even though their logic showed signs of improvement.
Another typical scenario was when the students began to get
comfortable with the functional language’s prefix notations
and parenthesized expressions and then had to recall the infix
notation and syntax of its imperative counterpart.

Also during the sensorimotor stage, the student should be
able to trace portions of code, but the move from one
paradigm to another did not enable this capability. For
example, when teaching a simple case of adding numbers in a
list or an array, the student was directed to remember two
different data structures and how to access its elements (i.e.,
indexing with loops versus recursion over lists). These

Journal of Information Systems Education, Vol. 31(1) Winter 2020

80

different structures resulted in students being unable to use
lists and recursion in a satisfactory manner during the mid-
term examination. After recognizing this problem, the students
put more effort into practicing this part, which is why they
tended towards the functional paradigm instead of the
imperative one in the final examination. We hypothesized that
this could be because recursion required more time to
conceptualize than the iteration of imperative languages.

It has been noted that, during the preoperational stage,
students have difficulties in relating different parts of a
program (Lister, 2011; Teague and Lister, 2014). In this stage,
according to these research studies, students can only focus on
one specific task or construct at a time. In a multiparadigm
environment, the student has to address a problem by
abstracting the characteristics of a couple of solutions
(imperative and functional), making the task of focusing more
challenging. We can see that for a student to engage at this
level of abstraction would require having the capabilities of
the concrete operational stage which, with their current skills,
would be almost impossible to acquire considering the current
learning stage. However, according to the same study, it
would be possible for a student to achieve the concrete level
by the 45th week of an introductory programming course.
Since the preconcrete level could be reached by the end of the
11th week, we believe that it is possible for a student to at least
achieve the preconcrete level in an introductory programming
course. While our course had a duration of approximately 16
weeks, the inclusion of two distinct paradigms and the size of
the classroom probably had an impact on our final results.

We believed that it took longer for students to obtain an
understanding of the functional paradigm’s particularities. For
that reason, we omitted the teaching of intermediate-level
topics, such as the use of higher-order functions or the
importance of lambda functions and their relationship with
lambda calculus. It is worth highlighting that the extended use
of multiparadigm programming tools such as Python allows
the teaching of concepts from either the imperative or
functional paradigms concurrently. Nevertheless, we believe
that the use of multiparadigm programming tools does not
permit the student to acquire a grasp of all the features of a
paradigm. Even though we debated the use of Python for the
imperative paradigm (due to the absence of some pure-
imperative items such as memory pointers, and because we
were not going to teach program aliases and memory states),
we decided to keep it for its syntactic simplicity. We chose
Scheme for the functional paradigm because even though it is
considered to be a functional programming language, it is
regarded as an impure one. Other languages considered to be
pure, such as Haskell, are slightly more difficult to learn for
beginner students. In addition, it is worth noting that we had a
course on Discrete Structures running concurrently with this
first programming course. Therefore, some concepts already
acquired by the students, such as functions and function
composition, supported the students in understanding the ideas
behind functional programming. We firmly believe that the
discrete math part must be interwoven with programming
courses when there are related topics, such as when teaching a
subject such as functional programming.

6. CONCLUSIONS

We applied a multiparadigm (imperative and functional) and
multilanguage (Python and Scheme) approach to our
Introduction to Programming course for a group of students
pursuing information systems degrees. We found that the
students ultimately chose a given paradigm to solve a
computational problem instead of using the most appropriate
paradigm. The students in our study had a marked tendency to
memorize the syntax of the given programming language
instead of developing a logical solution. We believe a
multiparadigm approach for beginner students in a computer
science field such as information systems could be a heavy
burden given that they enroll in these courses with little or no
programming background. This conclusion is supported by the
low percentage of students who passed the course compared to
the numbers that failed or withdrew from the course.
Therefore, we recommend that perhaps using a multiparadigm
approach with only one programming language (that supports
multiple paradigms) could produce better results which would
leave other languages to be approached in future courses. This
may better foster an algorithmic way of thinking in students
and lead them away from focusing on the syntax of a
particular software tool. The increased importance that is
currently placed on multiparadigm programming tools and to
impure programming languages has raised the relevant
discussion of whether students today can actually recognize
the differences between dissimilar paradigms. We believe that
it would be an interesting future topic of research to identify
how software tools that support mixed paradigms and that are
almost fully transparent can impact the learning of new
paradigms that could emerge in the area of programming
languages.

7. REFERENCES

ACM/IEEE-CS Joint Task Force on Computing Curricula.
(2013). Computer Science Curricula 2013. ACM Press and
IEEE Computer Society Press.

Agarwal, K., Agarwal, A., & Fife, L. (2012). Python and
Visual Logic©: A Good Combination for CS0. Journal of
Computing Sciences in Colleges, 27(4), 22-27.

Baber, R. (2011). The Language of Mathematics. Hoboken,
NJ: Wiley.

Bal, H. & Grune, D. (1994). Programming Language
Essentials (1st ed.). Boston, MA: Addison-Wesley
Longman Publishing Co., Inc.

Berman, A. (1994). Does Scheme Enhance an Introductory
Programming Course? Some Preliminary Empirical
Results. SIGPLAN Notices, 29(2), 44-48.

Bloch, S. (2000). Scheme and Java in the First Year. Journal
of Computing Sciences in Colleges, 15(5), 157-165.

Budd, T. & Pandey, R. (1995). Never Mind the Paradigm,
What about Multiparadigm Languages? SIGCSE Bulletin,
27(2), 25-30.

du Boulay, B. (1989). Some Difficulties of Learning to
Program. In E. Soloway & J. C. Spohrer (Eds.). Studying
the Novice Programmer. Hillsdale, NJ: Lawrence Erlbaum,
283–299.

Journal of Information Systems Education, Vol. 31(1) Winter 2020

81

Denning, P. J., Tedre, M., & Yongpradit, P. (2017).
Misconceptions about Computer Science.
Communincations of the ACM, 60(3), 31-33.

Felleisen, M., Findler, R., Flatt, M., & Krishnamurthi, S.
(2001). How to Design Programs: An Introduction to
Programming and Computing. Cambridge, MA: MIT Press.

Grandell, L., Peltomäki, M., Back, R.-J., & Salakoski, T.
(2006). Why Complicate Things? Introducing Programming
in High School Using Python. In Proceedings of the 8th
Australasian Conference on Computing Education, Hobart,
Australia, 71-80.

Gutiérrez, J. & Sanders, I. (2009). Computer Science
Education in Perú: A New Kind of Monster?. SIGCSE
Bulletin, 41(2), 86-89.

Heliotis, J. & Richard, Z. (2011). Moving away from
Programming and towards Computer Science in the CS
First Year. Journal of Computing in Small Colleges, 26(3),
115-125.

Lister, R. (2011). Concrete and Other Neo-Piagetian Forms of
Reasoning in the Novice Programmer. Thirteenth
Australasian Computing Education Conference, Perth,
Australia, 9–18.

Luker, P. (1989). Never Mind the Language, What about the
Paradigm? In Proceedings of the Twentieth SIGCSE
Technical Symposium on Computer Science Education,
252-256, ACM.

Lurlyn, T. & Sanders, I. (2010). Mental Models of Recursion:
Investigating Students’ Understanding of Recursion. In
Proceedings of the Fifteenth Annual Conference on
Innovation and Technology in Computer Science
Education, 103-107, ACM.

Mason, R. & Cooper, G. (2012). Why the Bottom 10% Just
Can’t Do It – Mental Effort Measures and Implication for
Introductory Programming Courses. In M. de Raadt and A.
Carbone (eds.), Australasian Computing Education
Conference, Melbourne, Australia, 187–196.

Mason, R. & Cooper, G. (2014). Introductory Programming
Courses in Australia and New Zealand in 2013 – Trends
and Reasons. In Proceedings of the Sixteenth Australasian
Computing Education Conference – Volume 148,
Darlinghurst, Australia, 139-147.

Mason, R., Cooper, G., & de Raadt, M. (2012). Trends in
Introductory Programming Courses. In Australian
Universities – Languages, Environments and Pedagogy.
Proceedings of the Fourteenth Australasian Computing
Education Conference, Melbourne, Australia.

Mehta, C. R. & Senchaudhuri, P. (2003). Conditional versus
Unconditional Exact Tests for Comparing Two Binomials.
Available at:
http://www.nbi.dk/~petersen/Teaching/Stat2009/Barnard_E
xactTest_TwoBinomials.pdf.

Necaise, R. D. (2008). Transitioning from Java to Python in
CS2. Journal of Computing Sciences in Colleges, 24(2), 92-
97.

Pankratius, V., Schmidt, F., & Garretón, G. (2012).
Combining Functional and Imperative Programming for
Multicore Software: An Empirical Study Evaluating Scala
and Java. In Proceedings of the 34th International
Conference on Software Engineering, 123-133, IEEE Press.

Stefik, A. & Siebert, S. (2013). An Empirical Investigation
into Programming Language Syntax. Transactions on
Computing Education, 13(4), Article 19.

Striegnitz, J. & Davis, K. (2008). Multiparadigm
Programming in Object-Oriented Languages: Current
Research. In Patrick Eugster (Ed.), Object-Oriented
Technology. ECOOP 2008 Workshop Reader, Lecture
Notes in Computer Science, Vol. 5475. Berlin: Springer-
Verlag, 7-17.

Teague, D. & Lister, R. (2014). Programming: Reading,
Writing and Reversing. In Proceedings of the 2014
Conference on Innovation & Technology in Computer
Science Education, 285-290, ACM.

Topi, H. (2008). IS Education: The Role of Programming in
Undergraduate IS Programs. SIGCSE Bulletin, 40(4), 15-
16.

Topi, H., Valacich, J. S., Wright, R. T., Kaiser, K., Nunamker,
J. F., Jr., Sipior, J. C., & de Vreede, G. (2010). IS 2010:
Curriculum Guidelines for Undergraduate Degree Programs
in Information Systems. Communications of the Association
for Information Systems, (26)1, Article 18.

Wang, S. (2002). An Approach to Teaching Multiple
Computer Languages. Journal of Information Systems
Education, 12(4), 201-211.

Westbrook, D. S. (1999). A Multiparadigm Language
Approach to Teaching Principles of Programming
Languages. In The 29th Annual Frontiers in Education
Conference, 10-13.

Vujošević-Janičić, M. & Tošić, D. (2008). The Role of
Programming Paradigms in the First Programming Courses.
The Teaching of Mathematics, XI(2), 63–83.

Zanev, V. A. (2011). Two-Language, Two-Paradigm
Introductory Computing Curriculum Model and Its
Implementation. Serdica Journal of Computing, 5, 129-152.

AUTHOR BIOGRAPHY

Juan Gutiérrez-Cárdenas is an assistant professor at the
faculty of engineering and
architecture of the Universidad de
Lima. He has an M.Sc. in
bioinformatics from the University
of Helsinki and a Ph.D. from the
University of South Africa. His
research interests include machine
learning applied to bioinformatics,
computer science education, and
computer security. Over the past 10

years, he has been actively involved in standardization,
curricular guidelines, and accreditation of computer science
and related careers from different universities in Perú.

Journal of Information Systems Education, Vol. 31(1) Winter 2020

82

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2020 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 2574-3872

