

Journal of
Information
Systems
Education

Volume 30

Issue 3
Summer 2019

Teaching Tip
Implementing Scrum Wholesale in the Classroom

Corey Baham

Recommended Citation: Baham, C. (2019). Teaching Tip: Implementing Scrum Wholesale in the
Classroom. Journal of Information Systems Education, 30(3), 141-159.

Article Link: http://jise.org/Volume30/n3/JISEv30n3p141.html

Initial Submission: 30 September 2018
Accepted: 22 January 2019
Abstract Posted Online: 5 June 2019
Published: 12 September 2019

Full terms and conditions of access and use, archived papers, submission instructions, a search tool,

and much more can be found on the JISE website: http://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

http://jise.org/Volume30/n3/JISEv30n3p141.html
http://jise.org/

Teaching Tip
Implementing Scrum Wholesale in the Classroom

Corey Baham
Department of Management Science and Information Systems

Oklahoma State University
Stillwater, OK 74074, USA
corey.baham@okstate.edu

ABSTRACT

As the most widely used agile software development method, Scrum has become a mainstay in many organizations that develop
software. Despite Scrum’s popularity, several studies examine Scrum implementations that include some parts of the
methodology and exclude others. This paper describes how Scrum has been incorporated into the classroom wholesale and
highlights important considerations when using Scrum for student software development projects. Students having little to no
knowledge of Scrum were able to gain confidence in using the method in a real-world setting. The paper discusses the use of a
hands-on Scrum project as a pedagogical tool for teaching the Scrum methodology and software development life cycle
principles. Quantitative and qualitative data were collected to understand student experiences with a wholesale Scrum
implementation in the classroom. The paper concludes with data analysis and recommendations for implementing Scrum in
future projects.

Keywords: Agile, Scrum, Collaboration, IS education

1. INTRODUCTION

The widespread use of the Internet and the emergence of
object-oriented programming have led to unprecedented
changes in the software development industry. Seeking
competitive advantages in a more globally connected
economy, firms sought increases in software production speed,
efficiency, and agility. In response, software development
practitioners grappled with ways to develop faster, more agile
processes to produce more frequent iterations of working
software. During the 1990s, a number of agile software
development (ASD) methods were created, and this shift in
the software development practice was further solidified in
2001 with the advent of the Manifesto for Agile Software
Development (Beck et al., 2001). As ASD methods have
become a mainstay in the business world, ASD should be
taught not only to computer science students but also to
business students, such as management information systems
(MIS) majors, in order to inform them of the current software
development landscape in organizations. Despite the
popularity of ASD methods in industry and the increased
attention from Information Systems recruiters and executives,
current Systems Analysis and Design (SAD) textbooks
provide limited knowledge on how to implement ASD
methods. Hands-on software development projects, which are
appropriately scoped, can help motivate MIS students to
explore both the social and technical concepts pertaining to
ASD. On this basis, the author assigned MIS students a course
project to develop a web application using Scrum, the most

widely used agile method (West et al., 2010; Version One,
2018). This project is simple enough for MIS students to
implement, as it requires moderate programming skills already
learned in other courses. The project lets the students explore,
in some depth, the combination of social and technical aspects
of software building involved in ASD. In accordance with
guidelines for teaching tips, this paper contributes to the
literature as wisdom-of-practice scholarship (Weimer, 2006)
by detailing how Scrum has been implemented in the
classroom, providing empirical results of multiple wholesale
Scrum implementations, and providing pedagogical
recommendations for future implementations. The term
“wholesale” refers to an implementation of Scrum that utilizes
all (as opposed to parts) of the Scrum process components and
roles, which we discuss in the next section. The solutions
described herein are replicable, grounded in theory and best
practices, and recommended based upon actual experiences.
The rest of this paper is organized as follows.

Section 2 provides an overview of Scrum. Section 3
describes a doable project for business students. Section 4
discusses how to initiate and implement Scrum into the
classroom. This is followed by a discussion of the pedagogical
approach and a summary of student feedback in Section 5. The
paper concludes in Section 6 by reviewing important aspects
of Scrum projects.

Journal of Information Systems Education, Vol. 30(3) Summer 2019

141

mailto:corey.baham@okstate.edu

2. AN OVERVIEW OF SCRUM

Scrum, which gets its name from the game of rugby, was
formalized into a method for building software using a
holistic, team-based approach (Takeuchi and Nonaka, 1986;
Schwaber, 1995). Scrum focuses on defining process
components and roles (Holvitie, Leppänen, and Hyrynsalmi,
2014) as shown in Table 1, but leaves the practicalities open
for choice (Abrahamsson et al., 2002).

Process
Components

Definition

Daily Meetings A meeting when the Scrum team
shows what they accomplished during
the Sprint.

Iteration Backlog A list of the Product Backlog items
the team commits to delivering plus
the list of tasks necessary to delivering
those Product Backlog items.

Product Backlog A prioritized list of desired product
functionality.

Sprints The intervals into which the
development process is divided.

Sprint Planning
Meetings

A meeting where the Product Owner
describes the highest priority features.

Sprint Reviews A meeting when the Scrum team
shows what they accomplished during
the Sprint. Typically, this takes the
form of a demo of the new features.

Sprint
Retrospectives

A brief, dedicated period of time set
aside at the end of each Sprint to
deliberately reflect on how the team is
doing and to find ways to improve.

Roles Description
The Development
Team

Professionals who do the work of
delivering a potentially releasable
increment of “done” product at the
end of each Sprint.

Product Owner A person who is responsible for
maximizing the value of the product
and the work of the Development
Team.

Scrum Master A person who is responsible for
ensuring Scrum is understood and
enacted.

Table 1. Scrum Processes and Roles (Cohn, 2010;
Sutherland and Schwaber, 2016)

The Scrum framework created by Sutherland and

Schwaber (2016) describes the interaction between the Scrum
team and its customer. It consists of the roles, ceremonies and
artifacts (i.e., process components), and guidelines that serve a
specific purpose as shown in Table 1. Additional details
concerning what Scrum entails can be found in the references
provided (Schwaber, 1995; Abrahamsson et al., 2002; Rubin,
2012; Sutherland and Schwaber, 2016). As a recent study
highlights (May, York, and Lending, 2016), Systems Analysis
and Design textbooks contain little content on ASD methods,
often containing only enough information to introduce
students to ASD concepts and games such as planning poker.
Although useful, most of the education literature on Scrum

lacks the software development context (Pope-Ruark, 2012), a
holistic treatment of the Scrum methodology (i.e., focuses on a
few ceremonies within Scrum) (Yue et al., 2009; May, York,
and Lending, 2016), or important details concerning how
Scrum can be implemented in the classroom (Cleland and
Mann 2003; Jiménez and Cliburn 2016).

Early ASD papers in the education literature emphasize
the importance of incorporating agile approaches into Systems
Analysis and Design courses (Batra and Satzinger, 2006) and
employ adoption assessments to determine the viability of
specific agile methods for a given project (McAvoy and
Sammon, 2005). More recent work describes agile
implementations and student feedback in various courses
(Lang, 2016; Weber, 2016), including several capstone
projects (Mahnic, 2012; Hoskey and Hoskey, 2016). This
literature emphasizes the importance of understanding the
differences between ASD projects in the classroom setting
compared to industry, including student versus professional
expertise, academic calendars and student schedules versus a
40-hour work week, and feedback from professionals versus
instructors and teaching assistants. Wagh (2012) highlights the
need for a lightweight, adaptive approach to teach ASD that
can be tailored to the limited time and resources available in
an academic setting. The results suggest that by focusing on
small achievable work in Sprints, students were able to deliver
more complete and cohesive features as opposed to more
splintered development work produced using traditional
methods. Baird and Riggins (2012) combined traditional
planning with three-week, Scrum-based Sprints. Their results
suggest that students preferred a hybrid approach to an agile
only approach for constructing software prototypes.
Additionally, the study points out the student satisfaction
scores could have been higher with more customer
involvement. Masood, Hoda, and Blincoe (2018) describe the
effectiveness of specific adaptations to agile practices in a
university context. Among their recommendations are
conducting ceremonies face-to-face when possible, supporting
teams with experienced tutors and upfront training, and using
online tools to simplify team communication.

This study builds on the extant literature in the following
ways. First, the Scrum projects in this study are fully
functional applications rather than prototypes. Student projects
were made up of seven, approximately one-week Sprints.
Each week students are expected to deliver a minimum viable
product which fulfills the basic user requirements. The
software was expected to be deployed after the last Sprint was
completed. Second, the projects followed Scrum very closely
including all its roles and ceremonies. Modifications were
limited to those that adapted Scrum to the classroom without
compromising its core tenets such as performing Scrum
Meetings on class days instead of on a daily basis. In
comparison to previous work (Baird and Riggins, 2012), we
did not employ a Scrum/waterfall hybrid approach, exclude
ceremonies like Sprint Reviews or Sprint Retrospectives, or
use blueprint-style planning (Faludi, 1973). Although some
empirical studies note that many organizations heavily modify
ASD methods in practice (Fitzgerald, Hartnett, and Conboy,
2006; Maruping, Venkatesh, and Agarwal, 2009; Ramasubbu,
Bharadwaj, and Tayi, 2015), prior research and industry case
studies note that some organizations adhere to ASD methods
wholesale (Overhage and Schlauderer, 2012; Case Studies,

Journal of Information Systems Education, Vol. 30(3) Summer 2019

142

2017; Scrum Case Studies, 2017). Thus, we implemented
Scrum wholesale to provide students with an example of how
all the roles and ceremonies work. Third, the student projects
described herein mandate the use of a Product Owner, which
is a fundamental role in Scrum, yet excluded from some
implementations of Scrum in the classroom. In most cases, our
Product Owners were local business owners who agreed to
have students build a web application for their businesses in
exchange for their full participation in the Product Owner role.
In fewer cases, a pseudo Product Owner was used in the form
of the instructor or a person with experiences related to a
given project. In comparison to previous work (Mahnic, 2012;
Wagh, 2012; Jiménez and Cliburn, 2016), in no cases were
Product Owners fellow students who were enrolled in the
same course.

In this paper, we draw upon the personal experience of
teaching Scrum in Systems Analysis and Design courses to
provide guidelines on initiating and implementing Scrum for
teachers. The guidelines herein come from overseeing over 50
hands-on Scrum projects. It should be said that implementing
Scrum wholesale is not always a “nice and neat” process.
Instead, the process can be somewhat messy, requiring
flexibility in adapting, while not removing the core tenets of
Scrum during the execution of each unique software project.
Despite these challenges, in the next two sections, we present
a way to scope, initiate, and implement Scrum projects based
on classroom experiences.

3. THE ASSIGNMENT: A DOABLE SCRUM PROJECT

3.1 Course Overview
Prior to taking SAD, students were required to complete the
following prerequisite courses:

• Introduction to Object-Oriented Programming
• Database Management
• Web Development

In rare circumstances, the Web Development course could be
taken concurrently with SAD. Students are expected to apply
the concepts learned in the prerequisite courses in SAD where
they are asked to complete a working piece of software that
integrates with a database.

The 17-week SAD course is laid out as follows: During
Weeks 1-5, using the Valacich and George (2017) textbook,
an overview of the fundamental systems development life
cycle (SDLC) phases are provided, namely: planning,
analysis, design, implementation, and maintenance. The
introductory chapter discusses the traditional waterfall
approach and briefly describes ASD methods. Students are
tested on basic SDLC concepts. Next, project teams are
assembled and given some training in Scrum over Weeks 6-7.
Once topics are approved, they begin applying planning
concepts toward their project as shown in Appendix A. A total
of seven Sprints are completed from Weeks 8-16 (nine weeks)
with two Sprints spanning two weeks due to semester breaks.
The final week of the course is reserved for student
presentations.

A hands-on software development project was chosen
over the further teaching of SDLC terminology and concepts
from the textbook. The rationale is that a hands-on project

would help make the concepts more concrete and provide
students with a project to add to their personal portfolios. In
addition, other than the SDLC phases, the course textbook
contains several topics that are covered in other courses such
as Database Management. An ASD approach was chosen over
waterfall because (1) there has been a wide adoption of ASD
methods in practice, (2) the value of learning an ASD
approach has been lauded by many of the department’s
industry partners, and (3) students are exposed to more
waterfall style approaches in other classes (e.g., project
management, web programming, etc.). While teaching SAD,
we wanted to have students gain experience applying an ASD
method to create a unique software solution to solve a real-
world problem. Thus, a hands-on project allows students to
experience both the process components and roles involved in
Scrum.

3.2 Project Requirements
Students were given the choice between a portfolio of class
projects pre-selected by the instructor and proposing their own
unique project. All projects were required to meet the
minimum requirements of:

• Creating an application (web or mobile) that integrates
with a database.

• Securing the involvement of a Product Owner who
agreed to meet weekly (or at least bi-weekly) to
provide feedback for the software team.

• Employing modern coding and design principles as
expressed by the instructor.

The portfolio of projects available required only limited

support and moderate technical knowledge, which students
should have from previous courses (e.g., web programming,
database, etc.). Students were encouraged to build web
applications using Microsoft Visual Studio, which they used in
an introductory programming course, as they were familiar
with many of the features in Microsoft’s technology stack.
Therefore, setting up the student project required simply
maintaining the standard Web accounts that are available to all
MIS students. This project did not require students to learn
many new skills, but instead it challenged students to integrate
the technical skills they learned in separate courses.

3.3 Example of a Student Project
Students developed web applications that could receive
information through web forms and store it in a database. In
many cases, the information stored in the database could be
recalled in a way that is beneficial for customers. For example,
one group developed a web application that tracked the
location and displayed pertinent information about local food
trucks, such as hours of operation and menu items. Food truck
owners could create an account and enter information about
their food truck. Additionally, food truck owners could make
their location visible to application users during their hours of
operation. Once food truck information is entered, it is
recorded in the database and application users can search for
food trucks based on attributes such as food type and area.
Other projects included storefront web applications for
clothing shops, local diners, and audio/video equipment
vendors. These web applications place a strong emphasis

Journal of Information Systems Education, Vol. 30(3) Summer 2019

143

front-end design concepts such as the use of mobile friendly,
responsive frameworks, easy to navigate layouts, and an
appropriate use of colors and spacing.

3.4 Team Assignments
Project teams were constructed strategically to replicate
organizations where managers arrange individuals into teams
as opposed to allowing students to self-select their team
members (Masood, Hoda, and Blincoe, 2018). Students were
asked to complete a questionnaire detailing their technical
experience and level of expertise across the following areas (1
to 5 rating where 1 = little to no knowledge and 5 = expert
knowledge):

• Database
• IT Infrastructure
• Front-end design and coding
• Back-end coding

Students were then mixed and matched in small groups of

3-4 based on their skill levels. All these skills were covered in
previous courses apart from a few instances where students
were given permission to take some courses concurrently with
SAD. Moreover, we aimed to create an average score of 12 or
higher in groups of 4 with at least one member with a score of
4 or higher in back-end coding. Appendix B shows how
students were mixed and matched for the team assignments.

3.5 Notable Constraints
Although the project is doable, the semester timeline, student
skill level, and Product Owner availability are constraints that
must be accounted for. The project should be able to be
completed within one semester. Thus, the project scope should
be managed so that the core functionality is completed before
adding extra “bells and whistles.” Additionally, the project
should be moderately challenging for the average student. In
the next section, we present a two-phase approach to
executing Scrum in the classroom within the aforementioned
constraints.

4. INITIATING AND EXECUTING SCRUM

Drawing on the extant literature, we note that training
facilitates method knowledge and ongoing coaching helps to
deepen knowledge long-term (Senapathi and Srinivasan,
2014). Additionally, more customer involvement in ASD
projects aids in knowledge sharing and understanding user
requirements. Thus, the Product Owner plays a pivotal role in
Scrum projects. Working with a Product Owner provides
business students the opportunity to build software in a way
that incorporates continuous feedback from their clients. This
literature helped us to develop a theory base for adapting
Scrum to the classroom setting using a two-phase solution.
Figure 1 shows the initiate and execute phases used to

introduce and guide students using Scrum, most for the first
time. The initiate phase to Scrum is meant to help students get
started with Scrum and better understand their user
requirements before building software.

Initiate

• Scrum Training
• Project Planning

o Conduct a User Story Workshop
o Develop Product Backlog

Execute

• Method Adaptations
o Scrum Roles
o Scrum Process Components
o Class Schedule
o Documentation

Figure 1. Phases of Scrum Projects

4.1 Scrum Training
ASD surveys consistently point to the importance of adequate
training for ASD teams (Version One, 2018). In line with this
recommendation, instructors should take time to introduce the
Scrum framework, its roles and ceremonies, and Scrum’s
relation to the Manifesto for Agile Software Development.
Given that most SAD textbooks discuss the fundamental
phases of the SDLC, providing a historical backdrop of ASD
methods may help students understand why these methods
were developed. Additionally, providing examples from
practice could help students to contextualize an organization’s
desire to adopt such methods as opposed to simply discussing
the nuts and bolts of the Scrum framework. Similar to industry
Scrum training, the foundational Scrum concepts can be taught
over a few class sessions. We recommend dedicating a few
hours to Scrum training upfront which can include many of
the basic concepts covered in books and practitioner literature.
In our experience, two one-and-a-half-hour class periods were
used for training. A slide deck was provided to students which
described all the Scrum roles and ceremonies previously
discussed. These concepts should be reviewed during the
project as well to ensure method discipline. Short (5-10
minute) training sessions at the end of Day 1 (see Appendix
A) of each week were used to strengthen Scrum execution,
address bad habits (e.g., not standing during Scrum Meetings)
and frequently asked questions, and introduce new concepts
(e.g., estimating user stories, burn down charts). Topics
covered in these short training sessions included:

• Improving Scrum Meeting effectiveness
• Improving your effectiveness as a Scrum Master
• Scrum in the classroom vs. Scrum in industry
• Relative estimation
• Information Radiators – Part 1: Burn down charts
• Information Radiators – Part 2: Task boards

Journal of Information Systems Education, Vol. 30(3) Summer 2019

144

4.2 Project Planning
Conduct a user story workshop to develop the Product
Backlog and kick off the project. Once the project teams have
been assigned and the minimum project requirements have
been explained, teams can begin project planning. Students
should be encouraged to use planning techniques from prior
courses such as developing a project scope statement. We used
the concept of Sprint 0 to kick off the project. Sprint 0 is a
time-boxed iteration of project planning. Once the project is
outlined at a high level, a user story workshop (Cohn, 2010)
can be conducted with each team and their Product Owner.
Students complete the workshop in three steps. First, each
team member generates as many user stories (or short, simple
descriptions of a feature told from the perspective of the
person who desires the new capability) as possible apart from
the influence of the other team members. Second, the initial
set of user stories is organized collectively according to the
user roles (or similar likeness). Here similar stories can be
consolidated into one. Third, the team attempts to prioritize
the stories according to their customer’s needs. The Product
Owner has the final say on the priority of the user stories. The
finalized list is deemed the original Product Backlog. With the
Product Backlog in hand, the team is now ready to do Sprint
Planning and start their first Sprint. At this stage of the project,
common relative estimating techniques (e.g., story points,
ideal days, etc.) were not enforced.

Instead, students focused on scoping each story so that it
was small enough for one person to complete alone within a
“reasonable amount of time” (i.e., a one-week Sprint). Teams
were able to add the number of user stories to the Product
Backlog that they agreed on without the pressure of estimating
user story sizes “exactly right.” Even though relative
estimating techniques were introduced in a training session
during Sprint 4, teams were often able to discover their
capacity through trial and error in the first few Sprints. For
instance, teams were asked to provide a percentage of the
Sprint Goal completed and an explanation of that percentage
at the end of each Sprint. During the Sprint Retrospective,

teams reflected upon the number of actual user stories
completed versus the total estimated. Teams discussed these
differences to improve future estimates. Overall, the approach
described above was effective for cognitively simplifying
estimating, which is often difficult for students to grasp
especially when trying to learn all the core aspects of a new
method.

The execute phase describes the application of Scrum in
building software incrementally. Here, the team should gain
practical knowledge of how the roles and responsibilities of
each person fit within the Scrum workflow as shown in Figure
2. Increments of a potentially shippable product were
determined each week during the Sprint Planning meeting in
consultation with the Product Owner. At the end of each
Sprint, teams were expected to deliver a product increment in
accordance with its stated Sprint Goal, which was described
by user stories in the Sprint Backlog. This product increment
was expected to be an extension of the previous increment.
User stories that were not completed during a Sprint were
often given priority in the next Sprint. In these cases, during
Sprint Planning, teams considered new user stories after
accounting or the portion of the unfinished user stories from
the previous Sprint. Overall, teams completed user stories in
the order specified by the Product Owner.

4.3 Method Adaptations
Adaptations to traditional Scrum roles and process
components were necessary to fit the classroom setting
(Masood, Hoda, and Blincoe, 2018). Beginning with the
Scrum roles, we describe the adaptations employed in our
implementation of Scrum.

4.3.1 Scrum roles. Since the Scrum Master role was new to
most students, the role rotated to a different team member
every Sprint (Hoskey and Hoskey, 2016). This provided an
opportunity for each development team member to gain
experience in the role of Scrum Master and encouraged
members to contribute to the technical requirements of the

D = The Development Team | PO = Product Owner | SM = Scrum Master

Figure 2. The Scrum Workflow

Journal of Information Systems Education, Vol. 30(3) Summer 2019

145

project. Rotating the Scrum Master role also prevented one
member from adopting a non-technical role for the duration of
the project. Other business courses such as Project
Management offered students the opportunity to oversee
technical projects without performing hands-on technical
work. Each week a given Scrum Master would lead the Scrum
Meeting by asking the following questions of each team
member (Cohn, 2010):

• What have you done since the last time we met?
• What will you do today?
• Are there any impediments in your way?

As a follow up, the Scrum Master would initiate actions that
helped the team to remove impediments stated during the
Scrum Meeting.

As previously mentioned, each team was responsible for
securing the commitment of its Product Owner. For teams that
built applications for existing businesses, business owners or
company stakeholders were a natural fit for the Product Owner
role. For other teams, identifying a Product Owner was not so
obvious and required creative thinking. For instance, the team
that created the Food Truck application found a person outside
of the students in the course who was considered a local food
expert, had eaten at numerous food trucks, and agreed to meet
with the team once a week during the Scrum Meeting and
Sprint Review ceremonies. This enabled the team to simulate
the Product Owner role.

In other cases, the instructor served as a pseudo-Product
Owner if he/she had relevant expertise with the product. A
number of strategies were employed for Product Owners that
did not communicate adequately or provide timely feedback.
Product Owners were asked to give their verbal consent to
actively participate for the entire nine-week (seven Sprint)
duration of the project. Students were challenged to show
initiative in following up with Product Owners both digitally
and in person if necessary. Any Product Owner that did not
communicate to the team within the first two Sprints was
replaced. In these cases, students explored a better fit for the
Product Owner role within the organization before moving to
a different organization. Any of the new Product Owners that

did not provide consistent feedback would have been replaced
by the instructor or graduate assistant. Fortunately, no teams
had to switch Product Owners more than once. In addition to
the creativity needed in selecting a Product Owner, added
flexibility was required to work with some Product Owners’
schedules. Teams developed workarounds for Product Owners
that could not meet during the designated time for Scrum
Meetings and Sprint Reviews. Video conference applications
were particularly useful in overcoming spatial limitations.

Regarding the Development Team, each team member
took responsibility over at least one aspect of the project:
database, IT Infrastructure, front-end design and coding, or
back-end coding. Groups with three members had one team
member occupy two roles. In the spirit of collaborative Scrum
teams, team members were encouraged to assist in multiple
areas as needed. However, each team member was required to
ensure that their assigned area was completed. If team
members completed the work in their assigned area early, the
team and instructor came together to determine what portion
of the project could use additional attention.

4.3.2 Class schedule. Figure 3 displays a one-week Sprint
schedule that each of the teams followed during the class
project. The project lasted roughly nine weeks (seven Sprints)
of the semester with students attending two 1.5-hour classes
per week. Figure 3 is reflective of a two-day per week (i.e.,
Tuesday / Thursday) course schedule, but can be altered to fit
different teaching schedules such as moving Sprint Planning
to the third day of a three-day work week. In our example, a
Sprint begins with Sprint Planning and ends with the Sprint
Retrospective. On Day 1, teams are expected to complete their
Scrum Meeting and then work on their projects. Instructors are
encouraged to use this time to visit with each group and
examine their progress and answer project related questions.
Although the time provided during class was enough to
complete much of the project, most students mentioned that
they met outside of class periodically. Lastly, we used the last
5-10 minutes of class for training or to address frequently
asked questions.

 o Sprint Planning [Beginning of Sprint 1]

Day 1

Class duration – 75 minutes:
• Class begins:

o Scrum Meeting (5-10 min.)
o Sprint Work (50-60 min.)
o Training session (5-10 min.)

• Class ends

W
E
E
K

1

Day 2

Class duration – 75 minutes:
• Class begins:

o Sprint Review w/Product Owner
o Sprint Retrospective [End of Sprint 1]
o Sprint Planning

• Class ends

Figure 3. Sprint Schedule

Journal of Information Systems Education, Vol. 30(3) Summer 2019

146

On Day 2, teams are expected to complete their Sprint
Review by demonstrating the work completed on their
application to their Product Owner. After the Sprint Review,
the team is to close out the Sprint with the Sprint
Retrospective. A common framework for conducting the
Sprint Retrospective is to use the Start doing – Stop doing –
Continue doing framework. Here team members reflect on the
execution of the last Sprint, highlighting the positives and
negatives individually before discussing them together. Day 2
commences with the Sprint Planning Meeting where teams
engage in Product Backlog Grooming with the Product Owner
before producing the next Sprint Backlog. If the Product
Owner is not available, teams may send the proposed revisions
of the Product Backlog to the Product Owner for feedback.
Again, workarounds may be implemented as necessary.

4.3.3 Documentation. Requiring the completion of relevant
documentation is a helpful way to keep team members
accountable throughout the project. In the example project,
teams were required to document their activities using video
or audio recordings, word processing forms, or both. Scrum
Meetings and Sprint Reviews were video recorded and
uploaded to a course management system. This provided
accountability for monitoring team member attendance and the
progress of the application. Teams were required to complete
the appropriate word processing forms for the Scrum Meeting,
Sprint Review, Sprint Retrospective, and Sprint Planning
ceremonies. These forms solicited basic information such as
the date and names of participants as well as team issues and
screen shots of the application. Interested readers may contact
the author for copies of these forms. The forms were compiled
into a binder that organized each set of Scrum ceremonies by
Sprint. Overall, these adaptations helped students to execute
Scrum relatively wholesale in a classroom environment.

5. PEDAGOGY AND STUDENT FEEDBACK

In this section, we provide pedagogical details concerning the
use and effectiveness of Scrum projects as a mechanism to
teach Scrum concepts. The course project moves those
concepts beyond abstract concepts to a deeper understanding.
While earlier sections describe how the project is assigned to
and executed by business students, this section presents the
use of this project as a pedagogical tool for teaching Scrum
concepts.

5.1 Project as Pedagogical Tool
To stimulate a deeper understanding, students should include
in their project report a discussion on Scrum concepts they
learned by analyzing their projects. Those concepts include the
following:

• Discuss three Scrum values (transparency, inspection,
and adaptation). Understand the importance of the
Scrum values as they relate to building software as a
team.

• Discuss differences between traditional roles of
Project Manager and Business Analyst and Scrum
roles of Scrum Master and Product Owner. Explain
three distinct roles and responsibilities that Scrum
Masters and Product Owners possess.

• Discuss at least three things that were learned during
the development of the application using Scrum.

• Discuss the actual scope of work that was completed
versus that which was originally captured in the
original Product Backlog. Detail conditions that
emerge that impacted scope changes.

• Discuss what influenced the team’s selection of
communication mediums for video conferencing,
chatting, etc. Explain the pros and cons of these
mediums.

• Discuss next steps. What might future iterations of the
application look like?

5.2 Student Feedback
Both quantitative and qualitative data were collected
throughout the course to assess the effectiveness of using
Scrum in the classroom. All 41 students from 2 sections of the
course were invited to complete the survey anonymously (see
Appendix C). Thirty-five of the 38 students who began the
survey completed it (92% response rate). For the quantitative
questions, we asked students questions associated with each of
the research measures which were answered using a five-point
Likert scale ranging from 1-Strongly Disagree to 5-Strongly
Agree as shown in Table 2. A mean of 4 or above suggests
that, on average, students at least “Somewhat Agree” with the
statement. A mean of 2 or below suggests that, on average,
students “Somewhat Disagree” with the stsatement. A mean of
3 is a neutral response (“3-Neither Agree nor Disagree”).
These questions measured prior Scrum knowledge, current
Scrum knowledge, perceived team Scrum knowledge, and
perceived team execution quality across each of the Scrum
ceremonies.

Journal of Information Systems Education, Vol. 30(3) Summer 2019

147

Table 2. Mean Scores

5.2.1 Prior knowledge. During the first day of class, students
were asked about their knowledge and experience of Scrum
principles. Only one student said they were “very
knowledgeable” of Scrum. Additionally, three students said
that they were “somewhat knowledgeable” of Scrum.
However, upon further investigation, the student that
responded as “very knowledgeable” of Scrum actually used a
Scrum variation that excluded practices such as Sprint

Retrospectives and time-boxed Scrum Meetings. This student
later indicated that doing Scrum more holistically enhanced
their knowledge of Scrum. Overall, 88% percent of students
indicated that they were “not very knowledgeable” or “not
knowledgeable [of Scrum] at all” at the start of the class.

5.2.2 Current knowledge. Near the end of the project,
students were surveyed concerning their experience with using
Scrum. In summary, the majority of responses averaged 4
(“somewhat agree”) or higher on all questions. Questions Q2-
Q7 assessed respondent’s perceived knowledge of each Scrum
ceremony (“Currently, I have an adequate knowledge of
___”). Questions Q8-Q13 assessed respondent’s perceptions
of their team’s knowledge of each Scrum ceremony (“My
team has an adequate knowledge of ___”), while question Q14
assessed respondent’s overall knowledge of Scrum (“Overall,
I am (now) knowledgeable of Scrum principles and
practices”). Questions Q15-Q20 assessed respondent’s
perceptions of their team’s level of execution of each Scrum
ceremony (“My team executed ___ as designed”).

Questions related to individual and team knowledge of
Scrum Meetings had some of the highest averages of 4.800
and 4.629, while questions related to Product Backlog
Grooming had some of the lowest averages 4.257 and 4.143,
respectively. One possible explanation for this is that teams
were asked to conduct Scrum Meetings, Sprint Planning, and
Sprint Reviews upon arriving to class and Scrum Meetings
were done in a section of the classroom where the instructor
could see and interact with the team. Despite Scrum Meetings
being executed only on Day 1, students reported a high level
of understanding and execution of the ceremony and met
outside of class to work collaboratively on their projects.
Thus, most of the transparency afforded by “daily” Scrum
Meetings was attained with the modifications presented.
Sprint Planning, Sprint Review, and Sprint Retrospective
ceremonies required teams to complete formal documentation
each time, while teams could conduct and document Product
Backlog Grooming more informally. Some attrition was
observed in some teams’ ability to conduct the Sprint
Retrospective as instructed. The execution of this ceremony,
which had a mean score of 4.200, took place after the Sprint
review, a major milestone. Team members were asked to
reflect individually before discussing the quality of the past
Sprint’s effort collectively. Some teams resorted to “just
getting the documentation done” instead of taking adequate
time to reflect. Product Backlog Grooming ceremonies were
less visible, required more initiative to complete, and occurred
less frequently than the other Scrum ceremonies. This is also
evidenced by the lower averages for team Product Backlog
Grooming execution.

Questions Q21-Q24 asked students to indicate their
comfort level with Scrum and software development life cycle
(SDLC) concepts (i.e., planning, analysis, design, and
implementation) moving forward. These questions also
solicited qualitative data by asking students to explain their
answers in addition to providing 1 to 5 ratings, as follows:

21. I feel that doing Scrum enhanced my knowledge of

Scrum. Explain: ___
22. I feel comfortable doing Scrum at a future job.

Explain: ___

Variables Mean Std. Error
Prior Scrum knowledge

Q1

1.486

0.180
Current Scrum knowledge

Q2 Scrum Meeting

4.800

0.069
Q3 Sprint Planning 4.543 0.085
Q4 Sprint Review 4.629 0.092
Q5 Sprint Retrospective 4.343 0.108
Q6 Product Backlog 4.257 0.118
Q7 Sprints 4.714 0.077
Perceived team Scrum
knowledge

Q8 Scrum Meeting

4.629

0.101

Q9 Sprint Planning 4.543 0.095
Q10 Sprint Review 4.457 0.103
Q11 Sprint Retrospective 4.286 0.113
Q12 Product Backlog 4.143 0.137
Q13 Sprints 4.629 0.092
Overall knowledge of Scrum

Q14

4.643

0.086
Perceived team execution

Q15 Scrum Meeting

4.429

0.118
Q16 Sprint Planning 4.514 0.111
Q17 Sprint Review 4.371 0.124
Q18 Sprint Retrospective 4.200 0.122
Q19 Product Backlog 4.029 0.151
Q20 Sprints 4.343 0.136
Future Outlook – I feel:

Q21 …that doing Scrum
enhanced my knowledge of
Scrum

4.800

0.090

Q22 …comfortable doing
Scrum at a future job 4.457 0.095

Q23 …that doing Scrum
enhanced my knowledge of
SDLC principles

4.286 0.127

Q24 …comfortable in a
systems analyst position 4.214 0.122

Journal of Information Systems Education, Vol. 30(3) Summer 2019

148

23. I feel that doing Scrum enhanced my knowledge of
SDLC principles. Explain: ___

24. I would feel comfortable in a systems analyst position.
Explain: ___

The open-ended responses allowed us to gain deeper

insights about students’ level of comfort with Scrum and
SDLC principles moving forward. For Q21-Q24, 86% percent
of students “strongly agreed” that doing Scrum enhanced their
knowledge of Scrum and another 9% “somewhat agreed.”
Only 2 of 35 students were neutral. First, student responses
frequently mentioned how doing Scrum helped them
understand how the methodology worked on a software
development project. Below are a few examples:

Before Scrum and actively using it, I had no idea how
it worked or was. Actively using Scrum is the best way
to learn.

I had no knowledge of Scrum before taking this
course. By participating in a Scrum Project, I was
able to apply the theory in meaningful ways.

It is a lot easier to learn something by doing it rather
than reading about it in a text book. I liked that this
class was able to bring it to life, so that we are more
prepared in the workforce.

Second, 97% of students felt at least moderately

comfortable doing Scrum at a future job. Explanations
indicated that the most confident students felt ready to do
Scrum at a future job immediately while others, though
confident, felt they might need a refresher:

Having experience with [Scrum] now gives me
confidence using it again in the future.

It might take a little refreshing, but I would be
comfortable for sure.

Overall, I would be fine doing Scrum in an actual
professional setting.

These results suggest that teaching Scrum even to students

with experience doing Scrum in an internship is useful as
corporations often exclude certain aspects of Scrum as they
tailor it to their needs. By learning Scrum wholesale, students
gain a more comprehensive understanding of Scrum including
the aspects that an organization may exclude.

Third, most students (89%) felt that doing Scrum
enhanced their knowledge of SDLC principles at least
moderately. While some students said that “doing Scrum
enhanced [their] knowledge [of SDLC principles]
tremendously” others saw Scrum as less of an enhancement
and more of a “direct application” of their SDLC knowledge.
Upon reflection, a greater effort should be made to help
students understand how SDLC principles are applied in ASD
methods like Scrum. These linkages could have been made
more conspicuous by juxtaposing SDLC principles with the
Scrum framework during the introduction to Scrum. This

might have helped one of the four students who was neutral.
One of them said,

Yes [Scrum enhanced their knowledge of SDLC
principles], but it’s still hard to conceptualize Scrum
and SDLC together due to the nature of both being so
contrasting.

Fourth, most students (91%) indicated that they would feel

at least moderately comfortable in a systems analyst position.
Of these, the majority at 57% said they were “somewhat
comfortable” and 34% said they were “very comfortable.”
Those students that were “very comfortable” expressed that
being a systems analyst was their “dream job” and that the
project helped enhance their knowledge of software
development. Some comments were as follows:

After this course, I feel like I know the requirements to
be able to perform well in a [systems analyst]
position.

Yes, I would [feel confident in a systems analyst
position] due to this project enhancing my knowledge
of software development.

We also observed relatively high scores from those who

either had a past or upcoming internship related to software
development (e.g., business analyst, systems analyst, etc.).
Many universities support the idea of students getting
internships, oftentimes to gain meaningful work experience
that may lead to future full-time employment. Additionally,
many organizations employ internships as a key evaluator of
prospective student talent. The findings in this study suggest
that not only is the acquisition of an internship beneficial for a
student’s future industry career, but also their academic career.

Similar to the previous question, a greater effort should be
made to help students to feel confident about their ability to
function in the role of a systems analyst by understanding how
the skills required to complete the software project translate to
the systems analyst role. Although students performed a few
requirements gathering exercises and ultimately developed a
working piece of software, some students felt that they needed
more experience doing systems analysis work before they felt
“very comfortable” in the system analyst role. Below are two
student responses that express this sentiment:

I have a good understanding of the role but would like
to have more experience.

After more trainings… I would feel comfortable in a
systems analyst position.

In summary, this project stimulated discussions about

ASD concepts of which students may not have otherwise had
a clear understanding. In addition to the text presented in this
section, the main points reported by students are summarized
below. They have said this project:

Journal of Information Systems Education, Vol. 30(3) Summer 2019

149

• Helped them gain hands-on experience using Scrum,
which enhanced their knowledge of both Scrum and
SDLC principles.

• Helped them feel confident about both participating in
an ASD project at a job and working as a systems
analyst.

• Helped them understand the advantages and
disadvantages of ASD versus traditional methods.

• Helped them understand how important
communication is in meeting changing customer
requirements.

• Helped them understand how to approach IT projects.

5.3 Study Limitations and Future Research
As with all studies, this one has limitations. First, this study is
limited to a single professor and a single institution. Although
these factors limit generalizability, the findings in this study
confirm findings in previous studies on the effectiveness of
using Scrum in the classroom to teach software development
principles. Future work could look at wholesale Scrum
implementations across multiple student populations and
elaborate on their differences. Second, the nine-week (seven
Sprints) Sprint schedule presented here assumes that the scope
of the projects selected are of doable size and in line with
student expertise from prior courses. In this study, software
projects were typically company websites of less than 10
pages which contained basic information, pictures, and a web
form that connects to a database. Since these projects tended
to be small in scope, future research could examine Scrum
implementations in larger projects that span multiple
semesters and student teams. Third, this research focused on
equipping educators with implementing Scrum wholesale,
which we specify as using all the core process components
and roles as previously defined. Future research could explore
more specific and complementary aspects of Scrum such as
estimation techniques, task boards, burndown charts, and
software tools in greater depth. Similarly, specific attention
could be given to Scrum roles. For example, the Scrum Master
role was rotated among team members each Sprint, so students
did not get consistent experience in the role. As a result, they
seemed to be more keenly aware of their technical challenges
(e.g,. connecting the database, setting up the code repository,
formatting the front-end using CSS, coding web forms, etc.)
rather than challenges related to the Scrum Master role. We
also found that a detailed analysis of the tips, feedback, and
lessons learned from working with Product Owners to merit a
separate paper.

Given that implementing Scrum wholesale for student
projects was shown to be effective, we reiterate that future
projects should take care to make the linkages between Scrum
and SDLC principles more salient. Additionally, once learned,
Scrum ceremonies should be observed so that students
complete them rigorously and do not resort to “going through
the motions.” Similarly, Product Owners should be chosen
carefully so that students can benefit from working with a
person who is invested in the project and willing to provide
timely feedback. Moving forward, we recommend using a
formal agreement for Product Owners so that they understand
the expectations and responsibilities of the role. Additionally,
providing training to Product Owners either through video or
face-to-face instruction could potentially help. This will likely

minimize cases where Product Owners fail to provide
adequate feedback.

Perhaps the most difficult part of the projects was
successfully implementing them by the business. The adoption
rate (<5%) was poor for several reasons. First, a formal
process for transitioning class projects to live web applications
was lacking. Second, students lack motivation to continue
with the projects after their course requirements ended. At the
semester’s end, student schedules change and they rarely have
available time to meet each week. Third, many Product
Owners were hesitant to deploy their web applications because
of their lack of knowledge concerning the web hosting
process, unwillingness to cover the maintenance costs, and in
a dearth of cases, lack of satisfaction with the design. Future
research should formalize a process that transitions class
projects to live web applications before the course ends. Both
Product Owner and student or instructor commitments are
needed to complete this task. Other considerations for future
research include examining implementations for ASD
methodologies other than Scrum (e.g., Kanban) and
applications for ASD beyond developing web applications
(Baham et al., 2017).

6. CONCLUSION

This study contributes to the literature by detailing how Scrum
has been implemented in the classroom wholesale, providing
empirical results of multiple Scrum implementations, and
providing pedagogical recommendations for future
implementations of Scrum in the classroom. In relation to our
results, we summarize our recommendations as follows:

• Require Students to Deliver Actual Software
• Require Students to Acquire a Product Owner
• Provide Scrum Training
• Carefully Adapt the Method
• Use Documentation to Monitor Method Discipline

As Cao et al. (2002) note, the pedagogical method of
choice tends to be driven by such factors as the educational
background of students and the objectives of their academic
program. Not only is understanding how to develop a simple
software program expected as a software developer, but
understanding the importance of working in a dynamic team
environment is critical to adding value to a group project. In
working on this project, students were asked to integrate
previous knowledge and add new knowledge as they
encountered new challenges. Additionally, many business
students may eventually lead software projects. Thus, the
social and technical skills promoted here can help them to
have better communication with IT professionals. Students
searched the Internet for solutions to complex problems,
which were not often found in a textbook. In some cases,
being unable to find “one-size-fits-all” solutions led to
complaining. Therefore, instructors should make sure that
students limit the scope of their projects to that which matches
their expected skillset in a given academic program. Overall,
the findings of this study suggest a number of benefits for
implementing Scrum wholesale in the classroom.

Journal of Information Systems Education, Vol. 30(3) Summer 2019

150

7. REFERENCES

Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. (2002).
Agile Software Development Methods: Review and
Analysis. VTT Publication 478, Espoo, Finland.

Baham, C., Hirschheim, R., Calderon, A. A., & Kisekka, V.
(2017). An Agile Methodology for the Disaster Recovery of
Information Systems under Catastrophic Scenarios. Journal
of Management Information Systems, 34(3), 633-663.

Baird, A. & Riggins, F. J. (2012). Planning and Sprinting: Use
of a Hybrid Project Management Methodology within a CIS
Capstone Course. Journal of Information Systems
Education, 23(3), 243-258.

Batra, D. & Satzinger, J. W. (2006). Contemporary
Approaches and Techniques for the Systems Analyst.
Journal of Information Systems Education, 17(3), 257-266.

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A.,
Cunningham, W., Fowler, M., Grenning, J., Highsmith, J.,
Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,
Mellor, S., Schwaber, K., Sutherland, J., & Thomas, D.
(2001). Manifesto for Agile Software Development.
Retrieved March 9, 2018, from https://agilemanifesto.org/.

Case Studies. (2017). Retrieved March 9, 2018, from
http://www.scaledagileframework.com/case-studies/.

Cao, Q., Davis, J. S., Bai, X., & Katter, O. E. (2002). Using
ASP-Based Message Encryption Project to Teach
Information Security Concepts. Journal of Information
Systems Education, 13(3), 183-188.

Cleland, S. & Mann, S. (2003). Agility in the Classroom:
Using Agile Development Methods to Foster Team Work
and Adaptability amongst Undergraduate Programmers.
16th Annual NACCQ.

Cohn, M. (2010). Succeeding with Agile: Software
Development using Scrum. Pearson Education.

Faludi, A. (1973). Planning Theory, Urban and Regional
Planning Series (1st edition). Oxford: Pergamon Press.

Fitzgerald, B., Hartnett, G., & Conboy, K. (2006).
Customising Agile Methods to Software Practices at Intel
Shannon. European Journal of Information Systems, 15(2),
200-213.

Holvitie, J., Leppänen, V., & Hyrynsalmi, S. (2014).
Technical Debt and the Effect of Agile Software
Development Practices on It - An Industry Practitioner
Survey. Managing Technical Debt (MTD), 2014 Sixth
International Workshop on (pp. 35-42). IEEE.

Hoskey, C. & Hoskey, A. (2016) Cultivating Sprightly
Students: Using Agile Development in an Information
Systems Capstone Course. Information Systems Education
Conference. Pittsburgh, PA.

Jiménez, O. & Cliburn, D. (2016). Scrum in the
Undergraduate Computer Science Curriculum. Journal of
Computing Sciences in Colleges, 31(4), 108-114.

Lang, G. (2016). Agile Learning: Sprinting through the
Semester. EDSIG Conference. Las Vegas, NV.

Mahnic, V. (2012). A Capstone Course on Agile Software
Development using Scrum. IEEE Transactions on
Education, 55(1), 99-106.

Maruping, L. M., Venkatesh, V., & Agarwal, R. (2009). A
Control Theory Perspective on Agile Methodology Use and
Changing User Requirements. Information Systems
Research, 20(3), 377-399.

Masood, Z., Hoda, R., & Blincoe, K. (2018). Adapting Agile
Practices in University Contexts. Journal of Systems and
Software, 144, 501-510.

May, J., York, J., & Lending, D. (2016). Play Ball: Bringing
Scrum into the Classroom. Journal of Information Systems
Education, 27(2), 87-92.

McAvoy, J. & Sammon, D. (2005). Agile Methodology
Adoption Decisions: An Innovative Approach to Teaching
and Learning. Journal of Information Systems Education,
16(4), 409-420.

Overhage, S. & Schlauderer, S. (2012). Investigating the
Long-Term Acceptance of Agile Methods: An Empirical
Study of Developer Perceptions in Scrum Projects. 45th
Hawaii International Conference on System Science
(HICSS), 5452-5461.

Pope-Ruark, R. (2012). We Scrum Every Day: Using Scrum
Project Management Framework for Group Projects.
College teaching, 60(4), 164-169.

Ramasubbu, N., Bharadwaj, A., & Tayi, G. K. (2015).
Software Process Diversity: Conceptualization,
Measurement, and Analysis of Impact on Project
Performance. Management Information Systems Quarterly,
39(4), 787-807.

Rubin, K. (2012). Essential Scrum: A Practical Guide to the
Most Popular Agile Process. Addison-Wesley Signature
Series.

Schwaber, K. (1995). Scrum Development Process.
OOPSLA'95 Workshop on Business Object Design and
Implementation. Austin, TX.

Scrum Case Studies. (2017). Retrieved March 11, 2018, from
http://www.scrumcasestudies.com/.

Senapathi, M. & Srinivasan, A. (2014). An Empirical
Investigation of the Factors Affecting Agile Usage.
Proceedings of the 18th International Conference on
Evaluation and Assessment in Software Engineering. ACM.

Sutherland, J. & Schwaber, K. (2016). The Scrum Guide. The
Definitive Guide to Scrum: The Rules of the Game.
scrum.org.

Takeuchi, H. & Nonaka, I. (1986). The New Product
Development Game. Harvard Business Review, 64(1), 137-
146.

Valacich, J. & George, J. (2017). Modern Systems Analysis
and Design. Pearson Education.

Version One. (2018). 12th Annual State of Agile Report.
Retrieved June 15, 2018, from
https://www.stateofagile.com/#ufh-i-423641583-12th-
annual-state-of-agile-report/473508.

Wagh, R. (2012). Using Scrum for Software Engineering
Class Projects. AGILE India, 68-71, IEEE.

Weber, E. (2016). Performance Learning of Agile
Methodology Using Paired Courses of Systems Analysis
and Design and Web / Mobile Programming. EDSIG
Conference. Las Vegas, NV.

West, D., Grant, T., Gerush, M., & D’silva, D. (2010). Agile
Development: Mainstream Adoption has Changed Agility.
Forrester Research, 2(1), 41.

Weimer, M. (2006). Enhancing Scholarly Work on Teaching
and Learning: Professional Literature that Makes a
Difference. Indianapolis, IN: Jossey-Bass.

Journal of Information Systems Education, Vol. 30(3) Summer 2019

151

https://agilemanifesto.org/
https://www.stateofagile.com/#ufh-i-423641583-12th-annual-state-of-agile-report/473508
https://www.stateofagile.com/#ufh-i-423641583-12th-annual-state-of-agile-report/473508

Yue, K., De Silva, D., Kim, D., Aktepe, M., Nagle, S.,
Boerger, C., Jain, A., & Verma, S. (2009).Building Real
World Domain-Specific Social Network Websites as a
Capstone Project. Journal of Information Systems
Education, 20(1), 67-76.

AUTHOR BIOGRAPHY

Corey Baham is an assistant professor of Management

Science and Information Systems
at the Spears School of Business at
Oklahoma State University. He
completed his Ph.D. in
Information Systems and Decision
Sciences from Louisiana State
University. His current research
focuses on agility in IS
development, systems recovery,
and firm dexterity. His work has
been published in the Journal of

Management Information Systems, Communications of the
Association of Information Systems, and major IS conference
proceedings.

Journal of Information Systems Education, Vol. 30(3) Summer 2019

152

Appendix A: Sample Class Schedule

Day 1
Group Project Overview
Introduction of the Scrum Framework and Team Roles

Day 2

Introduction of the Scrum Framework and Team Roles (continued)

Sprint 0: Developing the Product Backlog

• Preliminary Planning
o Baseline Project Plan

Day 1

o Project Scope Statement
• Begin User Story Workshop

o Brainstorm
o Map according to roles

Day 2
(Complete User Story Workshop w/Product Owner)

o Create Product Backlog
End Sprint 0

 Transition to Scrum Workflow
• Scrum Workflow

o Sprint Planning [Beginning of Sprint 1]
o Sprint Work

Day 1

Class duration – 75 minutes:
• Class begins:

o Scrum Meeting (5-10 min.)
o Sprint Work (50-60 min.)
o Training session (5-10 min.)

• Class ends

W
E
E
K

1

Day 2

Class duration – 75 minutes:
• Class begins:

o Sprint Review w/Product Owner
o Sprint Retrospective [End of Sprint 1]
o Sprint Planning [Begin Sprint 2]

• Class ends

Day 1

Class duration – 75 minutes:
• Class begins:

o Scrum Meeting (5-10 min.)
o Sprint Work (50-60 min.)
o Training session (5-10 min.)

• Class ends

W
E
E
K

2

Day 2

Class duration – 75 minutes:
• Class begins:

o Sprint Review w/Product Owner
o Sprint Retrospective [End of Sprint 2]
o Sprint Planning [Begin Sprint 3]

• Class ends

Table-A: Sample Class Schedule

Journal of Information Systems Education, Vol. 30(3) Summer 2019

153

Appendix B: Team Assignments

Class 1

Group 1
Front end
coding:

Back end
coding:

Database
design:

Systems
infrastructure:

Avg. Col.
Score

Student 1 3 4 4 2
 Student 2 4 2 3 3
 Student 3 2 4 3 5
 Student 4 4 3 3 2
 Column Total 13 13 13 12

12.75

 Group 2
 Student 5 3 4 5 5

 Student 6 4 3 2 2
 Student 7 4 3 4 3
 Student 8 3 3 4 2
 Column Total 14 13 15 12

13.5

 Group 3
 Student 9 4 4 4 3

 Student 10 3 3 3 3
 Student 11 3 2 3 3
 Student 12 3 3 4 4
 Column Total 13 12 14 13

13

 Group 4
 Student 13 2 2 3 2

 Student 14 4 4 4 3
 Student 15 3 4 4 3
 Student 16 2 4 3 3
 Column Total 11 14 14 11

12.5

Journal of Information Systems Education, Vol. 30(3) Summer 2019

154

Class 2

Group 5

Front end
coding:

Back end
coding:

Database
design:

Systems
infrastructure:

Avg. Col.
Score

Student 17 4 3 3 2
 Student 18 3 3 3 2
 Student 19 3 3 4 2
 Student 20 4 4 4 3
 Column Total 14 13 14 9

12.5

 Group 6
 Student 21 3 4 3 4

 Student 22 4 2 4 3
 Student 23 3 2 4 2
 Student 24 3 3 3 2
 Column Total 13 11 14 11

12.25

Group 7

 Student 25 2 3 4 2
 Student 26 3 3 4 2
 Student 27 4 4 4 3
 Student 28 3 3 2 2
 Column Total 12 13 14 9

12

Group 8

 Student 29 4 4 4 3
 Student 30 4 4 4 3
 Student 31 3 2 3 2
 Student 32 4 3 3 2
 Column Total 15 13 14 10

13

Group 9

 Student 33 3 3 4 2
 Student 34 3 3 3 3
 Student 35 4 4 4 3
 Column Total 10 10 11 8

9.75

Journal of Information Systems Education, Vol. 30(3) Summer 2019

155

Appendix C: Scrum Knowledge Assessment

Instructions: Please rate each question and its components from A to E as follows:
A = Strongly disagree

B = Somewhat disagree

C = Neutral

D = Somewhat agree

E = Strongly agree

1. Prior to this course, I was ____ of Scrum principles and practices.
A B C D E

Not knowledgeable at
all

Not very
knowledgeable

Neutral Somewhat
knowledgeable

Very knowledgeable

Questions 2-7: Currently, I have an adequate knowledge of ____.

2. Scrum Meeting

A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

3. Sprint Planning

A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

4. Sprint Review
A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

5. Sprint Retrospective
A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

Journal of Information Systems Education, Vol. 30(3) Summer 2019

156

6. Product Backlog Grooming
A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

7. Sprints
A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

Questions 8-13: My team has an adequate knowledge of _____.

8. Scrum Meeting
A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

9. Sprint Planning

A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

10. Sprint Review

A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

11. Sprint Retrospective

A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

12. Product Backlog Grooming
A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

Journal of Information Systems Education, Vol. 30(3) Summer 2019

157

13. Sprints
A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

14. Overall, I am (now) knowledgeable of Scrum principles and practices.
A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

Questions 15-20: My team executed _____ as designed.

15. Scrum Meeting

A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

16. Sprint Planning
A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

17. Sprint Review
A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

18. Sprint Retrospective

A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

19. Product Backlog Grooming

A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

Journal of Information Systems Education, Vol. 30(3) Summer 2019

158

20. Sprints
A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

21. I feel that doing Scrum enhanced my knowledge of Scrum.
A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

22. I feel comfortable doing Scrum at a future job.

A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

23. I feel that doing Scrum enhanced my knowledge of SDLC principles.

A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

24. I would feel comfortable in a systems analyst position.

A B C D E

Strongly disagree Somewhat disagree Neutral Somewhat agree Strongly agree

Journal of Information Systems Education, Vol. 30(3) Summer 2019

159

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2019 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 2574-3872

