Journal of Information Systems Education, Vol. 20(1)

Synthesizing Huber’s Problem Solving and Kolb’s
Learning Cycle: A Balanced Approach to Technical
Problem Solving

Arnold Kamis
Beverly K. Kahn
Information Systems & Operations Management Department
Sawyer Business School
Suffolk University
8 Ashburton Place
Boston, MA 02108
akamis@suffolk.edu bkahn@suffolk.edu

ABSTRACT

How do we model and improve technical problem solving, such as network subnetting? This paper reports an experimental
study that tested several hypotheses derived from Kolb’s experiential learning cycle and Huber’s problem solving model. As
subjects solved a network subnetting problem, they mapped their mental processes according to Huber’s problem solving
stages by tapping a keypad. Based on Kolb’s model, concrete and abstract representations of the subnetting problems were
tested to determine whether the form of the problem representation improved performance. For subjects for whom full process
data was available, nine of the ten hypotheses were supported. A partial least squares model was developed which explained
27.5 percent of the variance in performance with three predictors. Two of the three predictors for performance were from the
Kolb side of the integrated model, whereas the third predictor was from the Huber side. We draw some implications for
research and practice, based on the integrated model to explain performance. We conclude that technical problem solving can
be modeled as an integration of Kolb’s experiential learning cycle and Huber’s stages of problem solving. Additional research
is needed to extend Kolb’s cycle and Huber’s stages to other knowledge intensive problem solving domains and to a more
diverse set of problem solvers.

Keywords: Technical problem solving, Learning cycle, Process tracing, Partial least squares model

1. INTRODUCTION are among of the most difficult challenges for individuals
who are new to networking. (Cigas, 2003; Greca, Cook et al.,
One of the most important skills in Internet Protocol (IP) 2004). A substantial stream of research indicates that
network design and configuration is subnetting, that is, intensive laboratory practice is necessary for individuals to
dividing an IP network into smaller networks in a hierarchy, solve networking problems in general and subnetting
parts of which can be managed separately. Subnetting problems in particular (Cigas, 2003; Corbesero, 2003; Greca,
provides several advantages, such as improved security, Cook et al., 2004). With subnetting, as with programming,
ability to manage network resources locally, decreased one cannot solve problems by reading a book or listening to
overall need for unique IP addresses, decreased size of lectures. Research has shown that an active or problem-based
routing tables in core Internet routers, and reduction of learning approach works better (Roussev and Rousseva,
broadcast traffic and thus improved utilization of available 2004; Whittington, 2004).

bandwidth. Without subnetting, it would be impossible to To investigate the solving of subnetting problems, we
manage organizational [P networks of any significant size. considered two distinct streams of literature: 1) Kolb’s
See Kamis and Topi (2007) for a primer on subnetting. Experiential Leamning Cycle (Kolb, 1976; Cook and Swain,

Solving subnetting problems requires an in-depth 1993; Comwell and Manfredo, 1994; de Ciantis and Kirton,
understanding of IP addressing mechanisms. Once grasped, 1996) with the abstract/concrete distinction (Reeves and
solving a subnetting problem is not difficult, but for less Weisberg, 1993a; Reeves and Weisberg, 1993b), and 2)
experienced network designers and administrators, it is often ~ problem solving in general (Newell and Simon, 1972) with
a challenge. As most instructors of networking courses can emphasis on Huber’s approach to problem solving (Huber,
attest, subnetting and troubleshooting of subnetting problems 1980).

89

Journal of Information Systems Education, Vol. 20(1)

We chose Kolb’s cycle because it is a comprehensive
and influential model of experiential learning (Kolb, 1976)
and because problem solving can be primarily mastered
through experiential learming. Kolb’s path-breaking work

Concrete
Experience
4 1
Active Reflective
Experimentation Observation
3 2
Abstract
Conceptualization

Figure 1: Kolb's Cycle

conceived of experiential leaming as a four stage cycle,
which, ideally, everyone would master. Within his seminal
paper, setting that cycle as the ideal, Kolb claimed that few
people could master the complete cycle. Instead, he argued
that individuals tend to specialize in one of the four stages or
styles of learning. Fortunately, organizations could manage
an assortment of individuals, who, collectively, would
constitute an organizationally balanced “meta-brain”. Rather
than follow Kolb’s conclusions regarding learning styles,
however, we focused on Kolb’s distinction between abstract
and concrete representations of problems and on an
individual’s movement between these representations as part
of the learning process. Reeves and Weisberg have found
that learning by analogy increases with the use of concrete
rather than abstract representations (Reeves and Weisberg,
1993a; Reeves and Weisberg, 1993b). Sadoski et al (1993)
conducted several experiments that showed that
concreteness, i.e., the ease of imagery, had strongly positive
impacts on comprehension and recall of information
(Sadoski, Goetz et al., 1993).

Our domain of interest was network subnetting, an
instance of technical problem solving. Problem solvers learn
a set of rules and apply these to solve a network subnetting
problem. Problem solving has been studied in linear, well-
structured domains, such as chess (Chase and Simon, 1973;
Charness, 1992) and in realistic, complex domains, such as
the process control industry (Patrick, Gregov et al., 1999).
Studies of problem solving can be descriptive (Srinivasan
and Te'eni, 1995) or prescriptive (Patrick, Gregov et al.,
1999), trace the problem solver’s process (Fitzgerald, Simon
et al., 2005) or only analyze the outcomes (Kamis and Topi,
2007). The individual problem solver can be viewed as
typically reaching adequate solutions, perhaps assisted by
technology (Todd and Benbasat, 1992), or inevitably
reaching suboptimal solutions, such that computer
automation or artificial intelligence is preferred (Garrido and
Barber, 2001). Some research starts with actual human
problem solving and then strives to help it become more like
a theoretical ideal (Steyvers, Tenenbaum et al., 2003).

Our approach in this paper is to triangulate between pure
description and normative idealism to bridge the gap
between the actual and the ideal. By doing so, we mitigate
against the limitations that any one method may have (Covey
and Lovie, 1998; Patrick and James, 2004; LeRouge,
Garfield et al., 2005; Van Gog, Paas et al., 2005). We
hypothesize that a technical subject, such as subnetting, is a
good test of Kolb’s cycle, and that Kolb’s cycle could help
us to design better support for the solving of both concrete
and abstract problems. In a laboratory setting, we have the
problem solver trace his or her problem solving process and
then include the tracing in an explanatory structural model of
best performance. In technical problem solving, however, we
cannot say, a priori, whether concrete problems are less
demanding or more demanding than abstract problems. The
question has to be answered empirically.

Problem solvers have bounded rationality (Newell and
Simon, 1972; Simon, 1972; Simon, 1982). They can pay only
so much attention to a problem before they feel
overwhelmed. That is why problem solvers make
assumptions, partition problems into smaller pieces, strive
for adequate if not optimal solutions at first, etc. Simon, for
example, defined decision making as Intelligence-Design-
Choice (Simon, 1976; Simon, 1977). Intelligence means
scouting the decision space, design means developing
multiple possible solutions, and choice means selecting the
best design. George Huber embedded Simon’s decision
making stages in a model for managerial decision making: 1)
Understand Problem, 2) Plan Solution, 3) Evaluation and
Choice of Altemative Solutions, 4) Implementation of
Chosen Solution, 5) Monitor and Review the Solution
(Huber, 1980). We refer to Huber’s multiple-stage model as
problem solving. We wondered whether Kolb’s learning
model could be synthesized with Huber’s model of problem
solving. In particular, we wondered how the integrated
model would explain performance scores.

In sum, we posed the following research questions:

1. Will problem solvers perform better on the abstract or
on the concrete version of the same subnetting problem?

2. Will there be any positional effects, i.e., abstract first,
concrete second vs. concrete first, abstract second?

3. Which problem solving processes explain performance,
1.e., solution correctness, the best?

We first review relevant literature in experiential
learning and problem solving. We then develop the
hypotheses. We follow with the methods, including a
controlled laboratory experiment, and show the results. We
then discuss the results and contributions, as well as the
limitations, and draw implications for research and practice.

2. PRIOR RESEARCH IN EXPERIENTIAL
LEARNING AND PROBLEM SOLVING

According to Kolb’s cycle (Kolb, 1976; Moores, Change et
al., 2004), people undergo a learning process as described in
Figure 1. Learning starts concrete and proceeds to become
abstract, but then cycles around to concrete again. The cycle
is formed by two axes, concrete experience-abstract
conceptualization (i.e., y axis) and reflective observation-
active experimentation (i.e., X axis). The two axes form four
quadrants and each one is referred to as a stage.

100

Journal of Information Systems Education, Vol. 20(1)

Some researchers, including Kolb, have conceptualized
the four quadrants as learning styles. They have found that
individuals, professions and organizations may favor a
particular learning style (Kolb, 1976; Fatt, 1993; Wu, Dale et
al., 1998). For example, individuals taking a Systems
Analysis and Design course were found to favor an abstract
learning style, the bottom half of the Kolb’s cycle (Moores,
Change et al, 2004). A fundamental general question
remains, however: Should one match the problem solver’s
preferred style or mismatch it to obtain “brain balance”
(Hayes and Allinson, 1996)? This normative ambiguity may
explain some of the equivocal results obtained in the
information systems training literature (Santhanam and Sein,
1994; Wu, Dale et al., 1998).

Although Kolb’s cycle is compelling, the Kolb Learning
Style Inventory (KLSI), an instrument based on the theory,
has been cited by some researchers as having questionable
psychometric properties (Bostrom, Olfman et al, 1990;
Moores, Change et al., 2004). In this paper, we do not use the
KLSI or the notion of learning styles. Rather, we return to
the roots of Kolb’s cycle and focus on the individual as the
unit of analysis with the aim of supporting every individual.
We claim that every individual problem solver performs best
by following the entire cycle. Then any teams created from
such individuals would be more able to touch all the bases:
experiencing, reflecting, thinking and acting.

Kolb’s cycle is anchored on the concrete experience of
an individual problem solver, whatever the subject being
taught. Kolb’s work was originally conducted in the context
of management education, and it influenced research in other
areas as well: nursing education (Fitzpatrick, While et al.,
1992), government training (Gray, Hall et al., 1997),
organizational learning (Friedman, 2002), technology
innovation (Boer and During, 2001; Boer and Gertsen, 2003)
and decision support system design (Cook and Swain, 1993).
Since subnetting deals with networking hardware
configuration, it is clearly an experiential, knowledge-
intensive skill. It requires laboratory practice to prove the
skill has been learned and to reinforce what the problem
solver thinks s/he knows.

Also, consistent with Kolb’s cycle is research in
computer software training. Computer software training
research has shown significant positive impacts of behavior
modeling, i.e., computer skill demonstration and hands-on
practice, on retention processes (Yi and Davis, 2003). In
addition, symbolic mental rehearsal helps improve
declarative knowledge and performance by making the
problem solver’s knowledge structures similar to that of a
domain expert (Davis and Yi, 2004). In other words,
observing the trainer perform a computer skill, abstracting
the skill symbolically, practicing it mentally, and testing
one’s abstract conceptualization through hands-on practice
improves computer skills. Mayer tested the effects of
paraphrasing and concrete models on novices learning to
program. He found that such techniques did assist students in
new situations when administered before the problem
(Mayer, 1981). The literature on analogical reasoning shows
that analogies are formed between two concrete systems, a
source system and a target system (Reeves and Weisberg,
1993b; Reeves and Weisberg, 1994).

Some psychology research shows that problem solving is
more concrete than abstract (Reeves and Weisberg, 1993a;
Reeves and Weisberg, 1993b; Reeves and Weisberg, 1994).
According to Reeves and Weisberg, problem solving is
dependent on content and context. Not only are problem
solvers unable to form pure abstractions, free of concretes,
but they do not even clear their minds of previously solved
problems. They solve a current problem by retrieving a prior,
concrete problenm/solution and forming an analogy to it (Ross
and Kennedy, 1990). According to these studies, problem
solving by analogy is quite concrete. Accordingly, we should
train people starting with concretes in a particular context,
and then learn variations in increasingly different content and
context.

In sum, Kolb’s cycle suggests that learning starts
concrete (Kolb, 1976, Reeves and Weisberg, 1993b). Other
research suggests that learning can be improved if given
appropriate support for problem solving processes (Patrick,
Gregov et al., 1999; Bo and Benbasat, 2007). Based on the
importance of concrete experience in subnetting, we
predicted that the solving of subnetting problems could be
modeled with Kolb’s cycle. We also theorized that Kolb’s
model of learning and Huber’s model of problem solving
could be synthesized.

We posit that Huber’s model of problem solving is what
takes place within each problem being solved, regardless of
whether it is concrete or abstract and regardless of any
positioning effects of a problem within a sequence.

3. HYPOTHESES DEVELOPMENT

The same problem can be represented in either a concrete or
abstract version. In the concrete version, according to Kolb’s
cycle, the problem solver may experience cognitive overload
and he or she may focus on the wrong aspects of the
problem. The concrete version is, in other words, richer and
more informative, which can be experienced as engaging and
realistic or it can be experienced as overwhelming and
challenging to analyze. Alternatively, one can think of the
concrete version as a combination of visual and verbal
information, whereas the abstract version consists of only
verbal information and is therefore less susceptible to
focusing incorrectly. (For examples of concrete vs. abstract
versions, see Appendix A.) For further evidence that problem
solvers focus incorrectly, i.e., on information that is not
diagnostic, consider the difficulty that people have in
following the prescriptions of Bayes’ Rule (Covey and
Lovie, 1998).

A concrete version of a problem should be more
challenging than an abstract version of the same problem, as
illustrated by Kolb’s cycle, because the concrete version will
have more opportunities for error. Conversely, the abstract
problem version has less opportunity for error, because the
beginning (stage 1) and the end of the cycle (stage 4) are
skipped. There is less switching between stages, less
cognitive overload and less opportunity to focus on the
wrong aspects of the problem. This may seem
counterintuitive, since an abstract problem implies higher
order cognitive processes, whereas a concrete problem
implies lower order cognitive processes. However, the Kolb
cycle implies that the concrete problem is actually a superset

101

Journal of Information Systems Education, Vol. 20(1)

of the abstract problem. The concrete problem traverses the
complete cycle, whereas the abstract problem traverses only
the bottom half (stages 2 and 3) of the cycle. Our baseline
hypothesis is therefore the following:

HI: Problem solvers will perform better on the abstract
version of a specific network subnetting problem than they
will on the concrete version of the same problem.

We predicted there would be a positioning eftect based on
concreteness, i.e., that the order of problem versions would
matter. Solving a concrete problem first should demand more
from the problem solver, setting expectations high for a
second, abstract problem. Starting concrete, with the more-
demanding problem version, should challenge the problem
solver, requiring fuller attention and deployment of his or her
mental resources. Success on such a problem would be
predictive of success on a subsequent abstract, less
demanding problem. Failure on a more-demanding problem
would not be predictive of failure on a subsequent, less-
demanding problem. Conversely, solving an abstract
problem first should demand less from the problem solver,
setting expectations low for a subsequent concrete, more-
demanding problem. Success on an abstract, less demanding
problem version would not be predictive of success on a
subsequent concrete, more demanding problem. Failure on
an abstract, less-demanding problem would be predictive of
failure on a subsequent concrete, more-demanding problem.

H2: Problem solvers given first the concrete version of a
specific network subnetting problem will perform better than
those given first an abstract version of the same problem.

Concrete representations of problems seem to be more
accessible, more visual and more easily graspable than
abstract representations. There is a downside, however, to the
realism. There is a greater need to figure out where to focus,
and to decide which content is relevant and which is not, i.e.,
seductive yet superfluous details. Good problem solvers need
to be able to learn from one domain and apply what they
have learned to other domains, often through the transfer and
application of their knowledge by analogy (Reeves and
Weisberg, 1993a; Reeves and Weisberg, 1993b). Other
research has found that concreteness plays a key role in
comprehensibility, interest and memory of textual
information (Sadoski, Goetz et al., 1993). It takes time and
effort to separate the signal from the noise.

To trace the process of problem solving in some detail,
we adopt the stages of Huber:
Understand Problem
Plan Solution
Evaluation and Choice of Alternative Solutions
Implementation of Chosen Solution
Monitor and Review the Solution.

R RS

We adapt Huber’s framework by combining stages 3 and
4, because in this study there is no separation between choice
and implementation of a solution. We thus re-label it Execute
Solution. We re-label Monitor and Review to be Check
Solution Against Plan or simply Checking. We also added a

neutral state for subjects who were not clearly in one of the
above problem solving states. (See Table 1.)

In this study, we considered the amount of time spent in
each stage as a proportion of the overall amount of time
spent solving the whole problem. For example, in solving a
problem a subject may spend his time as follows: 10% in
Understanding, 20% in Planning, 30% in Executing, 30% in
Checking and 10% in Neutral. In general, the more time
spent on a prior stage, e.g., Understand Problem, the less
time will be spent on all subsequent stages. This is
necessarily true, but it is not obvious which of the other
states will receive proportionally more time and which will
receive proportionally less.

Stages as Labeled on
Keypad

Understand Problem Understand Problem

Plan Solution Plan Solution

Evaluation and Choice of Execute Solution
Altemative Solutions
Implementation of Chosen

Solution

Monitor & Review the Solution Check Solution
Against Plan
None of the Above Neutral

Table 3: Huber's Stages of Problem Solving

We start by predicting that, based on the difficulty of
focusing on the relevant aspects of the problem,
proportionally more time will be required to understand the
problem if it is in concrete form rather than abstract form.
Concrete information bounds the problems, however, which
could make it simpler.

H3: Problem solvers given the concrete version of a specific
network subnetting problem will spend a greater proportion
of their time on Understand Problem than problem solvers
given the abstract version of the same problem.

Once the problem has been understood, it probably does
not matter much whether it is concrete or abstract. We argue,
intuitively, that the greater the understanding, the less the
problem solver needs to engage in subsequent stages. This
has been shown in other contexts, such as learning
individually versus working in teams of two (Lim, Ward et
al., 1997) and in guarding against erroneous individual habits
and assumptions (Patrick, Gregov et al., 1999). This line of
reasoning is analogous to the key role played by defining
requirements in system or software design. The more
precisely the requirements of the system are known, the
lower the chances of poor design or implementation which
follow. Therefore, we emphasize the key impact of
Understand Problem by predicting all of the following:

H4: Problem solvers who spend a greater proportion of their
time on Understand Problem will spend a lesser proportion
of time on Plan Solution.

H5: Problem solvers who spend a greater proportion of their
time on Understand Problem will spend a lesser proportion
of time on Execute Solution.

102

Journal of Information Systems Education, Vol. 20(1)

Concrete
Problem

Performance

Concrete
Problem

First
Substance and Structure

Understand
Problem

H5
- Hy_
Sontion Plan
= Solution He | -

H9

h Check
Solution
Against

Process l&n

Figure 2: Research Model with Hypotheses of Expected Directional Influence

H6: Problem solvers who spend a greater proportion of their
time on Understand Problem will spend a lesser proportion
of time on Check Solution Against Plan.

Thus, the more time spent in planning, the less time is
needed for Execute Solution, because better planning will
focus on more fruitful possibilities and conversely rule out
efforts that are “going down the wrong path”. Similarly, we
expect more planning to reduce the need for Check Solution
Against Plan. More planning could lead to a feeling of
uncertainty prior to executing the solution, and thus a greater
need for checking so the effect will probably be significant
but smaller in magnitude than the impact on executing the
solution. H7: Problem solvers who spend a greater
proportion of their time on Plan Solution will spend a lesser
proportion of time on Execution of Chosen Solution

HS: Problem solvers who spend a greater proportion of their
time on Plan Solution will spend a lesser proportion of time
on Check Solution Against Plan.

As the subject spends proportionally more time on
executing the chosen solution, the chosen plan will fade
increasingly into memory. The plan likely will be considered
retrospectively as a non-binding guide, as a point of
departure. Conversely, those who spend proportionally less
time on executing the chosen plan will be more prone to
compare the current execution to the chosen plan.

H9: Problem solvers who spend a greater proportion of their
time on Execution of Chosen Solution will spend less time on
Check Solution Against Plan.

There are multiple antecedents to Execute Solution, and
some of them will be countervailing forces. For example,
proportionally greater time in Understand Problem is
expected to lead directly to proportionally less time in
Execute Solution, but indirectly to proportionally more time
in Execute Solution. However, indirect effects are expected
to be multiplicative and therefore much smaller in
magnitude. Therefore, we rely on the expected impact of
Understand Problem to guide our expectation of the Impact

Execution Solution on Performance Score. We expect
proportionally less time in Execute Solution to lead to greater
Performance Score, primarily because of proportionally
greater time spent in Understand Problem.

H10: Problem solvers who spend a greater proportion of
their time on Execution of Chosen Solution will obtain a
lower Performance Score

Figure 2 contains the research model comprising all ten
hypotheses.

In sum, the structural hypotheses are tests of problem
solving in concrete versus abstract versions and an order
effect. The process hypotheses are tests of greater proportion
of time spent in an earlier stage of Huber’s problem solving
model leading to lesser proportion of time spent in all
subsequent stages.

4. METHODS

We chose a laboratory experiment to rigorously test the
above hypotheses, (i.e., to maximize internal validity). This
controlled approach, testing participants in a single
laboratory room, enabled us to minimize the influence of
confounds, e.g., user mortality, user-user contamination, and
problem interference from other sources (Campbell and
Stanley, 1963; Campbell and Stanley, 1966). After two
pretests, a laboratory experiment was conducted with
graduate students who volunteered to participate. The
participants were 32 Master of Science in Information

Figure 3: Abstract Problems First

103

Journal of Information Systems Education, Vol. 20(1)

USER age yrsCI yrsNM Score
by treatments Subjects | % male| mean |stdev| mean |stdev] mean | stdev| mean | stdev
Abstract Probs First 15 53% 28.53 | 2.99 3.80 | 2.61 025 | 0.77] 0.51 | 0.22
Concrete Probs First 17 71% 25.29 | 2.51 1.97 1.70| 0.15 | 0.34] 0.65 | 0.22
difference p<0.05 p<0.05 n.s. n.s.
by level of legitimacy | Subjects | % male|] mean |stdev|] mean | stdev| mean | stdev] mean | stdev
Low Legitimacy 8 63% 26.50 | 1.41 2.44 1.72| 0.09 | 0.27] 0.66 | 0.24
Medium Legitimacy 10 80% 25.86 | 2.27 2.16 1.50| 0.32 | 0.93] 0.59 | 0.27
High Legitimacy 14 50% 27.60 | 4.07 3.49 292| 0.18 | 0.36] 0.53 | 0.19
difference n.s. n.s. n.s. n.s.

Table 4: Descriptive Statistics at the User level of Analysis

Technology students (37.5% female, 62.5% male) who were
homogeneous with regard to age (mean 27, std 3.2). The
participants were recruited from a single section of the same
graduate level networking course. The total enrollment was
32; all the students volunteered to participate.

4.1. Experimental Design
The concrete and abstract problem versions were designed to
have the same level of complexity and difficulty. After
completing practice tasks (one concrete and one abstract
subnetting problem), half the participants were randomly
assigned to solve three abstract problems (also, referred to as
the abstract problem set) followed by three concrete
problems (see Figure 3).

The other half, randomly sampled, would do three
concrete problems (after practice tasks) followed by three
abstract problems (see Figure 4).

Figure 4: Concrete Problems First

4.2. Experimental procedure

Participants were told that the two top performers (totaling
the scores from both problem sets) would receive $100 each.
After the lab proctor read the instructions, participants
completed the entrance survey to collect demographics and
solved two practice problems (10 minutes total). All
participants solved one (identical) concrete problem,
followed by one (identical) abstract problem. The two
problems were of low complexity, designed only to
familiarize the participants with the type of problem solving
they were about to encounter. Then the participants solved
two randomly-assigned problem sets, concrete followed by
abstract (or vice versa), each set containing three problems of
the same problem type. While solving each problem, the
subject was asked to reflect his or her problem solving stage
by tapping a key on a keypad (see Appendix B). These stages

follow Huber’s problem solving model. Table 1 summarizes
the stages of problem solving:

Problem solvers were asked to indicate their current
problem solving stage by tapping the appropriate key on their
keypad. In the analyzed data, the proportion of time spent in
each stage was normalized by considering the total
proportion of time the problem solving spent solving one
problem as 100%. Then, we determined the proportion of
time spent in each problem solving stage as a percent of the
whole. The time spent solving a problem ranged from 1.5 to
15.6 minutes with a mean of 5 minutes 42 seconds. The
hypotheses are based on the proportion of time spent in each
problem solving stage.

We chose keypad tapping rather than think-aloud
protocol, because vocalizing while problem solving has been
shown to interfere with problem solving to some extent, i.e.,
it is reactive (Lohse and Johnson, 1996; Lim, Ward et al.,
1997, Mao and Benbasat, 1998; Patrick and James, 2004).
We assumed that keypad tapping would be less reactive
because it did not involve vocalization.

Participants were thanked, given an anonymous code for
claiming a possible performance prize, and dismissed. All
participants who completed the problems obtained 2% extra
credit in the class.

5. RESULTS

We analyzed the data to determine the impact of the
demographics of our sample. Analysis was conducted on the
impact of age, gender, years in the computer industry (i.e.,
yrsCI), and years in Network Management (i.e, yrsNM). We
display the descriptive statistics in Tables 2 and 3. None of
these variables had a significant impact on the problem
score.

Figure 2 shows some slight differences between the
Abstract Problems First (hereafter referred to as Abstract
First) and Concrete Problem First (hereafter referred to as
Concrete First) treatments. The subjects varied by proportion
male, age and years of experience in the computer industry.
The Abstract First subjects were older than and had more
years of experience in the computer industry than the
Concrete First subjects. A superior performance score could
be possible in the Abstract First subjects, since their age and
experience could be a significant and positive contributing
factor. Neither group of subjects indicated a stronger
preference or expertise in one type of problem or another. In
sum, the two groups of subjects were similar in background

104

Journal of Information Systems Education, Vol. 20(1)

Score | Time (s)
PROCESS LEVEL Instances | % male | mean | stdev Level of Legitimacy| Instances | mean stdev
Abstract Problem 69 64% 0.39 | 0.46 Medium Legitimacy 57 310.09 | 173.87
Concrete Problem 70 63% 0.72] 0.31 High Legitimacy 82 341.29 | 156.26
difference p<0.05 difference n.s.
USER x PROCESS age yrsCl yrsNM Score Time (s)
within High Legitimacy | Instances | % male | mean | stdev] mean stdev mean stdev mean stdev | mean stdev
Abstract Problem 42 50% | 27.64 | 415 | 3.54 2.95 0.18 0.36 0.70 0.32 | 320.24 | 162.46
Concrete Problem 40 50% | 27.55 | 4.04 | 3.45 2.93 0.19 0.37 0.36 0.45 | 336.87 | 165.96
difference n.s. n.s. n.s. p<0.05 n.s.
Abstract Problems First 29 38% | 31.90 | 209 | 6.14 2.79 0.00 0.00 0.40 0.41 | 333.49 | 154.66
Concrete Problems First 53 57% | 25.25 | 2.74| 2.05 1.75 0.28 0.42 0.61 0.41 | 345.55 | 158.45
difference p<0.05 p<0.05 p<0.05 p<0.05 n.s.
Table 5: Descriptive Statistics at the Process level of Analysis
Concrete Concrete
Average Variance Extracted score Problem Problems First Execute Verify Plan Understand
score 1.000
Concrete Problem -0.431 1.000
Concrete Problems First 0.235 -0.022 1.000
Execute -0.178 -0.048 -0.012 1.000
Verify 0.148 -0.092 0.216 -0.174 1.000
Plan 0.118 -0.080 -0.013 -0.401 -0.110 1.000
Understand -0.008 0.283 -0.181 -0.331 -0.309 -0.105 1.000

Table 6: Convergent-Discriminant Validity

and unlikely to be biased. We would have to check, however,
whether the Abstract First subjects performed better than the
Concrete First subjects.

We examined the keystroke data for each problem of
each subject, excluding the practice problems. That gave us
detailed process data for six problems per subject. Each
problem was examined to see whether it showed a general
step pattern, proceeding from one problem solving stage to
the next with minimal deviation, an analysis similar to that in
Srinivasan and Te’eni (1995). Any problem tracing that did
not show this pattern was flagged as less legitimate. Some
cases were obvious, such as the keystroke log showing that
only one key was pressed the entire time. Some were less
obvious, showing the generally expected progression from
stage to stage, but perhaps a disproportionately large
proportion of time in one stage. This indicated a fixation, for
example, because the subject tuned out the keypad and
simply tapped one key automatically while turning their
attention to the problem solving problem.

The 32 subjects performing 6 problems generated a
maximum of 192 possible process traces. Eight subjects
clearly did not follow directions. They, the low-legitimacy
group, exhibited a range of behaviors, from ignoring the
keypad altogether to pressing keys randomly. Omitting their

process traces, we were left with 144 medium-to-high
legitimacy process traces. Of those 144 process traces, five
were deemed to be rare anomalies showing similarity to the
behavior of the low-legitimacy process traces and were
omitted. Thus, we obtained 139 medium or high legitimacy
groups of traces. Table 3 displays descriptive statistics at the
process level.

We then examined and compared the medium and high
legitimacy groups together and separately. The demographics
and scores of the medium and high legitimacy groups were
similar. We analyzed the pooled data and found that there
was no significant impact from the process variables
(Understanding Planning, Execution, Verification, Neutral)
on performance score. We noted that the medium legitimacy
group was 80% male, whereas the high legitimacy group was
50% male. decided to focus on analyzing only the high
legitimacy group, because- in addition to being gender-
balanced — they were the ones who took the tasks the most
seriously. That left us with 82 high legitimacy traces from 14
subjects. A check of individual performance scores for each
subject revealed that they were only moderately correlated.
Thus we could not collapse them into an overall performance
score or two performance scores, one for the abstract
problems and one for the concrete problems.

105

Journal of Information Systems Education, Vol. 20(1)

R2=8.0%

0.283***

Concrete

Problem

-0.436***

Concrete
Problem
First

Substance and Structure

Execute
Solution

R2=30.2%

v

-0.377*=

-0.508**

Check
Solution
Against
lan

Process R2=28.1%

Figure 5: Figure 1: PLS model on High Legitimacy Process Tracings Sample (N=79)

A regression analysis of the treatment variables
combined with all the demographic variables showed that
only the treatment variables were significant predictors of
Performance Score, consistent with Kamis and Topi (2007).
That is, all the demographic variables, including age and
experience in the computer industry, had negligible effect
when the two treatment variables are included. The variance
explained was 19.6 percent. We dropped the demographic
variables in subsequent analysis with Partial Least Squares
(PLS).

We conducted a PLS analysis using PL.S-Graph (version
3.0) with the bootstrapping resampling procedure (Chin,
1997; Chin, 1998; Chin, 2000). PLS-Graph is an exploratory
form of structural equation modeling that assumes linear
relationships between all variables. All constructs were
confirmed to have satisfactory convergent and discriminate
validity, as show in the cross-loadings of Table 4 (Hulland,
1999; Chin, Marcolin et al., 2003). Each variable’s items are
more highly correlated internally, within the variable, than
they are correlated with the items of other variables. That is,
the correlations on the diagonal, the Average Variance
Extracted, are larger than those off the diagonal.

A conservative heuristic for sample size in a PLS model
is to have at least 10 times the larger of either 1) the largest
number of indicators for any construct or 2) the largest
number of incoming links to any construct (Chin and
Newsted, 1998; Chin, 2000). According to that heuristic, our
model requires a minimum sample size of 30. After omitting
3 outliers, our final sample size was 79, well over the
minimum sample size.

In sum, legitimate subjects performed considerably better
on the abstract problems and experienced an ordering eftect.
Concrete problems had a significantly lower score. Solving
concrete problems before abstract problems helped improve
average performance score. High-legitimacy subjects
performed considerably better on the abstract problems and
experienced an ordering effect. Delving into the problem
solving process, proportionally more time spent in non-

execution, such as Understand Problem and Plan Solution,
led to proportionally less time spent in execution, with 30.2
percent of its variance explained. Proportion of time spent in
Execute Solution was a significant factor explaining
performance score, yet smaller in magnitude than the abstract
versus concrete factor or the ordering effect. Those three
predictors explained 27.5 percent of the variance in
performance score. All hypotheses except for H4 were
supported.

The impact of the proportion of time spent in the first
stage, Understand Problem, is analyzed in H4, H5 and H6.
As expected, proportionally more time spent in Understand
Problem resulted in proportionally less time in the other
stages of problem solving, but there was only a significant
impact on Execute Solution (H5) and Check Solution
Against Plan (H6). Given the lack of positive or negative
impact, it appears that individuals neither increase nor
decrease their proportion of time in the Plan Solution stage
of problem solving based on their proportion of time spent in
the Understand Problem stage.

Hypotheses H7, H8 and HY9 were substantiated and
demonstrate that the proportion of time spent in one stage
does negatively impact other stages. H7 and H8 evaluate the
impact of the amount spent on Plan Solution on Execute
Solution and Check Solution Against Plan respectively. This
is also true for the impact of Execute Solution on Check
Solution Against Plan.

Only the proportion of time spent in Execution
significantly impacted the problem solver’s performance
score, i.e., the objectively graded score of the subnetting
problem. The more time proportionally spent in Execution,
the lower the problem solver’s score. It could be that
individuals who had the most difficulty with the problem
spent proportionally more time in the Execution stage.
Additionally, these individuals may have been more unsure,
less confident in their solution and evaluated more
altemnative solutions. These individuals often continued

106

Journal of Information Systems Education, Vol. 20(1)

second guessing themselves and usually selected the last but
not necessarily the best solution.

6. DISCUSSION

Integrating models from Kolb and Huber, we can better
explain technical problem solving. Kolb’s model provides
information on the representation of the problem (concrete
versus abstract), which has significant impacts on the
problem solver. In this study, two different treatments were
used to describe a problem, concrete and abstract. (Examples
of each are in Appendix A.) Scores on the concrete treatment
were significantly lower than the scores on the abstract one.
Additionally, it was shown that doing the concrete problems
first improved overall performance score. Tested individually
using multiple regression and PLS, problem version and
problem version order were statistically significant at a p-
level of 0.05.

Applying Huber’s model of problem solving allowed us
to better structure the process used to solve a problem. It
dealt with the proportion of time spent in each problem
solving stage. In the problem solving process, the proportion
of time spent in the execution stage had a direct and
significant impact on performance score. Spending
proportionately less time on execution was helpful, whereas
spending proportionally more time on non-execution
(understanding, planning and checking), was also helpful for
improving performance score.

The results are consistent with Kolb’s cycle of
experiential learning. In the abstract problem, participants
skipped half of the cycle. In the concrete problem,
participants had to execute more mental skills and handle
more opportunities for error within a concrete representation
of the problem. Traversing the full cycle was more
demanding; the concrete parts of the cycle challenged the
problem solver to focus on and select the relevant aspects of
a scenario. Examining the concrete problems for whether
they were first or second, we saw a positioning effect on
score. Students solving the concrete problems first (before
the abstract problems) scored significantly higher than
students solving the abstract problems first (before the
concrete problems).

Starting with abstractions may be desirable from a
theoretical standpoint, but it seems to be hazardous to
problem solver performance. If abstract problems are offered
as a mental “warm-up,” intended to build intellectual
scaffolding and confidence, it is counterproductive. It avoids
challenging the students to focus, select, and logically induce
the relevant aspects of a concrete problem. It sets difficulty
expectations lower, and then the subsequent concrete
problem is perceived as more challenging. Solving concrete
problems first gives the participants the full Kolb cycle,
whereas solving abstract problems first gives only the middle
part of the Kolb cycle.

The results may be counterintuitive to those who think
higher concreteness makes learning deficient versus a more
abstract approach. However, the result may well be highly
intuitive to those who think hands-on learning (Yi and Davis,
2001) or the case method (Christensen, Garvin et al., 1992) is
a better approach to learming versus traditional lecture
method. Kolb’s cycle takes the problem solver through

concrete experience, reflective observation, abstract
conceptualization and active experimentation. Undergoing
such a process, the student is more likely to be fully
challenged and engaged than he or she would with the
traditional lecture method.

The argument for learning through cases, i.e., anchoring
individuals in authentic situations, is not new (Christensen,
Garvin et al., 1992; Zanga, Richard et al., 2004; Carroll and
Rosson, 2005). Cases are good for engaging the learner in
decisional dilemmas, eliciting empathy toward the decision
makers and gaining emotional commitment to solving the
problem at hand in an integrative analysis. The results of this
study suggest a simple cognitive scaffolding (understand-
plan-execute-check) for individuals to bring to bear on an
engaging, situated case of technical problem solving. The
planning process in particular has been found to be useful in
learning through observation of concretes (Zanga, Richard et
al., 2004).

7. LIMITATIONS

Several considerations should be kept in mind when
interpreting the results of this study. First, the technical
domain examined was network subnetting, which may be a
unique domain in some respects. The problem solvers used a
set of rules learned in the course to solve a subnetting
problem. Second, the sample size of thirty-two limited the
complexity of the statistical models which could be analyzed
with acceptable power. Each student solved six subnetting
problems, which resulted ultimately in 79 highly legitimate
process traces, following Huber’s model to a significant
extent. The sample was, on the one hand, a convenience
sample, but on the other hand, the enrollment of the sampled
networking class was thirty-two, a 100% participation rate.
The participants were all graduate students in one MS in
Information Technology course being taught by one
instructor in one semester. Further research should replicate
and extend this study to other technical courses, e.g.,
programming and database management, including at the
undergraduate level, using other instructors, and over
multiple semesters. Doing so would increase the sample size
and could generalize these findings.

We did not address individual learning styles, i.e., Kolb’s
KLSI, in this study. Kolb has revised the KLSI several times,
and version 3 of the KLSI does show acceptable internal
validity and reliability (Kayes, 2005). When assembling
learning teams, Kolb’s later research calls for a simpler
solution than KL SlI-tailored leaming support; create teams
with individuals possessing diverse leaming styles, so that
they can “touch all the bases” simply by drawing upon the
different strengths of the individuals. Kayes, Kayes and Kolb
(2005) suggest that touching all the bases is a good idea for
both the individuals and the team itself. The results of the
current study are consistent with that suggestion.

We avoided a think-aloud protocol for process tracing
because it has been found to be reactive, i.e., to interfere
(Lohse and Johnson, 1996; Lim, Ward et al., 1997; Mao and
Benbasat, 1998; Patrick and James, 2004). Our keypad
protocol for process tracing could be reactive as well, since
some attention must be diverted from problem solving to
awareness of the individual’s problem solving stage. A fair

107

Journal of Information Systems Education, Vol. 20(1)

proportion of subjects did not comply with the keypad
protocol, making it impossible to systematically analyze their
process. It seems that there was a small performance penalty
for being in the high-legitimacy group. That is, a close
tracing of one’s mental state does divert some resources
away from the task at hand. Paying more attention to the
meta-problem solving level does mean paying less attention
to the problem solving level. Thus, our keypad tapping
protocol may be reactive for some types of problem solvers.
Nonetheless, both Kolb’s cycle and Huber’s model do
combine to explain problem solving performance.

8. IMPLICATIONS FOR FUTURE RESEARCH AND
PRACTICE

The results have direct implications for the design of class
time and the design of assessments, i.e., quizzes or exams.
Start concrete, abstract as needed, and finish concrete. This
sequence, consistent with Kolb’s experiential learning cycle,
is challenging yet engaging. This approach helps individuals
to feel grounded in a concrete problem-solving situation, and
then it challenges them to focus on the appropriate aspects of
the problem, invoke appropriate abstract knowledge and
apply that knowledge to the situation at hand. The opposite,
starting a class with abstract concepts or starting an exam
with true/false questions, seems to be contra-indicated.

The results also have implications for any instructor who
needs to delve into the learner’s mental processes. We have
shown in this study that it is possible to have learners trace
their own mental processes through a well-designed keypad.
The simple act of vocalizing ones thoughts can interfere with
the task at hand, i.e., produce reactivity. By having learners
trace their mental processes without vocalization, we
succeeded at obtaining process data while avoiding the
pitfalls of reactivity found by other researchers (Shaft, 1997,
Patrick and James, 2004; Tenopir, Wang et al., 2008). We
have also shown that by focusing on the highly legitimate
process tracers, one can learn how the learners’ mental
processes contribute to problem solving performance.

Although it is possible that network subnetting was
idiosyncratically responsible for our results, we think it is
unlikely. Any technical or knowledge intensive subject
requiring experience would be a good candidate. Any science
subject requiring problem solving would also be a good
candidate. The only subjects where it may not be appropriate
would be purely theoretical ones, e.g., theoretical physics.

When demanding work is expected, problem solvers
have been found to work harder rather than reduce their
effort (Foos, 1992). The results of this study show that
Kolb’s cycle is a model that applies to technical problem
solving. Problems are more demanding when represented in
concrete rather than abstract form, and are thus more
challenging. In addition, problems in concrete form are better
presented first, so that the abstract problems which follow
are relatively easier. Thus, although individuals are known to
conserve cognitive effort when given the opportunity (Davis,
1989; Todd and Benbasat, 1993), they rise to a challenge
when there is no easy way out. This is an encouraging
finding with many implications for research and practice.
This study integrated the Kolb’s cycle with Huber’s decision
making stages, thus giving a more complete analysis of

substance and form. Kolb helped us understand the
sequencing of problems, whereas Huber helped us
understand the sequencing of stages within a single problem
solving effort.

It seems that one should teach subnetting the way many
instructors teach programming, i.e., learning-by-doing
(Agarwal, Sambamurthy et al., 2000; Yi and Davis, 2001).
To the extent that motivation, reflective observation and
active experimentation are important, learning-by-doing is
recommended. Having problem solvers successfully build
upon working solutions, i.e., by increasing complexity, scope
of application, robustness to user error, etc., is a sound
strategy. It is not the only strategy, of course, but the results
of this study are consistent with much of the research in IT
training. Train through increasingly complex examples or
contexts. Do not start with abstract principles.

Students and other novices have different cognitive
processes versus those of experts when programming (Mao
and Benbasat, 2000, Hung, 2003; Vainio and Sajaniemi,
2007). Novices experience cognitive overload more easily
(Gray, Clair et al., 2007). Experts are better than novices in
decomposing complex problems into simpler ones. Rather
than take a top-down decomposition approach, however,
some researchers advocate working a variety of concrete
problems, growing in complexity or decreasing visible
details through “fading” (Gray, Clair et al., 2007). The
results of this study are consistent with those of Gray et al.,
adding that the novice should deploy a general framework of
understand-plan-execute-check as each concrete problem is
encountered.

Extending the scope of this study to a broader spectrum
of problem solvers, i.e., undergraduate or graduate students
in a variety of majors, would allow greater generalization of
our findings. One could also investigate the impact of
problem complexity or difficulty within a discipline. In
solving problems, the proportion of time in each problem
solving stage is variable. The relative proportion of time in
each stage impacts performance. If one could determine the
idealized proportions of each stage in problem solving,
performance could be enhanced. Additionally, an ‘idealized’
time allocation to Huber’s problem solving stages may
depend on the characteristics of the problem. This is an
important area for future research.

9. CONCLUSION

This study found that Kolb’s cycle and Huber’s problem
solving do apply to the solving of subnetting problems. It
explains why concrete problems can be more demanding and
error-prone than solving abstract problems. It shows that the
individual should be more careful when traversing the entire
cycle to maximize performance. If individuals have different
learning styles — which were not assessed in this study — we
suggest that teaching to the styles is an incomplete strategy.
One should also teach to those parts of Kolb’s cycle where
problem solvers are weak. Other research suggests that one
should both “teach to their strengths™ and “teach to their
weaknesses,” i.e., “touch all the bases™ in a learning spiral of
experiencing, reflecting, thinking and acting (Kayes, Kayes
et al., 2005; Armstrong and Mahmud, 2008). Our hunch is
the latter, that it would be better to have every problem

108

Journal of Information Systems Education, Vol. 20(1)

solver traverse the entire cycle. Also, if one becomes stuck
when solving technical problems, Kolb’s cycle serves as an
elegant reference for becoming unstuck. The Huber side of
the integrated model shows that spending proportionally
more time in Understanding, Planning and Checking
corresponds with spending proportionally less time in
Execution, which leads to greater problem-solver
performance.

10. REFERENCES

Agarwal, R., Sambamurthy, V. and Stair, R. M. (2000)
"Research Report: The Evolving Relationship between
General and Specific Computer Self-Efficacy--an
Empirical Assessment." Information Systems Research,
Vol. 11, No. 4, pp. 418-430.

Armstrong, S. J. and Mahmud, A. (2008) "Experiential
Learning and the Acquisition of Managerial Tacit
Knowledge." Academy of Management Leaming &
Education, Vol. 7, No. 2, pp. 189-208.

Bo, X. and Benbasat, I. (2007) "E-Commerce Product
Recommendation Agents: Use, Characteristics, and
Impact." MIS Quarterly, Vol. 31, No. 1, pp. 137-209.

Boer, H. and During, W. E. (2001) "Innovation, What
Innovation? A Comparison between Product, Process and
Organizational Innovation." International Journal of
Technology Management, Vol. 22, No. 1-3, pp. 83-107.

Boer, H. and Gertsen, F. (2003) "From Continuous
Improvement to Continuous Innovation: A
(Retro)(Per)Spective." International Jourmal of
Technology Management, Vol. 26 No. 8, pp. 805-827.

Bostrom, R. P., Olfman, L. and Sein, M. (1990) "The
Importance of Leamning Style in End-User Training."
MIS Quarterly, Vol. 14, No. 1, pp. 100-119.

Campbell, D. and Stanley, J. (1963) Experimental and Quasi-
Experimental Designs for Research. Chicago, IL, Rand-
McNally.

Campbell, D. T. and Stanley, J. C. (1966) Experimental and
Quasi-Experimental Designs for Research, Houghton
Miftlin College.

Carroll, J. M. and Rosson, M. B. (2005) "A Case Library for
Teaching Usability Engineering: Design Rationale,
Development, and Classroom Experience." Journal on
Educational Resources in Computing, Vol. 5, No. 1.

Charness, N. (1992) "The Impact of Chess Research on
Cognitive Science." Psychological Research, Vol 54,
No. 1, pp. 4-9.

Chase, W. G. and Simon, H. A. (1973) "The Mind's Eye in
Chess" in Visual Information Processing. W. G. Chase.
New York, Academic Press.

Chin, W. (1998) "Issues and Opinion on Structural Equation
Modeling." MIS Quarterly, Vol. 22, No. 1, pp. 7-16.

Chin, W. (2000) "Frequently Asked Questions — Partial Least

Squares & PLS-Graph Home Page." Retrieved
04/12/2002, from http://disc-

nt.cba.uh.edu/chin/plsfag/plstaq.htm.

Chin, W. W. (1997, October 18, 1997) "Overview of the PLS
Method." from http://disc-
nt.cba.uh.edu/chin/PLSINTRO.HTM.

Chin, W. W., Marcolin, B. L. and Newsted, P. R. (2003) "A
Partial Least Squares Latent Variable Modeling

Approach for Measuring Interaction Effects: Results
from a Monte Carlo Simulation Study and an Electronic-
Mail Emotion/Adoption Study." Information Systems
Research, Vol. 14, No. 2, pp. 189-217.

Chin, W. W. and Newsted, P. R. (1998) "Structural Equation
Modeling Analysis with Small Samples Using Partial
Least Squares" in Statistical Strategies for Small-Sample
Research. R. H. Hoyle. Thousand Oaks, CA, Sage
Publications, Inc.

Christensen, C. R., Garvin, D. A. and Sweet, A. (1992)
Education for Judgment: The Artistry of Discussion
Leadership. Cambridge, MA, Harvard Business School
Press Books.

Cigas, J. (2003) "An Introductory Course in Network
Administration." ACM SIGCSE Bulletin, Vol. 35, No. 1,
pp. 113 -116.

Cook, G. J. and Swain, M. R. (1993) "A Computerized
Approach to Decision-Process Tracing for Decision-
Support System-Design." Decision Sciences, Vol 24,
No. 5, pp. 931-952.

Corbesero, S. G. (2003) "Teaching System and Network
Administration in a Small College Environment." Journal
of Computing Sciences in Colleges, Vol. 19, No. 2, pp.
155-163.

Cornwell, J. M. and Manfredo, P. A. (1994) "Kolb Learning
Style Theory Revisited." Educational and Psychological
Measurement, Vol. 54, No. 2, pp. 317-327.

Covey, J. A. and Lovie, A. D. (1998) "Information Selection
and Utilization in Hypothesis Testing: A Comparison of
Process-Tracing and Structural Analysis Techniques."
Organizational Behavior & Human Decision Processes,
Vol. 75, No. 1, pp. 56-74.

Davis, F. D. (1989) "Perceived Usefulness, Perceived Ease
of Use, and User Acceptance of Information
Technology." MIS Quarterly, Vol. 13, No. 3, pp. 319-
340.

Davis, F. D. and Yi, M. Y. (2004) "Improving Computer
Skill Training: Behavior Modeling, Symbolic Mental
Rehearsal, and the Role of Knowledge Structures."
Journal of Applied Psychology, Vol. 89, No. 3, pp. 509-
523.

de Ciantis, S. M. and Kirton, M. J. (1996) "A Psychometric
Reexamination of Kolb's Experiential Learning Cycle
Construct: A Separation of Level, Style, and Process."
Educational and Psychological Measurement, Vol. 56,
No. 5, pp. 809-820.

Fatt, J. P. T. (1993) "Learning Styles in Training: Teaching
Learners the Way They Leamn." Industrial & Commercial
Training, Vol. 25, No. 9, pp. 17-23.

Fitzgerald, S., Simon, B. and Thomas, L. (2005) "Strategies
That Students Use to Trace Code: An Analysis Based in
Grounded Theory," International Computing Education
Research Workshop, Seattle, WA, ACM.

Fitzpatrick, J. M., While, A. E. and Roberts, J. D. (1992)
"The Role of the Nurse in High-Quality Patient-Care - a
Review of the Literature." Journal of Advanced Nursing,
Vol. 17, No. 10, pp. 1210-1219.

Foos, P. W. (1992) "Test Performance as a Function of
Expected Form and Difficulty." Joumnal of Experimental
Education, Vol. 60, No. 3, pp. 205-211.

109

Journal of Information Systems Education, Vol. 20(1)

Friedman, V. J. (2002) "The Individual as Agent of
Organizational Learning." California Management
Review, Vol. 44, No. 2, pp. 70-89.

Garrido, A. and Barber, F. (2001) "Integrating Planning and
Scheduling." Applied Artificial Intelligence, Vol. 15,
No., pp. 471-491.

Gray, G. R., Hall, M. E., Miller, M. and Shasky, C. (1997)
"Training Practices in State Government Agencies."
Public Personnel Management, Vol. 26, No. 2, pp. 187-
202.

Gray, S., Clair, C. S., James, R. and Mead, J. (2007)
"Suggestions for Graduated Exposure to Programming
Concepts Using Fading Worked Examples," Third
international workshop on Computing education
research, Atlanta, Georgia, USA, ACM.

Greca, A. N., Cook, R. P. and Harmris, J. K. (2004)
"Enhancing lLearning in a Data Communication and
Networking Course with Laboratory Experiments."
Journal of Computing Sciences in Colleges, Vol. 19, No.
3,pp. 79-88

Hayes, J. and Allinson, C. W. (1996) "The Implications of
Learning Styles for Training and Development: A
Discussion of the Matching Hypothesis." British Journal
of Management, Vol. 7, No. 1, pp. 63-73.

Huber, G. P. (1980) Managerial Decision Making, Scott
Foresman & Co.

Hulland, J. (1999) "Use of Partial Least Squares (Pls) in
Strategic Management Research: A Review of Four
Recent Studies." Strategic Management Journal, Vol. 20,
No. 2, pp. 195-204.

Hung, S.-Y. (2003) "Expert Versus Novice Use of the
Executive Support Systems: An Empirical Study."
Information & Management, Vol. 40, No. 3, pp. 177.

Kamis, A. and Topi, H. (2007) "Network Subnetting: An
Instance of Technical Problem Solving in Kolb's
Experiential Learning Cycle," Hawaii International
Conference on System Sciences, Big Island, HI.

Kayes, A. B., Kayes, D. C. and Kolb, D. A. (2005)
"Experiential Learning in Teams." Simulation &
Gaming, Vol. 36, No. 3, pp. 330-354.

Kayes, D. C. (2005) "Internal Validity and Reliability of
Kolb’s Leaming Style Inventory Version 3 (1999)."
Journal of Business & Psychology, Vol. 20, No. 2.

Kolb, D. A. (1976) "Management and the Learning Process."
California Management Review, Vol. 18, No. 3, pp. 21-
31.

LeRouge, C., Garfield, M. and Kamis, A. (2005) "Effective
Champion Networks in Interorganizational Telemedicine
Programs," American Telemedicine Association, Denver,
Colorado.

Lim, K. H, Ward, L. M. and Benbasat, I. (1997) "An
Empirical Study of Computer System Learning:
Comparison of Co-Discovery and Self-Discovery
Methods." Information Systems Research, Vol. 8, No. 3,
pp. 254-272.

Lohse, G. L. and Johnson, E. J. (1996) "A Comparison of
Two Process Tracing Methods for Choice Tasks."
Organizational Behavior & Human Decision Processes,
Vol. 68, No. 1, pp. 28-43.

Mao, J.-Y. and Benbasat, I. (1998) "Contextualized Access
to Knowledge: Theoretical Perspectives and a Process-

Tracing Study." Information Systems Journal, Vol. 8, No.
3, pp. 217-239.

Mao, J.-Y. and Benbasat, I. (2000) "The Use of Explanations
in Knowledge-Based Systems: Cognitive Perspective and
a Process-Tracing Analysis." Journal of Management
Information Systems, Vol. 17, No. 2, pp. 153-179.

Mayer, R. E. (1981) "The Psychology of How Novices Learn
Computer Programming." ACM Computing Surveys,
Vol. 13, No. 1, pp. 121-141.

Moores, T. T., Change, J. C.-J. and Smith, D. K. (2004)
"Learning Style and Performance: A Field Study of Is
Students in an Analysis and Design Course." Journal of
Computer Information Systems, Vol. 45, No. 1, pp. 77-
83.

Newell, A. and Simon, H. A. (1972) Human Problem
Solving. Englewood Cliffs, NJ, Prentice Hall.

Patrick, J., Gregov, A., Halliday, P., Handley, J. and
OReilly, S. (1999) "Analysing Operators' Diagnostic
Reasoning During Multiple Events." Ergonomics, Vol.
42, No. 3, pp. 493-515.

Patrick, J. and James, N. (2004) "Process Tracing of
Complex Cognitive Work Tasks." Journal of
Occupational and Organizational Psychology, Vol. 77,
No. 2, pp. 259-280.

Reeves, L. M. and Weisberg, R. W. (1993a) "Abstract
Versus Concrete Information as the Basis for Transfer in
Problem Solving: Comment on Fong and Nisbett
(1991)." Journal of Experimental Psychology, Vol. 122,
No. 1, pp. 125-128.

Reeves, L. M. and Weisberg, R. W. (1993b) "On the
Concrete Nature of Human Thinking: Content and
Context in Analogical Transfer." Educational
Psychology, Vol. 13, No. 3/4, pp. 245-258.

Reeves, L. M. and Weisberg, R. W. (1994) "The Role of
Content and Abstract Information in Analogical
Transfer." Psychological Bulletin, Vol. 115, No. 3, pp.
381-400.

Ross, B. H. and Kennedy, P. T. (1990) "Generalizing from
the Use of Earlier Examples in Problem Solving."
Journal of Experimental Psychology: Learning, Memory,
And Cognition, Vol. 16, No. 1, pp. 42-55.

Roussev, B. and Rousseva, Y. (2004) "Active Learning
through Modeling: Introduction to Software
Development in the Business Curriculum." Decision
Sciences Journal of Innovative Education, Vol. 2, No. 2,
pp. 121-152.

Sadoski, M., Goetz, E. T. and Fritz, J. B. (1993) "Impact of
Concreteness on Comprehensibility, Interest, and
Memory for Text - Implications for Dual Coding Theory
and Text Design." Journal of Educational Psychology,
Vol. 85, No. 2, pp. 291-304.

Santhanam, R. and Sein, M. K. (1994) "Improving End-User
Proficiency: Effects of Conceptual Training and Nature
of Interaction." Information Systems Research, Vol. 5,
No. 4, pp. 378-399.

Shaft, T. M. (1997) "Responses to Comprehension Questions
and Verbal Protocols as Measures of Computer Program
Comprehension Processes." Behaviour and Information
Technology, Vol. 16, No. 6, pp. 320-336.

Simon, H. (1976) Administrative Behavior. New York, The
Free Press.

110

Journal of Information Systems Education, Vol. 20(1)

Simon, H. A. (1972) "Theories of Bounded Rationality" in
Decision and Organisation. Radner.

Simon, H. A. (1977) The New Science of Management
Decision. Upper Saddle River, NJ, Prentice Hall PTR.
Simon, H. A. (1982) Models of Bounded Rationality, MIT

Press.

Srinivasan, A. and Te'eni, D. (1995) "Modeling as
Constrained Problem Solving: An Empirical Study of the
Data Modeling Process." Management Science, Vol. 41,
No. 3, pp. 419-435.

Steyvers, M., Tenenbaum, J. B., Wagenmakers, E.-J. and
Blum, B. (2003) "Inferring Causal Networks from
Observations and Interventions." Cognitive Science, Vol.
27, No. 3, pp. 453-489.

Tenopir, C., Wang, P., Zhang, Y., Simmons, B. and Pollard,
R. (2008) "Academic Users’ Interactions with
Sciencedirect in Search Tasks: Affective and Cognitive
Behaviors." Information Processing & Management, Vol.
44, No. 1, pp. 105-121.

Todd, P. and Benbasat, I. (1992) "The Use of Information in
Decision Making: An Experimental Investigation of the
Impact of Computer-Based Decision Aids." MIS
Quarterly, Vol. 16, No. 3, pp. 373-393.

Todd, P. and Benbasat, 1. (1993) "An Experimental
Investigation of the Relationship between Decision
Makers, Decision Aids and Decision Making Effort."
INFOR, Vol. 31, No. 2, pp. 80-100.

Vainio, V. and Sajaniemi, J. (2007) "Factors in Novice
Programmers' Poor Tracing Skills," Proceedings of the
12th annual SIGCSE conference on Innovation and
technology in computer science education, Dundee,
Scotland ACM.

Van Gog, T., Paas, F., Van Merriémboer, J. G. and Witte, P.
(2005) "Uncovering the Problem-Solving Process: Cued
Retrospective Reporting Versus Concurrent and
Retrospective Reporting." Journal of Experimental
Psychology / Applied, Vol. 11, No. 4, pp. 237-244.

Whittington, K. J. (2004) "Infusing Active Learning into
Introductory Programming Courses." Journal of
Computing Sciences in Colleges, Vol. 19, No. 5, pp. 249-
259

Wu, C.-C., Dale, N. B. and Bethel, L. J. (1998) "Conceptual
Models and Cognitive Learning Styles in Teaching
Recursion." ACM SIGCSE Bulletin, Vol. 30, No. 1, pp.
292-296.

Yi, M. Y. and Davis, F. D. (2001) "Improving Computer
Training Effectiveness for Decision Technologies:
Behavior Modeling and Retention Enhancement."
Decision Sciences, Vol. 32, No. 3, pp. 521-544.

Yi, M. Y. and Davis, F. D. (2003) "Developing and
Validating an Observational Leamning Model of

Computer Software Training and Skill Acquisition."
Information Systems Research, Vol. 14, No. 2, pp. 146-
169.

Zanga, A., Richard, J.-F. and Tijus, C. (2004) "Implicit
Learning in Rule Induction and Problem Solving."
Thinking & Reasoning, Vol. 10, No. 1, pp. 55-83.

AUTHOR BIOGRAPHIES

Arnold Kamis is an Associate Professor in Information
Systems and Operations Management
at Suffolk University, Boston,
Massachusetts. He received his Ph.D.
in Information Systems from the
Stern School of Business of New
York University and his B.S. in
Applied Mathematics (Computer
Science) from Carmegie Mellon
University. Amold’s research interests are in electronic
commerce, decision support technologies, and human-
computer interaction. His publications appear in MIS
Quarterly, International Jouwrnal of Cases on Electronic
Commerce, The American Statistician, Information &
Management, International Journal of Electronic Commerce,
Communications of the ACM, Communications of the
Association for Information Systems, The Database for
Advances in Information Systems, Information Systems
Frontiers and e-Service Journal. Amold serves as a chair for
the HICSS Minitrack on Electronic Marketing and is the
Web Site Editor for the Journal of Management Information
Systems.

Beverly K. Kahn is an Associate Professor and chair of the
Information Systems and Operations
Management Department at the Sawyer
Business School of Suffolk University
in Boston, Massachusetts. She graduated
from the University of Michigan with a
PhD. and M.S. in Industrial and
Operations Engineering and a B.A. in
both Mathematics and Computer
Science. Dr. Kahn’s research
concentrates on information quality, data warehouses,
database design, and case studies. Her publications have
appeared in leading journals such as MIS Quarterly, Journal
of Management Information Systems, Communications of the
ACM, and The Database for Advances in Information
Systems. Beverly is affiliated with the MIT program on
information quality.

111

Journal of Information Systems Education, Vol. 20(1)

Appendix A: sample Concrete and Abstract Problems

Concrete Problem (similar difficulty to Abstract Problem below)

192.168.10.32/27 192.168.1.2/24 172.16.77.152120
Customer A ﬁWidgets, Inc. Customer B
192.168.10.62/27 192.168.1.1/24 172.16.81.72120
(I (T (11 [T (T [T [T (I (111
New York 10.0.0.1130 10.0.0.2/30 Chicago 10.0.0.6/30 10.0.0.8/30 Boston 10.0.0.13329 10.0.0.13420 Hartford

Customer A has complained that they have not been able to access the Internet since their connection was installed. After
some brief troubleshooting, support determined that they were unable to connect to the New York router. Why can't customer
A connect to the New York router, and what would you recommend to fix the problem?

Abstract Problem (similar difficulty to Concrete Problem above)

Assume you are evaluating two different situations. In one, you have been assigned the network 172.16.0.0/16 and in the
other, you have been assigned the network 10.0.0.0/20. In the first case, you are evaluating two [P addresses, 172.16.13.10/20
and 172.16.17.85/20, and in the second case another two, 10.0.0.89/30 and 10.0.0.90/30. You suspect that in one of these cases
addresses are not within the same subnet. Is this true and if yes, why?

Appendix B: Keypad

112

ISCCID Evsic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2009 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

	V20N1P099-abs
	2009 JISE Issue 27(2) Inside Front Cover

