Effects of a Case-Based Reasoning System on Student Performance in a Java Programming Cour se
Schmidt, Cecil

Journal of Information Systems Education; Winter 2007; 18, 4; Research Library

pg. 437

Journal of Information Systems Education, Vol. 18(4)

Effects of a Case-Based Reasoning System on Student
Performance in a Java Programming Course

Cecil Schmidt
Computer Information Sciences
Washburn University
Topeka, Kansas 66621, USA

cecil.schmidt@washburn.edu

ABSTRACT

The purpose of this study was to determine if a case-based reasoning tool would improve a student’s understanding of the
complex concepts in a Java programming course. Subjects for the study were randomly assigned from two sections of an
introductory Java programming course. Posttests were used to measure the effects of the case-based reasoning tool (CBJava)
on learner competency. Results of the study using a Mann-Whitney U test indicated a significant difference between the group
who used CBJava on complex questions and the group who did not (m rank = 11.50; U = 3.500, p < .05, M = 22.71 vs. M =
17.88). No significant difference was indicated between the groups on simple questions. Recommendations from this study
include supporting complex content through examples, providing a case-based instructional aid for complex topics, and
extending CBJava’s framework to support other courses and disciplines.

Keywords: Distance Education, Java, Case-based Reasoning

1. INTRODUCTION

1.1 Background

Java, an object-oriented programming language typically
used as the language of choice in a first programming class
(CS1), is complex and difficult for students to learn. Raab,
Rasala, and Proulx (2000) suggest that the cross-platform
capabilities of Java and the robust graphical user interface
(GUI) components provide a great argument for using Java
to teach programming, however the complexity of building a
complicated GUI in a CS1 course is problematic. Raab et al.
suggest using a toolkit of pre-developed classes that can be
used as the framework for beginners to build from to reduce
this complexity. Similarly Kolling (1999) reported that
educators found the lack of an adequate Integrated
Development Environment (IDE) that could be used as a
learning aid was a major problem in teaching Java. BlueJ
was developed to address these needs (Kolling, Quig, and
Patterson, 2003; Kolling 2004). Another major difficulty
with teaching Java is that difficult concepts must be
addressed at an early stage (Biddle and Tempero, 1998).
Even the writing of a simple one-line program in Java
requires the introduction of complex concepts such as
inheritance, static methods, or exceptions. The complexity
(breadth of the language) and instability (changes and
additions to the language) of teaching an introductory
computer science programming course is also documented
by Roberts (2004). The essential complexities of Java
include encapsulation, inheritance, polymorphism, reuse,
etc., whereas the unmecessary complexities include the

magnitude of the Java 2 class libraries (some 50,000 library
functions) and the rapid obsolescence of libraries and tools
that are available for Java. Unnecessary complexities are also
illustrated by the differences in the size of the textbooks that
are now used to teach Java. One of the more popular books
(Deitel and Deitel, 2003) has 1536 pages of text whereas the
classic Pascal User Manual and Report (Jensen and Wirth,
1991) that was used to teach Pascal had about 226 pages.

1.2 Scaffolding Student Understanding with CBR

Case-based reasoning (CBR) is a learning model (Schank,
1982; Kolodner, 1993) and problem solving paradigm
(Aamodt and Plaza, 1994; Leake, 1996; Mitchell, 1997) that
incorporates problem solving, understanding, and learning
and integrating them with memory processes. CBR is a
constructivist learning theory which suggests knowledge
building (Bruner, 1996) from our previous experiences
through access to prior cases for both reuse and adaptation.
Both new and adapted cases can be stored for future use,
thus the leamning occurs as a natural consequence of
reasoning. Finally, CBR, in the context of a leaming theory,
is also tightly integrated as part of another constructivist
learning theory referred to as the Cognitive Flexibility
Theory (Spiro, Coulson, Feltovich, & Anderson, 1988;
Spiro, Feltovich, Jacobson, & Coulson, 1992; Spiro and
Jacobson, 1995). The Cognitive Flexibility Theory (CFT)
suggests that advanced learning in ill-structured [complex]
domains must be supported through alternative cases and
multiple, crisscrossing paths through a set of knowledge

437

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(4)

content. CFT suggests that the complexity of these types of
domains cannot simply be understood in a single pass.

Providing the student with a tool for learning Java that is
guided by the CBR constructivist leamning model should
provide the scaffolding to support the learning of the difficult
concepts encountered with the Java programming language.
Examples can be used to demonstrate cohesion between the
concepts and features of the language and real-life problems.
Students will learn by example as well as adapt new
examples. One approach to providing this type of system is
through a web-based hypertext learning environment where
the leaner is provided with concrete examples, i.e. actual
cases, rather than abstract rules, explicitly integrating
memory, learning, and reasoning, i.e. a CBR-grounded
learning environment (Kolodner and Guzdial, 2000).
Experience is provided by means of a case library that has
cause, effect, and lessons learned components. Learners may
access these cases through multiple indexes that crisscross
the content as prescribed by the CFT. Incorporating an
appropriate set of indexes over these experiences provides
the learner with alternative views into the same sets of cases.
Content should be organized in way that a “leamer sees a
range of conceptual applications close together, so that
conceptual variability can be easily examined" (Spiro et al.,
1992, p. 68).

1.3 Purpose
I now report on a study of the effects of a case-based
reasoning system as a support for leaming the complex
concepts in an object-oriented programming course. The
primary purpose of this study was to determine if a CBR-
grounded tool will improve a student’s understanding of the
more difficult concepts in an object-oriented programming
course. At the time of this study there was no public record
of this particular research.
Below is a list of the research questions that were
addressed by this study. The categorization of simple and
complex questions is addressed in the methods section of this
Ppaper.
1. Is there a statistically significant difference in the
performance on simple questions between the Case-
Based Reasoning Assisted (CBA) group and the
Lecture Notes Only (LNO) group?

2. Is there a statistically significant difference in the
performance on complex questions between the
CBA group and the LNO group?

2. METHOD

2.1 Participants

Two sections of the Object-Oriented Programming 1 (OOP-
1) course in Spring 2005 were used to represent the sample.
Only two sections were used because there were only two
sections of OOP-1 offered at the study site. OOP-1 was an
introductory course in Java which emphasized object-
oriented programming and design. It was the second required
programming course in both the Bachelor of Science degree
in Computer Information Systems and the Bachelor of Arts
degree in Computer Information Science at an NCAA,
Division II university located in the Midwest region of the
United States. Division IT universities tend to be smaller

public or private universities and this particular university
has an approximate average enrollment of 7800 students.
Students typically take this course during the second
semester of their freshman year.

Of the two OOP-1 sections, one was face-to-face and the
other was an online distance-education course. The face-to-
face section normally met two days per week in a lecture
setting. The online section was handled in an asynchronous
manner where the students attended the class virtually by
accessing the course content through WebCT
(www.webct.com). Students in both sections had the same
deadlines for both programming labs and tests. During the
period of the research all students were attending the course
as if they were in the online section. The experiment began
in the seventh week of class and ran for three weeks.

Twenty-one students were initially enrolled in the two
sections of Object-Oriented Programming 1. Of these, 11
students were enrolled in the online section and 10 students
were enrolled in the face-to-face section. Prior to the
beginning of the study, five students dropped the course. Of
the remaining 16 students, all signed the consent form
agreeing to participate in the study. These 16 students were
randomly assigned to one of two treatment groups: Group 1
or Group 2. Before the completion of the experiment one
student from Group 1 was dropped from the study because of
the student failed to take both posttests.

All students received credit for using the CBJava tool
(see section 2.2.2 for description of CBJava) as an incentive
however this score was not factored into the study. To
receive credit the student was required to create a content
arca example and post it to CBJava. All postings were
anonymous to the other students but could be traced backed
to the student by the researcher. Before receiving the CBA
(CBJava assisted) treatment, students were provided with a
training area within CBJava that was not part of the study.
The training area set up for the students was composed of the
decisions content area. Students were required to sign on to
the CBJava site and post an example to the training area.
This training occurred two weeks prior to the actual study.
All students took part in this training.

2.2 Materials

2.2.1 Posttests: Two posttests, Posttest 1 and Posttest 2,
were given immediately following the treatment conditions.
Each test contained a set of questions covering the content
areas addressed during the respective period in the study.
These questions were categorized according to Bloom’s
taxonomy of learning objectives (Bloom and Krathwohl,
1956). Two categories of questions were created, simple
questions and complex questions. Simple questions were
those questions which measured the learning objectives of
knowledge, comprehension, and application. The complex
questions were those questions which measured the learning
objectives of analysis, synthesis, and evaluation. A set of
candidate questions for each of the two tests was generated
by the researcher who pulled candidate questions from the
normal assessment tests given in previous semesters. These
candidate questions were then provided to two other faculty
members who had previous experience in teaching a Java
programming course. Each of these faculty members as well
as the researcher classified the questions as either simple or

438

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(4)

complex. Questions were then classified by majority vote.
Additionally, questions which were unclear were either
clarified or dropped as candidate questions. A breakdown of
the questions by format and their categorization as either
simple or complex is provided in Table 1.

Question Format Number Category Points
True/False 11 Simple 11
True/False 1 Complex 1
Multiple Choice 7 Simple 14
Short Answer 6 Complex 24

Table 1. Categorization of Questions by Format

Both posttests had an identical format and ordering of
questions. A sub score for each question type (category) was
generated based on the total points scored on the related
assessment questions.

Finally, although the short answer questions had a
greater point value per question, partial credit was given for
partially correct answers. In order to ensure consistency in
grading, a list of reasons for the partial credit along with the
amount of partial credit awarded was maintained and used as
a guide for awarding points.

2.2.2 CBJava: CBJava is a CBR-grounded hypertext system
that was developed to be used as an instructional content aid
for students who are learning Java (Schmidt, 2004, 2006).
The design of this system is similar to the hyperbook design
used in the Engines for Education web site authored by
Schank and Cleary (1995). In particular the foundational
architecture of CBJava was its question and answer interface
implemented in hypertext that was available on the World
Wide Web. In addition to being a hyperbook, this site
provided students the ability to add their own examples. As
these examples were added, an expert (in this case the
researcher) rated the examples based upon quality and
context. In this way a case-base of validated examples were
made available to other students for further learning and
research.

CBJava’s primary knowledge acquisition process
involved the submission of new Java examples by the
student and expert review and validation performed by the
instructor (the researcher). Indexing of the example was
performed by the student through a Web interface. During
the study only one of the content areas within CBJava was
open at a time. Thus the indexing of the example was limited
to that particular content area. For example those students
who were given the CBA treatment during the first period of
the study could only index their examples under object
design. Those students had no access to the inheritance
content area. During the second period of the study those
students who were given the CBA treatment could only
index their examples under inheritance. Again, those
students had no access to the object design content area.

At the time the example was submitted the example had
a note stating that it has not been validated. On a daily basis
the instructor reviewed the submissions and either accepted

the submission or revised it. In the revision cycle, the
instructor identified the improvements and classified the
original example. Both the before (as submitted) and the
after (post review) versions were retained.

2.3 Procedure

2.3.1 Research Design: This study involved characterizing
the sample based on learner competency assessment
questions categorized according to Bloom’s taxonomy of
learning objectives (Bloom and Krathwohl, 1956).
Independent variable 4 was defined as instructional support
(case-based hypertext learning tool versus lecture notes only)
and independent variable B was defined as the question type
(simple assessment questions that measure the lower levels
of learner competency and complex assessment questions
that measure the higher levels of leamer competency). The
experimental design is shown in Figure 1. In the
experimental design depicted in Figure 1 Group 1 and Group
2 refer to the groups of students randomly selected from two
sections of Object-Oriented Programming 1. Object Design
and Inheritance are the two content areas that had
instructional support. The treatments X(CBA) and X(LNO)
refer to the case-based hypertext learning tool support and
the lecture notes only support. Posttest 1 and Posttest 2 refer
to the two posttests that were given. The instruments used to
collect the data for analysis were known up front and, for the
most part, had been validated in prior research.

Object Posttest | Inheritance | Posttest
Design 1 2
Group | X(CBA) o X(LNO) 0
1
Group | X(LNO) o X(CBA) (o]
2

Figure 1. Experimental Design depicting Groups,
Treatments, and Observations

2.3.2 Treatment: Lecture content to members of both
treatment groups 1 and 2 was provided in the form of
hypertext videos that were administered through WebCT.
The recordings were developed using sofTV
(www.sof TV.net). Each of these recordings was placed into
WebCT and integrated through a hypertext document. Both
groups also shared an online space in WebCT. All lecture-
notes, online discussions, and homework assignments were
also provided and administered through WebCT to both
groups. Email was handled externally using the study sites’
email system.

Two complex and ill-structured content areas had
additional instructional support through a case-based
reasoning tool called CBJava (Schmidt, 2004). These content
areas were object design and inheritance. During the
coverage of object design, Group 1 was required to use the
CBlJava tool, that is, the CBA treatment. Group 2 received no
assistance from CBJava during this period, that is, the LNO
(lecture notes only) treatment. After completing the coverage
of object design, Posttest 1 was given to both groups. The
duration for this part of the experiment was one and one half
weeks, culminating with the Posttest 1.

439

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(4)

Group 1 Group 2 Total
Question Type x
Content Area Mean N SD Mean N SD Mean N SD
Simple
Obj. Des. 22.00 7 2.449 19.63 4.340 20.73 15 3.674
Inheritance 20.71 2.289 18.00 8 2976 19.27 15 2.939
Complex
Obj. Des. 2.7 7 1.890 17.88 3.563 20.13 15 3.758
Inheritance 20.57 7 3.505 15.63 8 3.852 17.93 15 4.383
Total
Obj. Des. 4.n 7 3.450 37.50 8 5682 40.87 15 5.927
Inheritance 41.29 7 5.282 33.63 8 5476 37.20 15 6.527

Table 2. Descriptive Statistics for Test Scores for Question Type by Content Area by Group

Inheritance was covered immediately following the unit
on object design. During the coverage of inheritance, Group
2 was required to use the CBJava tool, that is, the CBA
treatment. Group 1 received no assistance from CBJlava
during that period, that is, the LNO treatment. After
completing the coverage of inheritance, Posttest 2 was given
to both groups. The duration for this part of the experiment
was one and one half weeks culminating with the Posttest 2.

Both posttests were administered on the study
sites’ campus. Additionally these tests were proctored by a
faculty member at the study site who was not the researcher.
This faculty member coded both the tests and the surveys in
order to protect anonymity during the study. Both posttests
were scored by the researcher before they were matched
back to the student in order to minimize bias.

2.4 Limitations of the Study

It was the goal of this study to do a quantitative analysis with
as much statistical rigor as possible. The subjects used for
this study were randomly assigned to one of two groups.
However, the pool of subjects was limited to those students
who had enrolled in Object-Oriented Programming 1 at an
NCAA, Division II university located in the Midwest region
of the United States. Therefore, it is more difficult to
generalize this study to a much broader population, and that
limits its external validity.

The ordering of the two types of instructional support is
also a limitation of the study. The case-based hypertext tool
was not used as an instructional aid until midway through the
course. It could be argued that by that time the students do
not require any additional support. They may have leamed
how to use the existing resources to support their learning,
Thus, there may be no significant difference between the
performance of the students with or without the case-based
hypertext tool as an instructional aid. However, it is only at
about the midpoint of the course where the concepts become
more complex and ill-structured. So, introducing the case-
based hypertext tool at that time was appropriate. Other
sequencing situations arise as well, but because of the
number of groups, the limitations of the sample sizes, and
the ethical requirement to provide all students the same aids,
this was the best that could be done.

Other extraneous variables may have affected the
outcome of the study. In particular it was difficult to
determine how much of the content within the case-based
hypertext tool was actually read by each student. The only
guarantee that a student accessed the tool was that they
submitted the example. However, there was incentive for
them to read the content in that it aided them in creating an
example (which was required), and it helped them prepare
for the graded posttest, therefore the impact to the results of
the study were minimal. Finally, not all of the students
submitted examples in a timely basis. In order to ensure that
all of the subjects submitted an example, several directed
emails were sent. No special coaching on creating the
example occurred, therefore impact to the resuits of the study
were also minimal.

Some of the limitations to the external validity were
eliminated by limiting the differences in the treatment groups
to one particular variable which was the type of instructional
support. For the duration of the study the transmission of the
course to all subjects was the same, that is, the transmission
was online. One can argue that the viewing of a digital video
of the lecture can be done anytime and as such is another
variable in the experiment. However, for the purposes of this
study the time and space dependencies were subsumed in the
instructional mode.

3. RESULTS

3.1 Effects of CBJava

In order to answer the research questions, two types of non-
parametric tests were performed on the sample as prescribed
in the experimental design. A third test, a parametric test,
was performed on the sample in order to better understand
the results of the first two tests.

Descriptive statistics including means and standard
deviations for each content area (Object Design and
Inheritance) separated by question type (Simple and
Complex) for each group (Group 1 and Group 2) are
provided in Table 2. Notice that the mean scores on the
posttests (Posttest 1 covered Object Design and Posttest 2
covered Inheritance) for Group 1 are consistently higher than
those in Group 2. A higher mean score represents a better

440

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(4)

Group 1 Group 2 Total
Question Type x
Treatment Mean N SD Mean N SD Mean N SD
Simple
CBA 22.00 7 2.449 18.00 8 2976 19.87 15 3.357
LNO 20.71 7 2.289 19.63 8 4340 20.13 15 3.461
Complex
CBA 22.71 7 1.890 15.63 8 33852 18.93 15 4,728
LNO 20.57 7 3.505 17.88 8 3.563 19.13 15 3.681
Total
CBA 44.714 7 3.450 33.625 8 5476 38.800 15 7272
LNO 41.286 7 5.283 37.500 8§ 5682 39.267 15 5.650

Table 3. Descriptive Statistics for Test Scores for Question Type by Treatment by Group

performance on the posttest. The mean scores are the average
number of total points for the group out of a maximum of 25
points for each part of the posttest (i.e., each posttest
contained complex questions and simple questions each
worth 25 points). Neither group did as well on the posttest
covering inheritance (Posttest 2) as they did on Posttestl.

Descriptive statistics including means and standard
deviations for each level of instructional support treatment
(CBA and LNO) separated by question type (Simple and
Complex) for each group (Group 1 and Group 2) are
provided in Table 3. Notice that the mean scores for Group 1
were consistently higher than Group 2 regardless of
instructional support treatment.

The first non-parametric test performed was a Wilcoxon
Signed Ranks test at each level of instructional support
(CBA and LNO) at p < .05 level of significance. This test
was performed for each question type (Simple and
Complex). Matched pairs were created by matching the test
scores of the same student across the two content areas
(Object Design and Inheritance). The change in score was
calculated by subtracting the student’s score obtained with
CBA instructional support from the student’s score with
LNO instructional support. A negative change meant that the
student performed better with CBA support versus LNO
support.

The results indicate no significant differences in the
student test scores for either complex questions (Z = 0.000, p
> .05), simple questions (Z = -0.106, p > .05), or the total set
of questions (Z = -0.378, p > .05). Specifically the Wilcoxon
test result (Z = 0.000) for Complex LNO — Complex CBA
indicates that on the complex questions there were just as
many students who performed better with lecture notes only
(i.e., the LNO treatment) as those who performed better with
the CBJava as an instructional support tool (i.e., the CBA
treatment). This finding conflicts with the expectation that
the CBA treatment should enable a student to perform better
on complex questions than with the LNO treatment. One
possibility for this finding was that that there may be a
carryover effect for those students who received the CBA
treatment in period 1 (during the coverage of Object Design)
of the study. That is, the CBA treatment may have helped
them sufficiently that they performed better than expected on

the second assignment for which they did not have the tool
available.

The carryover effect question (i.e., was there a carryover
effect of the treatment) was answered once for each set of
questions (i.e., Complex and Simple). The 2 x 2 mixed-
design ANOVA was used because there is not an alternative
non-parametric design that can test for carryover effects. In
the mixed design ANOVA used in this study, the repeated
measures variable was treatment (i.e., the ordering of
treatments), and the independent variable was posttests.

The effects of the group are essentially the same as a
sequence effect because of the ordering of the treatment.
Recall that Group 1 was the group of subjects who received
the CBA treatment in period 1 (Object Design) and the LNO
treatment in period 2 (Inheritance). Group 2 was the group of
subjects who received the CBA treatment in period 2
(Inheritance). There was no significant effect indicated by
the posttest scores by students on complex questions for the
Group x Treatment interaction (F(1,13) = 4.452, p > .05).
The main effect for treatment on students’ posttest scores on
complex questions was also not significant (F(1,13) = 0.003,
p > .05). The main effect for treatment finding is a similar
result to the findings of the Wilcoxon Signed Ranks test (i.e.,
both the non-parametric test and the parametric test came to
similar conclusion that there were no treatment effects).
However there was a significant effect (i.e., a carryover
effect) of treatment on Group 1 for complex questions
(F(1,13) = 12.718, p < .01). These results indicate that there
was a significant carryover effect of Treatment on students
as indicated by test scores on complex questions from
posttest 1 to posttest 2 for those students who received the
CBA treatment in the first period. Students in Group 1 had a
similar drop in mean scores (2.14 points) between posttest 1
and posttest 2 on complex questions as did Group 2 (2.25
points) even though it was Group 2 (not Group 1) who
received the CBA treatment for the content area (object
design) covered by posttest 2 (see Table 2).

There was no significant effect indicated by the posttest
scores by students in Group 1 on simple questions for the
Group x Treatment interaction (F(1,13) = 3.28, p > .05). The
main effect for Treatment on simple questions was also not
significant (F(1,13) = 0.045, p > .05). The main effect for

441

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(4)

this treatment finding as indicated by posttest scores on
simple questions is a similar result to the findings of the
Wilcoxon Signed Ranks test (i.e., both the non-parametric
test and the parametric test came to similar conclusion that
there were no treatment effects on students as indicated by
posttest scores on simple questions). Finally there was no
significant effect on simple questions for Group (F(1,13) =
3.16, p > .05). These results indicate that there was no
significant carryover effect on simple questions for those
students who received the CBA treatment in the first period.

The third test performed was a Mann-Whitney U test. A
Mann-Whitney U test was used to compare two independent
samples (Group 1 and Group 2) because of the small sample
size (Huck, 2004, p. 496). Because the results of the 2 x 2
mixed-design ANOVA test indicated that there was a
significant carryover effect of Treatment on students as
indicated by test scores on complex questions, this third test
was performed for period one only (during which the Object
Design content area was covered). That is, the carryover
effects confound the Mann-Whitney U test for period two
(during which the Inheritance content area was covered),
therefore it was not performed for period two.

The Mann-Whitney U test was calculated examining the
treatment effects (CBA versus LNO) on students as indicated
by test scores on the various types of test question (Complex
and Simple) in period one (Object Design). Primarily this
test was utilized to further test the treatment effects on
complex questions because this is where the carryover effect
occurred; however, for completeness, both simple and the
combined set (Simple and Complex) of questions were tested
as well.

Students in Group 1 (those who received the CBA
treatment first) performed significantly better on the complex
questions (m rank = 11.50; U= 3.500, p < .05, M =22.71 vs.
M = 17.88) than those students in Group 2 (those who
received the LNO treatment first). These same students
(Group 1) did no better than the students in Group 2 on
simple questions (m rank = 9.21; U = 19.500, p > .05, M =
22.00 vs. M = 19.63). However the students in Group 1 did
perform significantly better on the total set of test questions
(m rank = 11.29; U= 5.000, p < .01, M = 4471 vs. M =
37.50). The results of the Mann-Whitney U test indicate that
the students who were provided with the CBJava tool in the
first period of the study (i.e., the CBA treatment) performed
significantly better than those students who were only
provided with the lecture notes (i.e., the LNO treatment).

3.2 Student Background Assessment Results

A one-tailed Spearman rho correlation coefficient was
calculated for the relationship between subjects’ grade in
background coursework (CM111 and PH110) and their test
scores for each of the content areas (Object Design and
Inheritance) broken out by question type (Simple and
Complex). A Spearman rho correlation was used because
grade is an ordinal measurement. Descriptive statistics for
background coursework including means and standard
deviations for each group (Group 1 and Group 2) as well as
the combined groups are provided in Table 4. The mean
scores reported are the average letter grades of the students
based onascaleof A=4,B=3,C=2,D=1,and F=0.

Although the mean scores for students in Group 1 appear
to be better than Group 2, it is only by chance that this
occurred. The differences in mean scores does raise a
question about the significant effect of the CBA treatment on
Group 1 as indicated by scores on posttest 1 found by the
Mann-Whitney U test. However, the Mann-Whitney U test is
a ranked-based test, not a means-based test (Huck, 2004, p.
496). It is also a distribution free test (i.e., a normalized
distribution is not assumed). Thus, the question about the
results of the Mann-Whitney U test (i.e., the significant
effect of the CBA treatment on Group 1) is mitigated. Still,
the differences in student background should be considered
when analyzing the total set of results of this study.

Relevant bivariate correlations for Group 1, Group 2, and
the combined groups are provided in Table 5. Of particular
interest was the strong positive correlation found between
the background knowledge and the total test scores for both
content areas for the combined groups. This finding suggests
that students who did well on their background coursework
scored well on the posttests, and students who did poorly on
their background coursework scored poorly on the posttests.
This finding, once again, also raises the question about the
significant effect of the CBA treatment on Group 1 as
indicated by scores on posttest 1 found by the Mann-
Whitney U test. Since Group 1 students performed better in
their background coursework and because there was a strong
positive correlation found between background knowledge
and the total test scores, it could be argued that Group 1
students would have most likely performed better on the
posttest 1 than Group 2 even without the CBA treatment.
Again, this argument can be answered. Notice that for the
first period (the period tested by the Mann-Whitney U test)
there was no significant correlation found for Group 1
between Complex questions and either CM111 (p = .107) or
PH110 (p = -.095). This was also the case for Group 2 (i.e.,
for CM111, p =-.057 and from PH110, p = .463). Recall that
the Mann-Whitney U test found that students in Group 1
(who received the CBA treatment) performed significantly
better than students in Group 2 (who received the LNO
treatment) on complex questions but there were no
differences found on the simple questions. Thus, even if one
argues that Group 1 appears to have had better background
knowledge than Group 2, this difference does not appear to
have influenced the findings of the Mann-Whitney U test.

4. DISCUSSION

4.1 Effects of CBJava on Simple Questions

The first research question dealt with student performance on
simple questions with and without the use of CBJava. The
results of three separate tests, a Wilcoxon Signed Ranks test,
a 2 x 2 mixed-design ANOVA test, and a Mann-Whitney U
test, found that there was no significant difference between
the two groups on simple questions. These findings are
consistent with the research by Kozma (1994). His research
suggests that effective use of technology is one that is
grounded in the “cognitive and social processes by which
knowledge is constructed”. The simple questions that were
tested in this study were ones that fell on the lower end of
Bloom’s taxonomy of learning objectives (Bloom and
Krathwohl, 1956). Simple questions are typically ones that

442

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(4)

Group 1 Group 2 Total
Course Mean N SD Mean N SD Mean N SD
CM111 3.67 6 516 3.13 8 835 3.36 14 745
PH110 2.86 7 1.464 238 8 1.188 2.60 15 1.298
Notes. One subject did not take CM111 in Group 1.
Table 4. Descriptive Statistics of Background Coursework by Group
Object Design Inheritance

Group Course Simple Complex Total Simple Complex Total
Group 1 CM111 .853* 107 .735% 414 .335 414
PH110 .667 -.095 406 378 735* .655

Group 2 CM111 139 -.057 255 513 -.026 207
PH110 .199 463 281 .168 444 279

Combined CM111 497+ .335 542 .549* 330 519*
PH110 480+ 429 ATT* 461* 592+ 561*

*» <.05

Table 5. Bivariate Correlations between Background Courses and the Posttest Scores for each Content Area for Group

do not require a lot of deep thought. Quite often the content
covered in a face-to-face lecture does not even address these
types of questions. Most instructors would make the
assumption that a college student should be able to gain the
necessary understanding from assigned readings and
homework with minimal teacher-learner interaction in order
to answer simple questions. Thus, providing a learning aid
such as CBJava that is designed to support advanced learning
in complex and ill-structured domains would not be expected
to provide significant benefit in this area. The findings of this
study were consistent with the existing research such as that
of Spiro et al. (1992).

4.2 Effects of CBJava on Complex Questions

The second research question dealt with student performance
on complex questions with and without the use of CBJava.
The first test conducted to address this question, the
Wilcoxon Signed Ranks test, found no significant difference
on complex questions between the two groups. This finding
might reasonably be explained by the students’ reaction to
carryover effects. The possibility of carryover effects was
considered because access to the CBJava tool in the first
period might have provided the subject with an improved
understanding of the content of the subject on the first topic,
and thus an a better understanding may have affected or
»carried over” this knowledge into the second period. Thus, a
second test, a 2 x 2 mixed-design ANOVA test for carryover
effects on complex questions for the CBA treatment was
performed.

The 2 x 2 mixed-design ANOVA test for carryover
effects did indeed find a significant carryover effect on
complex questions for those students who used the CBJava
tool in the first period of the study. Thus, a third test was
necessary in order to determine why the first test, the
Wilcoxon Signed Ranks test, failed to find a significant
difference. This third test was conducted on only the first

period of the study because the second period was corrupted
by the carryover effects. The results of the Mann-Whitney U
test that compared the CBA group to the LNO group did find
a significant difference on complex questions between the
two groups on the first period. Based upon the findings of
these three tests, the null hypothesis that there would be no
significant difference between the two groups on complex
questions was rejected.

The results of the Mann-Whitney U test showed that the
students who, in the first period of the study, were provided
with the CBJava tool to support their learming, performed
significantly better than those students who were provided
with only the lecture notes. The results also showed when
considering the entire set of questions (Simple and Complex)
the students who used the CBJava tool performed
significantly better than those who only had access to the
lecture notes, although they did no better on the simple
questions. Interpreting these results a bit further, they show
that the improvement on the complex questions was of such
significance that the improvement drove the overall
performance on the entire set of questions.

The complex questions that were tested in this study
were questions that fell on the higher end of Bloom’s
taxonomy of learning objectives (Bloom and Krathwohl,
1956). Complex questions are typically ones that require
sustained deep thought. Quite often the content covered in a
face-to-face lecture primarily addresses these types of
questions either by providing an alternative view of the
content or through teacher-learner interaction. Typically
complex content does require a significant amount of
teacher-learner interaction.

The findings of this study support the alternative
hypothesis that providing CBJava as an instructional support
tool will improve student performance on complex
questions. The findings are also consistent with the
Cognitive Flexibility Theory (CFT) described by Spiro et al.

443

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(4)

(1992). The basic premise of this theory and the related
research is that complex subject matter can be learned best if
it is provided with multiple views or indexes. CBJava
provides this capability.

4.3 Conclusions

This study found that CBJava is an instructional tool that can
significantly improve students’ understanding of complex
subject matter. Through its theoretical grounding in case-
based reasoning and Cognitive Flexibility Theory, CBJava
provides the additional scaffolding required by students to
learn complex and ill-structured concepts. CBJava provides a
question and answer interface that allows the student to learn
through exploring the content. It avoids the rigidity found in
textbooks through its hypertext implementation. And, as a
case-based reasoning tool, CBJava enhances our ability to
teach introductory programming classes whether or not they
are online.

Providing a mechanism that allows students to submit
examples, receive feedback, and see the examples of others
supports learning through its constructivist grounding. This
study found that students do make significant gains in their
understanding of the subject matter when given this type of
instruction. These finings are consistent with the learning
theory of constructivism and its applications through CFT
(Spiro and Jacobson, 1995).

Although expert feedback helps the student, there are
costs involved that need to be considered. Expert feedback
requires an investment of an instructor’s time and talents. In
a classroom that contains a large number of students, it may
not be feasible to review examples from every student.
However, these economic issues can be overcome.

By providing expert feedback on one example and
making the original example, its repaired version, and the
feedback available to the entire class, all students benefit. In
a large classroom, a random set of submitted examples can
be reviewed and repaired rather than the entire set. This
would alleviate some of time burden on the instructor.
Additionally the classroom size could be limited. In fact at
the study site, the online class size limit is typically 24
students. However, limiting the class size also has economic
ramifications. Alternatively a larger class size could be
supported with the help of either teaching assistants, former
students, or other experts that would be willing to perform
the expert review and feedback.

It is reasonable to require online instructors to provide
feedback to students. Traditionally this feedback comes in
the form of emails, discussion threads, graded assignments,
and graded tests. Providing expert review of posted examples
is another alternative to this set of instructor-learner
interactions from which the instructor can choose from in
order to support student learning.

CBJava can be generalized to many different content
areas, and it is not simply limited to object-oriented
programming. Its underlying relational architecture is easily
extendable to other domains with minimum technical support
from a programmer. CBJava provides examples with
multiple links to different components of the same example
as well as links to multiple examples that illustrate the same
concept. Some learners may find this difficult to use and
understand, and this was found to be true in this study.

However, this study found that although these students may
have perceived this to be a distraction, in fact this
“distraction” improved their learning.

4.4 Recommendations
Supporting complex content through examples that illustrate
both good and bad alternatives is an important method of
scaffolding students’ understanding. Learning complex
topics can be supported through examples where the learner
can construct their own knowledge. Complex topics covered
in an object-oriented programming course should be
illustrated with both correct and incorrect examples. Both
types of examples should have expert commentary tied to
them with reasons why they are incorrect or correct.

Complex content requires enhanced instructor-learner
interactions. These types of interactions are very difficult to
replicate in an online course. Providing instructional support
for complex content is important regardless of whether or not
the course is online or face-to-face. However it is most
problematic in the online course. An instructional support
tool such as CBJava is therefore a necessary component of
an online course. Alternatives such as threaded discussions
may work as well, but do not allow for the natural learning
that case-based tool such as CBJava provides.

Finally, economic costs to setup a course supported with
a case-based tool based upon CBJava’s framework need to
be considered. Currently CBJava’s framework is extendable
to other courses, but its extension requires technical support
from a programmer. Development of the web pages with
multiple indexing schemes similar to those in CBJava does
require a significant amount of the instructors’ time and
talents. Therefore, it might be more feasible to employ an
instructional designer to assist with the initial setup of the
tool rather than expecting the instructor to develop it
themselves.

5. ACKNOWLEDGEMENTS

I would especially like to thank Dr. Diane McGrath of
Kansas State University and Dr. Donna Lalonde of
Washburn University for their inspiration and support of this
research. Additionally I would like to thank Dr. Mike Mosier
of the Mathematics and Statistics department at Washburn
University for his review of the statistical analysis. No
research effort can such as this can be accomplished without
the help of others.

6. REFERENCES

Aamodt, A., & Plaza, E. (1994), “Case-based Reasoning;
Foundational Issues, Methodological Variations, and
System Approaches.” AI Communications, 7(1), 39-59.

Biddle, R., & Tempero, E. (1998), “Java Pitfalls for
Beginners.” SIGCSE Bulletin (Association for
Computing Machinery, Special Interest Group on
Computer Science Education), 30(2), 48-52.

Bloom, B. S., & Krathwohl, D. R. (1956), Taxonomy of
Educational Objectives; The Classification of
Educational Goals, by a Committee of College and
University Examiners (1st ed.), New York: Longmans,
Green.

444

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(4)

Bruner, J. (1996), The Culture of Education, Cambridge,
MA: Harvard University Press.

Deitel, H. M., & Deitel, P. J. (2003), Java How to Program
(5th ed.), Upper Saddle River, NJ: Prentice Hall.

Huck, S. W. (2004), Reading Statistics and Research (4th
ed.), Boston: Pearson.

Jensen, K., & Wirth, N. (1991), Pascal User Manual and
Report (3rd ed.), New York: Springer Verlag.

Kolling, M. (2004), “BlueJ - the Interactive Java
Environment.” Retrieved June 30, 2004 from
http://www.bluej.org

Kolling, M. (1999), “The Problem of Teaching Object-
Oriented Programming Part II: Environments.” Journal

of Object-Oriented Programming, 11(9), 6-12.

Kolling, M., Quig, B., & Patterson, A. (2003). “The BlueJ
System and its Pedagogy ” Computer Science Education,
13(4), 249-268.

Kolodner, J. (1993), Case-based Reasoning. San Francisco,
CA: Morgan Kaufmann.

Kolodner, J. L., & Guzdial, M. (2000), “Theory and Practice
of Case-based Learning Aids.” In D. H. Jonassen, & S.
M. Land (Eds.), Theoretical Foundations of Learning
Environment, (pp. 215-242). Mahwah, NJ: Lawrence
Erlbaum Associates.

Kozma, R. B. (1994), “Will Media Influence Learning?
Reframing the Debate.” Educational Technology
Research & Development, 42(2), 7-19.

Leake, D. (1996), “CBR in Context: The Present and
Future.” In D. Leake (Ed.), Case-based Reasoning:
Experiences, Lessons and Future Directions (pp. 3-30).
Menlo Park, CA: AAAI Press/MIT Press.

Mitchell, T. M. (1997), Machine learning, New York:
McGraw-Hill.

Raab, J., Rasala, R., & Proulx, V. K. (2000), “Pedagogical
Power Tools for Teaching Java.” Proceedings of the 5th
Annual SIGCSE/SIGCUE ITiCSE Conference on
Innovation and Technology in Computer Science
Education, Helsinki, Finland, 156-159.

Roberts, E. (2004), “The Dream of a Common Language:
The Search for Simplicity and Stability in Computer
Science Education.” Proceedings of the 35th SIGCSE
Technical Symposium on Computer Science Education,
Norfolk, Virginia, USA, 115-119.

Schank, R. (1982). Dynamic Memory: A Theory of Learning
in Computers and People, Cambridge, England:
Cambridge University Press.

Schank, R. C., & Cleary, C. (1995), Engines for Education,
Retrieved June 10, 2004 from
http://www.enginesded.org/hyperbook/

Schmidt, C. (2006), “Towards the Support of Cognitive
Flexibility in Hypertext Design.” Journal of Computing
Sciences in Colleges, Vol 21, Number 4

Schmidt, C. (2004), CBJava, Retrieved July 17, 2006 from
http://192.104.1.46:8080/cbJava/. Unpublished work.

Spiro, R. J., Coulson, R. L., Feltovich, P. J., & Anderson, D.
K. (1988), “Cognitive Flexibility Theory: Advanced
Knowledge Acquisition in Ill-structured Domains.”
(Technical Report No. 441). Champaign, IL: University
of Dlinois at Urbana-Champaign.

Spiro, R. J., Feltovich, R. P., Jacobson, M. J., & Coulson, R.
L. (1992), “Cognitive Flexibility, Constructivism, and
Hypertext: Random Access Instruction for Advanced
Knowledge Acquisition in Ill-structured Domains.” In T.
M. Duffy, & D. H. Jonassen (Eds.), Constructivism and
the Technology of Instruction: A Conversation (pp. 57-
76). Hillsdale, NJ: Erlbaum.

Spiro, R. J., & Jacobson, M. J. (1995), “Cognitive Flexi-
bility, and the Transfer of Complex Knowledge: An
Empirical Investigation.” Journal of Educational
Computing Research, /2(4), 301-333.

AUTHOR BIOGRAPHY

Cecil Schmidt is an Associate Professor of Computer
Information Sciences at Washburn
University in Topeka, KS. Dr.
Schmidt currently teaches courses in
Computational Intelligence,
Database, Data Mining, Object
Oriented Programming, and
Systems Analysis. His primary
research interests are in the
understanding of human learning
and how machine intelligence might
be developed and used to support
human learning and understanding of complex topics.

445

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISCCID Evsic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2007 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

