
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Effects of a Case-Based Reasoning System on Student Performance in a Java Programming Course
Schmidt, Cecil
Journal of Information Systems Education; Winter 2007; 18, 4; Research Library
pg. 437

Journal of Information Systems Education, Vol. 18(4)

Effects of a Case-Based Reasoning System on Student
Performance in a Java Programming Course

Cecil Schmidt
Computer Information Sciences

Washburn University
Topeka, Kansas 66621, USA
cecil.schmidt@washbum.edu

ABSTRACT

The purpose of this study was to determine if a case-based reasomng tool would improve a student's lUlderstanding of the
complex concepts in a Java programming course. Subjects for the study were randomly assigned from two sections of an
introductory Java programming course. Posttests were used to measure the effects of the case-based reasoning tool (CBJava)
on learner competency. Results of the study using a Mann-Whitney Utest indicated a significant difference between the group
who used CBJava on complex questions and the group who did not (m rank= 11.50; U = 3.500, p < .05, M = 22.71 vs. M =

17.88). No significant difference was indicated between the groups on simple questions. Recommendations from this study
include supporting complex content through examples, providing a case-based instructional aid for complex topics, and
extending CBJava's framework to support other courses and disciplines.

Keywords: Distance Education. Java, Case-based Reasoning

1. INTRODUCTION

1.1 Background
Java, an object-oriented programming language typically
used as the language of choice in a first programming class
(CSl), is complex and difficult for students to learn. Raab,
Rasa1a, and Proulx (2000) suggest that the cross-platform
capabilities of Java and the robust graphical user interface
(GUI) components provide a great argument for using Java
to teach programming, however the complexity of building a
complicated GUI in a CS 1 course is problematic. Raab et al.
suggest using a toolkit of pre-developed classes that can be
used as the framework for beginners to build from to reduce
this complexity. Similarly Kolling (1999) reported that
educators folUld the lack of an adequate Integrated
Development Environment (IDE) that could be used as a
learning aid was a major problem in teaching Java. BlueJ
was developed to address these needs (Kolling, Quig, and
Patterson. 2003; Kolling 2004). Another major difficulty
with teaching Java is that difficult concepts must be
addressed at an early stage (Biddle and Tempero, 1998).
Even the writing of a simple one--line program in Java
requires the introduction of complex concepts such as
inheritance, static methods, or exceptions. The complexity
(breadth of the language) and instability (changes and
additions to the language) of teaching an introductory
computer science programming course is also documented
by Roberts (2004). The essential complexities of Java
include encapsulation. inheritance, polymorphism, reuse,
etc., whereas the lUlDecessary complexities include the

magnitude of the Java 2 class libraries (some 50,000 libnuy
functions) and the rapid obsolescence of libraries and tools
that are available for Java. Unnecessary complexities are also
illustrated by the differences in the size of the textbooks that
are now used to teach Java. One of the more popular books
(Deitel and Deitel, 2003) has 1536 pages of text whereas the
classic Pascal User Manual and Report (Jensen and Wirth.
1991) that was used to teach Pascal had about 226 pages.

1.2 Scaffolding Student Understanding with CBR
Case--based reasoning (CBR) is a learning model (Schank.
1982; Kolodner, 1993) and problem solving paradigm
(Aamodt and Plaza, 1994; Leake, 1996; Mitchell, 1997) that
incorporates problem solving, lUlderstanding, and learning
and integrating them with memory processes. CBR is a
constructivist learning theory which suggests knowledge
building (BflDler, 1996) from our previous experiences
through access to prior cases for both reuse and adaptation.
Both new and adapted cases can be stored for future use,
thus the learning occurs as a natural consequence of
reasoning. Finally, CBR. in the context of a learning theory,
is also tightly integrated as part of another constructivist
learning theory referred to as the Cognitive Flexibility
Theory (Spiro, Coulson, Feltovich, & Anderson. 1988;
Spiro, Feltovich, Jacobson. & Coulson, 1992; Spiro and
Jacobson, 1995). The Cognitive Flexibility Theory (CFT)
suggests that advanced learning in ill-structured [complex]
domains must be supported through alternative cases and
multiple, crisscrossing paths through a set of knowledge

437

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(4)

content. CFf suggests that the complexity of these types of
domains cannot simply be mderstood in a single pass.

Providing the student with a tool for learning Java that is
guided by the CBR constructivist learning model should
provide the scaffolding to support the learning of the difficult
concepts encomtered with the Java programming language.
Examples can be used to demonstrate cohesion between the
concepts and features of the language and real-life problems.
Students will learn by example as well as adapt new
examples. One approach to providing this type of system is
through a web-based hypertext learning environment where
the leaner is provided with concrete examples, i.e. actual
cases, rather than abstract rules, explicitly integrating
memory, learning, and reasoning, i.e. a CBR-gromded
learning environment (K.olodner and Guzdial, 2000).
Experience is provided by means of a case library that has
cause, effect, and lessons learned components. Learners may
access these cases through multiple indexes that crisscross
the content as prescribed by the CFT. Incorporating an
appropriate set of indexes over these experiences provides
the learner with alternative views into the same sets of cases.
Content should be organized in way that a "learner sees a
range of conceptual applications close together, so that
conceptual variability can be easily examined" (Spiro et al.,
1992, p. 68).

1.3 Purpose
I now report on a study of the effects of a case-based
reasoning system as a support for learning the complex
concepts in an object-oriented programming course. The
primary purpose of this study was to determine if a CBR­
gromded tool will improve a student's mderstanding of the
more difficult concepts in an object-oriented programming
course. At the time of this study there was no public record
of this particular research.

Below is a list of the research questions that were
addressed by this study. The categorization of simple and
complex questions is addressed in the methods section of this
paper.

1.

2.

Is there a statistically significant difference in the
performance on simple questions between the Case­
Based Reasoning Assisted (CBA) group and the
Lecture Notes Only (LNO) group?
Is there a statistically significant difference in the
performance on complex questions between the
CBA group and the LNO group?

2.METHOD

2.1 Participants
Two sections of the Object-Oriented Programming 1 (OOP-
1) course in Spring 2005 were used to represent the sample.
Only two sections were used because there were only two
sections of OOP-1 offered at the study site. OOP-1 was an
introductory course in Java which emphasized object­
oriented programming and design. It was the second required
programming course in both the Bachelor of Science degree
in Computer Information Systems and the Bachelor of Arts
degree in Computer Information Science at an NCAA,
Division II lmiversity located in the Midwest region of the
United States. Division II lmiversities tend to be smaller

public or private lmiversities and this particular lmiversity
has an approximate average enrollment of 7800 students.
Students typically take this course during the second
semester of their freshman year.

Of the two OOP-1 sections, one was face-to-face and the
other was an online distance-education course. The face-to­
face section normally met two days per week in a lecture
setting. The online section was handled in an asynchronous
manner where the students attended the class virtually by
accessing the course content through WebCT
(www.webct.com). Students in both sections had the same
deadlines for both programming labs and tests. During the
period of the research all students were attending the course
as if they were in the online section. The experiment began
in the seventh week of class and ran for three weeks.

Twenty-one students were initially enrolled in the two
sections of Object-Oriented Programming 1. Of these, 11
students were enrolled in the online section and 10 students
were enrolled in the face-to-face section. Prior to the
beginning of the study, five students dropped the course. Of
the remaining 16 students, all signed the consent form
agreeing to participate in the study. These 16 students were
randomly assigned to one of two treatment groups: Group 1
or Group 2. Before the completion of the experiment one
student from Group 1 was dropped from the study because of
the student failed to take both posttests.

All students received credit for using the CBJava tool
(see section 2.2.2 for description of CBJava) as an incentive
however this score was not factored into the study. To
receive credit the student was required to create a content
area example and post it to CBJava. All postings were
anonymous to the other students but could be traced backed
to the student by the researcher. Before receiving the CBA
(CBJava assisted) treatment, students were provided with a
training area within CBJava that was not part of the study.
The training area set up for the students was composed of the
decisions content area. Students were required to sign on to
the CBJava site and post an example to the training area.
This training occurred two weeks prior to the actual study.
All students took part in this training.

2.2 Materials
2.2.1 Posttests: Two posttests, Posttest 1 and Posttest 2,
were given immediately following the treatment conditions.
Each test contained a set of questions covering the content
areas addressed during the respective period in the study.
These questions were categorized according to Bloom's
taxonomy of learning objectives (Bloom and Krathwohl,
1956). Two categories of questions were created, simple
questions and complex questions. Simple questions were
those questions which measured the learning objectives of
knowledge, comprehension, and application. The complex
questions were those questions which measured the learning
objectives of analysis, synthesis, and evaluation. A set of
candidate questions for each of the two tests was generated
by the researcher who pulled candidate questions from the
normal assessment tests given in previous semesters. These
candidate questions were then provided to two other faculty
members who had previous experience in teaching a Java
programming course. Each of these faculty members as well
as the researcher classified the questions as either simple or

438

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(4)

complex. Questions were then classified by majority vote.
Additionally, questions which were 1D1clear were either
clarified or dropped as candidate questions. A breakdown of
the questions by format and their categom.ation as either
simple or complex is provided in Table 1.

Question Format Nmnber Category Points

True/False 11 Simple 11

True/False 1 Complex 1

Multiple Choice 7 Simple 14

Short Answer 6 Complex 24

Table 1. Categorization of Questions by Format

Both posttests had an identical format and ordering of
questions. A sub score for each question type (category) was
generated based on the total points scored on the related
assessment questions.

Finally, although the short answer questions had a
greater point value per question, partial credit was given for
partially correct answers. In order to ensure consistency in
grading, a list of reasons for the partial credit along with the
amolDlt of partial credit awarded was maintained and used as
a guide for awarding points.

2.l.2 CBJava: CBJava is a CBR-grolDlded hypertext system
that was developed to be used as an instructional content aid
for students who are learning Java (Schmidt, 2004, 2006).
The design of this system is similar to the hyperbook design
used in the Engines for Education web site authored by
Schank and Cleary (1995). In particular the fo1D1dational
architecture of CBJava was its question and answer interface
implemented in hypertext that was available on the World
Wide Web. In addition to being a hyperbook, this site
provided students the ability to add their own examples. As
these examples were added, an expert (in this case the
researcher) rated the examples based upon quality and
context. In this way a case-base of validated examples were
made available to other students for further learning and
research.

CBJava's primary knowledge acquisition process
involved the submission of new Java examples by the
~t and expert review and validation performed by the
instructor (the researcher). Indexing of the example was
performed by the student through a Web interface. During
the study only one of the content areas within CBJava was
open at a ti.me. Thus the indexing of the example was limited
to that particular content area. For example those students
who were given the CBA treatment during the first period of
the study could only index their examples 1D1der object
design. Those students had no access to the inheritance
content area Owing the second period of the study those
students who were given the CBA treatment could only
index their examples 1D1der inheritance. Again, those
students had no access to the object design content area

At the ti.me the example was submitted the example had
a note stating that it has not been validated. On a daily basis
the instructor reviewed the submissions and either accepted

the submission or revised it. In the revision cycle, the
instructor identified the improvements and classified the
original example. Both the before (as submitted) and the
after (post review) versions were retained.

2.3 Procedure
2.3.1 Research Design: This study involved characterizing
the sample based on learner competency assessment
questions categorized according to Bloom's taxonomy of
learning objectives (Bloom and Krathwohl, 1956).
Independent variable A was defined as instructional support
(case-based hypertext learning tool versus lecture notes only)
and independent variable B was defined as the question type
(simple assessment questions that measure the lower levels
of learner competency and complex assessment questions
that measure the higher levels of learner competency). The
experimental design is shown in Figure 1. In the
experimental design depicted in Figure 1 Group 1 and Group
2 refer to the groups of students randomly selected from two
sections of Object-Oriented Programming 1. Object Design
and Inheritance are the two content areas that had
instructional support. The treatments X(CBA) and X(LNO)
refer to the case-based hypertext learning tool support and
the lecture notes only support. Posttest l and Posttest 2 refer
to the two posttests that were given. The instrmnents used to
collect the data for analysis were known up front and, for the
most part, had been validated in prior research.

Object Posttest Inheritance Posttest
Design 1 2

Group X(CBA) 0 X(LNO) 0
1

Group X(LNO) 0 X(CBA) 0
2

Figure 1. Experimental Design depicting Groups,
Treatments, and Observations

2.3.2 Treatment: Lecture content to members of both
treatment groups 1 and 2 was provided in the form of
hypertext videos that were administered through WebCT.
The recordings were developed using sofIV
(www.sofIV.net). Each of these recordings was placed into
WebCT and integrated through a hypertext document. Both
groups also shared an online space in WebCT. All lecture­
notes, online discussions, and homework assignments were
also provided and administered through WebCT to both
groups. Email was handled externally using the study sites'
email system.

Two complex and ill-structured content areas had
additional instructional support through a case-based
reasoning tool called CBJava (Schmidt, 2004). These content
areas were object design and inheritance. During the
coverage of object design, Group 1 was required to use the
CBJava tool, that is, the CBA treatment. Group 2 received no
assistance from CBJava during this period, that is, the LNO
(lecture notes only) treatment. After completing the coverage
of object design, Posttest 1 was given to both groups. Toe
duration for this part of the experiment was one and one half
weeks, culminating with the Posttest 1.

439

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(4)

Group 1 Group2 Total
Question Type x
Content Area Mean N SD Mean N SD Mean N SD
Simple

Obj.Des. 22.00 7 2.449 19.63 8 4.340 20.73 15 3.674
Inheritance 20.71 7 2.289 18.00 8 2.976 19.27 15 2.939

Complex

Obj. Des. 22.71 7 1.890 17.88 8 3.563 20.13 15 3.758
Inheritance 20.57 7 3.505 15.63 8 3.852 17.93 15 4.383
Total

Obj.Des. 44.71 7 3.450 37.SO 8 5.682 40.87 15 5.927
Inheritance 41.29 7 5.282 33.63 8 5.476 37.20 15 6.527

Table 2. Descriptive Statistics for Test Scores for Question Type by Content Area by Group

Inheritance was covered immediately following the unit
on object design. During the coverage of inheritance, Group
2 was required to use the CBJava tool, that is, the CBA
treatment. Group 1 received no assistance from CBJava
during that period, that is, the LNO treatment. After
completing the coverage of inheritance, Posttest 2 was given
to both groups. The duration for this part of the experiment
was one and one half weeks culminating with the Posttest 2.

Both posttests were administered on the study
sites' campus. Additionally these tests were proctored by a
faculty member at the study site who was not the researcher.
This faculty member coded both the tests and the surveys in
order to protect anonymity during the study. Both posttests
were scored by the researcher before they were matched
back to the student in order to minimize bias.

2.4 Limitations of the Study
It was the goal of this study to do a quantitative analysis with
as much statistical rigor as possible. The subjects used for
this study were randomly assigned to one of two groups.
However, the pool of subjects was limited to those students
who had enrolled in Object-Oriented Programming 1 at an
NCAA, Division II university located in the Midwest region
of the United States. Therefore, it is more difficult to
generalize this study to a much broader population, and that
limits its external validity.

The ordering of the two types of instructional support is
also a limitation of the study. The case-based hypertext tool
was not used as an instructional aid until midway through the
course. It could be argued that by that time the students do
not require any additional support. They may have learned
how to use the existing resources to support their learning.
Thus, there may be no significant difference between the
performance of the students with or without the case-based
hypertext tool as an instructional aid. However, it is only at
about the midpoint of the course where the concepts become
more complex and ill-structured. So, introducing the case­
based hypertext tool at that time was appropriate. Other
sequencing situations arise as well, but because of the
number of groups, the limitations of the sample sizes, and
the ethical requirement to provide all students the same aids,
this was the best that could be done.

Other extraneous variables may have affected the
outcome of the study. In particular it was difficult to
determine how much of the content within the case-based
hypertext tool was actually read by each student. The only
guarantee that a student accessed the tool was that they
submitted the example. However, there was incentive for
them to read the content in that it aided them in creating an
example (which was required), and it helped them prepare
for the graded posttest, therefore the impact to the results of
the study were minimal. Finally, not all of the students
submitted examples in a timely basis. In order to ensure that
all of the subjects submitted an example, several directed
emails were sent. No special coaching on creating the
example occurred, therefore impact to the results of the study
were also minimal.

Some of the limitations to the external validity were
eliminated by limiting the differences in the treatment groups
to one particular variable which was the type of instructional
support. For the duration of the study the transmission of the
course to all subjects was the same, that is, the transmission
was online. One can argue that the viewing of a digital video
of the lecture can be done anytime and as such is another
variable in the experiment. However, for the purposes of this
study the time and space dependencies were subsumed in the
instructional mode.

3.RESULTS

3.1 Effects ofCBJava
In order to answer the research questions, two types of non­
parametric tests were performed on the sample as prescribed
in the experimental design. A third test, a parametric test,
was performed on the sample in order to better understand
the results of the first two tests.

Descriptive statistics including means and standard
deviations for each content area (Object Design and
Inheritance) separated by question type (Simple and
Complex) for each group (Group 1 and Group 2) are
provided in Table 2. Notice that the mean scores on the
posttests (Posttest 1 covered Object Design and Posttest 2
covered Inheritance) for Group 1 are consistently higher than
those in Group 2. A higher mean score represents a better

440

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2007 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

