Specification and Enfor cement of Semantic Integrity Constraintsin Microsoft Access
Dadashzadeh, Mohammad
Journal of Information Systems Education; Winter 2007; 18, 4; Research Library

pg. 393

Journal of Information Systems Education, Vol. 18(4)

Teaching Tip

Specification and Enforcement of Semantic Integrity
Constraints in Microsoft Access

Mohammad Dadashzadeh
Decision and Information Sciences Department
Oakland University
Rochester, Michigan 48309, USA

ABSTRACT

Semantic integrity constraints are business-specific rules that limit the permissible values in a database. For example, a university
rule dictating that an incomplete grade cannot be changed to an A constrains the possible states of the database. To maintain
database integrity, business rules should be identified in the course of database design and must be enforced during database
implementation. Unfortunately, the manner by which current database management systems (DBMS) support the specification and
enforcement of semantic integrity constraints varies considerably. This paper categorizes semantic integrity constraints and presents
a simple approach for teaching users how to implement each of the five categories in Microsoft Access.

Keywords: Database Management Systems, Semantic Integrity Constraints, Validation Rules, SQL, Microsoft Access.

1. INTRODUCTION

Semantic integrity constraints, also referred to as data
validation rules, are a common occurrence in database
implementation scenarios. Consider the following database
about departments and their employees:

DEPT(DNO, Name, City, ManagerID, PayroliBudget)
EMP(ENO, FullName, HireDate, ReviewDate, Salary, SSN,

DeptiD)

Each of the following represents a sample business rule or
semantic integrity constraint for this scenario.

Rule 1: No two departments will be assigned the same
value for DNO (primary key integrity).

Rule 2: No two employees will be assigned the same
value for ENO (primary key integrity).

Rule 3: Social Security Number (SSN) is either null
(missing) or is unique, that is, no two employees will
have the same value for SSN.

Rule 4: ManagerlD is either null or the same as an ENO
value (referential integrity).

Rule 5: DeptID must be the same as a DNO value
(referential integrity).

Rule 6: The only permissible values for City are: Boston,
Chicago, and Detroit.

Rule 7: PayrollBudget for each department must be
greater than or equal to the sum of salaries of
employees assigned to that department.

Rule 8: HireDate must be greater than or equal September
1, 2005.

Rule 9: For each employee, ReviewDate is either null or
greater than HireDate.

Rule 10; Valid salaries are between $10,000 and $90,000.

Rule 11: Department D10 employee salary cannot be less
than $35,000.

Rule 12: Salaries should not be reduced.

Rule 13: For department D10 employees hired on the
same date, the ReviewDate must be identical.

Rule 14: Each department manager must come from the
same department.

To maintain our example database’s integrity, each of the
above rules must be enforced. There are four ways to
aooomphshthls

Let the users be responsible for it!

2. Do not let users update (i.e., add, delete, or modify) the
database directly. Always, write programs to handle data
entry and update, and let the programs enforce the
integrity constraints.

3. Let the users update the database directly, but write DBMS
triggers that would be invoked automatically upon updates
to enforce the integrity constraints.

4. Declare the integrity constraints as DBMS assertions that
would automatically be enforced by the DBMS.

It is generally agreed that letting the users police
themselves would be an unrealistic approach. On the other
hand, the most ideal approach is through DBMS assertions
where the burden of enforcement is placed completely on the
DBMS itself. Unfortunately, current database management
systems fall short of this ideal (Tiirker and Gertz, 2001) and
database developers must resort to some form of programming
(approaches 2 and 3) to enforce integrity constraints.

393

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(4)

The concept of database assertions is not new (Date, 1990;
Grefen and Apers, 1993). Indeed, database assertions are
supported in a limited basis by all current DBMS software.
Specifically, the ability to designate the primary key of a table
is nothing more than asserting a constraint and letting the
DBMS enforce it during database updates. On the other hand,
an integrity constraint such as Rule 7 could be specified in
SQL-99 syntax as:

CREATE ASSERTION Rule7

CHECK Not Exists

(SELECT DNO

FROM DEPT INNER JOIN EMP ON

DEPT.DNO = EMP.DEPTID

GROUPBY DNO, PayroliBudget

HAVING Sum(EMP.Salary) > PayroliBudget);
leaving its enforcement to the DBMS. Unfortunately, support
for such arbitrary database assertions is not present in today’s
commercial software.

In the absence of support for database assertions, an
integrity constraint such as Rule 7 can be enforced by

programming similar to:

If Exists (
SELECT DNO
FROM DEPT INNER JOIN EMP ON

DEPT.DNO = EMP.DEPTID

GROUPBY DNO, PayrollBudget
HAVING Sum(EMP.Salary) > PayrolIBudget)

Then
Alert(*Rule 7 has been violated!”)
Abort

End If

Of course, the preceding sample code needs to be executed
whenever a new employee row is added or when the Salary or
DeptID fields are changed. When a DBMS supports the
concept of triggers, code such as the above can be written once
and associated with the table EMP for automatic execution
whenever certain events trigger (in this case, when a row is
inserted, or when rows, or specifically, when Salary or DeptID
are changed). Importantly, the code will be automatically
triggered no matter how the update originates. That is, whether
the user is explicitly executing an SQL UPDATE statement or a
program supporting a user data entry/update form is making the
update implicitly. If a DBMS does not support the concept of
triggers, as is the case with Microsoft Access, then the code
must be associated with each data entry/update form that
could potentially insert a new row in the EMP table or
modify the Salary and/or DeptID fields. Furthermore, to
ensure that Rule 7 is not violated, the users should be
prevented from explicitly issuing SQL INSERT and
UPDATE statements against the EMP table.

As such, Microsoft Access provides mixed support for
specification and enforcement of semantic integrity
constraints. It supports database assertions in a limited way,
does not support triggers, but provides the necessary
methods for procedural support of enforcing integrity
constraints. In this paper, we present a classification of
semantic integrity constraints and give a simple approach for
teaching users how to implement each of the five categories in
Microsoft Access.

2. A CLASSIFICATION OF SEMANTIC INTEGRITY
CONSTRAINTS

Semantic integrity constraints are either static or dynamic.
Static integrity constraints are those constraints that can be
determined to have been violated or not by a transaction simply
by examining the database state when the transaction commits
its changes. For example, consider a database transaction
change of an employee’s salary to:

Emily |9/1/72005]

1$86,000] 123-45-6789 | D10 |
Smith

Rules 10 and 11 can be immediately verified to have not been
violated by merely considering this proposed database state.
Specifically, salary is within permissible range of $10,000 to
$90,000 and, as a department D10 employee, the salary is
indeed not less than $35,000. However, it is impossible to
verify that the transaction has not violated Rule 12 by merely
examining the proposed database state. A dynamic integrity
constraint, such as Rule 12, can only be verified by examining
both the proposed database state as well as the starting database
state. So, if the prior state is:

then Rule 12 is seen as being violated since the salary

value of $87,500 is being reduced to $86,000.

Static integrity constraints can be classified into four

categories:
Domain Type constraints limit permissible values for a data
field (column). A domain type constraint can be determined to
have been violated or not by simply examining the value of a

$87,500| 123-45-6789

ERRE

D10

Static integrity constrainis can be classified into four
categories:
Domain Type constraints limit permissible values for a data
field (column). A domain type constraint can be determined to
have been violated or not by simply examining the value of a
single field in the record being added/changed. For example,
valid salaries are between $10,000 and $90,000 (Rule 10).
Tuple Type constraints limit permissible values for a data field
based on values in other data fields in the same record. A tuple
type constraint can be determined to have been violated or not
by examining the values of multiple fields in the record being
added/changed. For example, department D10 employee salary
cannot be less than $35,000 (Rule 11).
Relation Type constraints limit permissible values for a data
field based on values in other records in the same table. A
relation type constraint can be determined to have been violated
or not by examining the values in other records in the table
being added/changed. The quintessential relation type

394

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(4)

constraint is the primary key integrity rule that limits the
permissible value in the key field of a record being
inserted/changed by the existence of the same value in other
records in the table.
Database Type constraints limit permissible values for a data
field based on values in other records in other tables in the
database. A database type constraint can be determined to have
been violated or not by examining the values in other records in
other tables. The quintessential database type constraint is the
referential integrity rule that limits the permissible value in the
foreign key field of a record being inserted/changed by the
existence of the same value in the primary key field of another
table in the database.

Table 1 classifies each of the 14 rules in our example
database scenario and the next section presents the manner by
which each type can be enforced in Microsoft Access.

3. SEMANTIC INTENGRITY CONSTRAINTS IN
MICROSOFT ACCESS

Microsoft Access provides mixed support for specification
and enforcement of semantic integrity constraints. Domain
type constraints are handled easily through assertions as
validation rules. Figure 1 shows the specification of Rule 6
in the table design view in Access.

Tuple type constraints in Microsoft Access are also handled
by assertions. However, all tuple type constraints must be
combined in a single validation rule specified as a table
property. To assert Rules 9 and 10, the following combined
validation rule must be specified as shown in Figure 2:

(([ReviewDate] Is Null) Or ([ReviewDate]>{HireDate])) And
(([DEPTID}<>"D10") Or (([DEPTID}="D10") And
([Salary[>35000))).

The primary key relation type integrity constraint is easily

handled in Microsoft Access by designating the primary key

such as: CREATE UNIQUE INDEX idxl ON EMP(SSN,
HireDate).

Other kinds of relation type integrity constraints such as
Rule 13 must be programmed in Microsoft Access. And, since
triggers are not supported, such programming must be attached
to every data entry/update form that touches the underlying
table. The basic approach is to associate our enforcement code
with the BeforeUpdate event of the underlying FORM:

Private Sub Form_BeforeUpdate(Cancel As Integer)

‘Rule 13: For department D10 employees hired on the same
“date, the ReviewDate must be identical.

Let Department = Me![DEPTID]

If Department = "D10" Then
HireDate = Me![HireDate]
ReviewDate = Me![ReviewDate]

If IsNull(ReviewDate) Then
strWhere = “([DeptID] = ‘D10°) AND “
strWhere = strtWhere & *“([HireDate] = #”
strWhere = strWhere & HireDate & “¥) AND “
strWhere = strWhere & “([ReviewDate] Is Not Null)”
Else
strWhere = “([DeptID] = ‘D10’) AND “
strWhere = strWhere & “([HireDate] = #”
strWhere = strWhere & HireDate & “#) AND “
strWhere = strWhere & “([ReviewDate] <> #”
strWhere = strWhere & ReviewDate & “#)”
End If

“See if updating this row would violate the rule ...

Let K = DCount(“ENO”, “EMP”, strWhere)

IfK<>0 Then
strMsg = “D10 employees hired the same date must “
strMsg = strMsg & “have identical ReviewDate!”

column(s). Closely related relation type integrity constraints MsgBox strtMsg
arising from candidate keys (such as Social Security Number DoCmd.CancelEvent
(SSN) columm in our sample EMP table) are handled using End If
indexing as shown in Figure 3. Also, a unique index on multiple
columns may be specified in Access using an SQL statement ~ End If
End Sub
Rulett Static Dynamic
Domain Type Tuple Type Relation Type Database Type
1 v
2 v
3 v
) v
5 v
6 v
7 v
8 v
9 v
10 v
11 v
12 v
13 v
14 v

Table 1. Classification of Rules 1-14.

395

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(4)

Data Type

Description

DNO Text Department Number
Name Text Department Name
City Text City in which the department is located
ManagerID Text
PayroliBudget Currency
Field Properties
General Lookup |
Field Size 10
Format
Input Mask >CCCCCCCC
Caption

Default Value
validation Rule
validation Text

In ("Boston","Chicago","Detroit")

: An expression that limits
. | the values that can be
entered in the Field.

Press F1 for help on

Figure 1. Using Validation Rules to Assert Domain Type Integrity Constraints. 7

The referential integrity database type constraints are
easily handled in Microsoft Access using the relationship
screen where the cascade delete and cascade update triggering
actions can also be specified as shown in Figure 4 for Rule 4.

Other kinds of database type integrity constraints must,
however, be handled through programming in Microsoft
Access. Rule 7, for example, can be enforced by the following
VBA code attached to a form that modifies EMP table:

Private Sub Form_BeforeUpdate(Cancel As Integer)

‘Rule 7: PayrolIBudget for each department must be greater
‘than or equal to the sum of salaries of employees assigned to
‘that department.

Let Department = Me![DEPTID]
Let Salary = Me![Salary]
Let ENO = Me![ENO]

‘Get the corresponding department's PayrollBudget ...
PayroliBudget = DLookup(“PayrollBudget”, “DEPT”, “DNO =
(324 & Dwmetu & “’”)

‘Get the total payroll of the department excluding

‘this employee ...

Payroll = DSum(“Salary”, “EMP”, “DeptID = *” & Department
& “ AND ENO < ” & ENO & “*”)

Required No ¥
Allow Zero Length No validation rules.
| Indexed No
| Unicode Compression Yes
{ IME Mode No Control
i IME Saphas None .
e

‘Get the corresponding department's PayrollBudget ...

PayrollBudget = DLookup(‘“PayrollBudget”, “DEPT”, “DNO =
” & Department & “*”)

‘Get the total payroll of the department excluding‘this
employee ...

Payroll = DSum(“Salary”, “EMP”, “DeptID = ** & Department
& “> AND ENO < ” & ENO &)

If PayrollBudget < (Payroll + Salary) Then
MsgBox “Department’s PayrolIBudget will be exceeded!”
DoCmd.CancelEvent

End If
End Sub

Finally, Microsoft Access supports enforcing dynamic
integrity constraints through programming by making the
OldValue property available for each data field of the current
record. As such, dynamic constraints such as Rule 12 can be
handled through code attached to the BeforeUpdate event of the

underlying data entry/update FORM:
Private Sub Form_BeforeUpdate(Cancel As Integer)
‘Rule 12: Salaries should not be reduced.

If PayroliBudget < (Payroll + Salary) Then
MsgBox “Department’s PayrollBudget will be exceeded!” ‘Get the old salary value or zero (if null) ...
Let OldSalary = Nz(Me![Salary].OldValue, 0)
pooCind CancelEvent Let NewSalary = Me[Salary]
End Sub If NewSalary < OldSalary Then
s . . . MsgBox “Rule 12 has been violated!”
The referential integrity database constraints are easily DoCmd.CancelEvent
handled in Microsoft Access using the relationship screen.
Let Department = Me![DEPTID] End If
Let Salary = Me![Salary] End Sub
Let ENO = Me![ENO]
396

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Constants
[iw] Operators

~<

Data Type
Text .
Text

ENO
FullName

| | General | Lookup |

; Employee Number

HireDate _Date/Time ‘ Starting Date
|[ReviewDate . DatefTime . Next Review Date
vvvvvvv - Currency i Annual Salary

| Social Securikty Number if Known
. Employee's Department Number

Field Size 15

Format

Input Mask

Caption

Default value

Anindex speeads up searches and sorting

validation Rule

on the field, but may slow updates.

Validation Text

Selecting "Yes - No Duplicates” prohibits

Required No

Allow Zero Length Yes

duplicate values in the field. Press F1 for
help on indexed fields.

Indexed Yes (No Duplicates)
Unicode Compression Yes

IME Modi No Control

As demonstrated in this section, all types of semantic integrity
constraints can be specified and enforced in Microsoft Access.
For domain type and tuple type integrity constraints, Access
supports a declarative approach to specification and provides
for automatic enforcement. For relation type and data type
constraints other than primary key integrity and referential
integrity rules, Access leaves both the specification as well as
the enforcement to program logic. Unfortunately, since
Microsoft Access does not support the concept of DBMS
triggers, program logic developed to enforce integrity.
Microsoft Access does not support the concept of DBMS

Figure 3. Using Indexing to Assert Relation Type Uniqueness Constraints.

i, S

Y

triggers, program logic developed to enforce integrity
constraints must be re~created (actually re-used) for each data
entry/update form that touches the underlying table. This
problem notwithstanding, the lack of support for DBMS
triggers in Access means that program logic developed to en
force integrity constraints will not be automatically invoked if
the user attempts an update through the built-in user interface in
Access. As such, to maintain data integrity, the users must be
denied access to such useful features as editing a table in
datasheet view or running an update query.

397

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(4)

G

Related Table/Query:

. g
(|PayroliBudget S

~* ManagerID

[T} Cascade Delete Related Records

Relationship Type: One-To-Many

e L

e

Figure 4. Using Relationshi

4. CONCLUSIONS

A good database must at all times reflect the real world it is
designed to represent. Semantic integrity constraints are logical
assertions about the valid states of a database. The importance
of the specification and enforcement of semantic integrity
constraints has been recognized since the advent of the
relational data model. Early papers (Eswaran and Chamberlin,
1975; Hammer and McLeod, 1975) proposed the
implementation of constraint checking as an integral subsystem
in DBMS software. Unfortunately, however, commercial
software adoption of those ideas has been lagging far behind.

Support for declarative semantic integrity constraints (i.e.,
database assertions) in DBMS software ranging from DB2,
Oracle, SQL Server to Microsoft Access remains limited to
primary key integrity, referential integrity, and what has been
characterized in this paper as domain type and tuple type static
constraints. The more complex relation type, database type, and
dynamic constraints must be enforced using procedural
definition of integrity constraints by triggers. A trigger is a
procedure that is automatically invoked by the DBMS in
response to specified database events. Although, Microsoft
Access supports powerful embedded SQL programming in its
VBA procedures, the triggering events are FORM events as
opposed to fundamental database events of INSERT, DELETE,
or UPDATE on a base table. Therefore, enforcement of
complex semantic integrity constraints in Microsoft Access
requires “coordination” across data entry/update forms touching
a base table, and more importantly demands closing doors to
unprotected updates to tables such as by direct datasheet edits
or explicit SQL update statements by the user. In this paper, we
have presented an approach to teaching categorization of
semantic integrity constraints and showing how to implement
each of the five categories in Microsoft Access.

5. REFERENCES

Date, C.J. (1990) “A Contribution to the Study of Database
Integrity.” In Relational Database Writings 1985-1989,
Edited by C.J. Date. Addison-Wesley, Reading, MA.

ps to Assert Referential Integrity Database Type

Eswaran, KP. and Chamberlin, D.D. (1975) “Functional
Specifications of a Subsystem for Data Base Integrity.” In
Proceedings of the Ist International Conference on Very
Large Data Bases (VLDB '75), Edited by D.S. Kerr.
Morgan Kaufmann Publishers, Los Altos, CA.

Grefen, P.W.P.J. and Apers, PM.G. (1993) “Integrity Control
in Relational Database Systems-An Overview,” Data &
Knowledge Engineering, 10(2), pp. 187-223.

Hammer, M.\M. and McLeod, D.J. (1975) “Semantic Integrity
in a Relational Data Base System.” In Proceedings of the
Ist International Conference on Very Large Data Bases
(VLDB '75), Edited by D.S. Kerr. Morgan Kaufimann
Publishers, Los Altos, CA.

Tiirker, C. and Gertz, M. (2001) “Semantic Integrity Support in
SQL-99 and Commercial (Object-)Relational Database
Management Systems,” VLDB Journal, 1(4), pp. 241-269.

AUTHOR BIOGRAPHY

Mohammad Dadashzadeh holds a bachelor in electrical
engineering, a master in computer
science, both from MIT, an MBA, and
a Ph.D. in computer and information
science from University of
Massachusetts. He has been affiliated
with University of Detroit (1984-1989)
and Wichita State University (1989-
2003) where he served as the W. Frank
Barton Endowed Chair in MIS. In
2003, he joined the faculty of the Decision and Information
Sciences Department at Oakland University as Professor of
MIS and Director of Applied Technology in Business
(ATiB) program. He has authored 4 books and more than 50
articles on information systems and has served as the editor-
in-chief of Journal of Database Management. His most
recent editorial responsibilities include the books entitled
Information Technology Management in Developing
Countries and IT Education in the New Millennium.

398

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISCCID Evsic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2007 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

