A Learning Research Informed Design and Evaluation of a Web-enhanced Object Oriented Programming ...
Georgantaki, Stavroula C;Retalis, Symeon D

Journal of Information Systems Education; Summer 2007; 18, 2; Research Library

pg. 243

Journal of Information Systems Education, Vol. 18(2)

A Learning Research Informed Design and Evaluation of a
Web-enhanced Object Oriented Programming Seminar

Stavroula C. Georgantaki
Symeon D. Retalis
Department of Technology Education and Digital Systems
University of Piraeus
80 Karaoli & Dimitriou, 185 34 Piracus, Greece
rgeo{@unipi.gr retal@unipi.gr

ABSTRACT

“Object-Oriented Programming” subject is included in the ACM Curriculum Guidelines for Undergraduate and Graduate
Degree Programs in Computer Science as well as in Curriculum for K-12 Computer Science. In a few research studies
learning problems and difficulties have been recorded, and therefore, specific pedagogical guidelines and educational tools
have been proposed which aim at better supporting the instructional process of Object-Oriented Programming. This paper
presents an empirical pilot study of a seminar related to the basic principles-concepts of Object-Oriented Programming. The
seminar was at undergraduate educational level using the Java language and web technologies. Its instructional approach was
based on selected best instructional practices (either in the form of guidelines or design patterns) already published in the
literature. The fundamental aim of the present study was to investigate the factors that might affect the learning effectiveness

of a web-enhanced instructional process of the Object-Oriented Programming subject.

Keywords: Object-Oriented Programming, Didactical guidelines, Design patterns, Didactical problems, Instructional

approach, Web technologies, Programming environments

1. MOTIVATION

The subject of Object-Oriented Programming (OOP) has
been introduced in the computing curricula of the
universities during the last years. Several studies have shown
that students face various learning difficulties with OOP
(Fjuk, Karahasanovic, and Kaasbell, 2006). These
difficulties relate to the comprehension of object-oriented
(O0) concepts and the relation between these concepts (Teif
and Hazzan, 2004; Ragonis and Ben-Ari, 2002), the
misconceptions constructed by students (Holland, Griffiths,
and Woodman, 1997; Ragonis and Ben-Ari, 2005b; Fleury,
2000), the perception about OO principles such as
encapsulation and reuse (Fleury, 2001) and about dynamics
aspects of OO programs (Ragonis and Ben-Ari, 20052a) and
so on. Students undoubtedly confront a lot of barriers that
they need to overcome simultaneously such as realize new
concepts (object, class, attributes, encapsulation, inheritance,
polymorphism), apply these concepts in practice by writing
software applications using an OO programming language,
etc. (Schulte and Niere, 2002). Students who have already
been taught the procedural paradigm of programming face
additional learning problems which are related to the
“paradigm shift”, i.e. the transition to the new OO
programming paradigm (Luker, 1994).

Various approaches have been proposed for augmenting
the learning effectiveness of OOP instructional practices

which try to cover the topics recommended by the
TIEEE/ACM Computing Curricula 2001 (CC2001, 2001). It is
also highly recommended to utilize in the instructional
process web technologies and educational programming
environments (Brusilovsky et al., 1994; Brusilovsky et al,
1997; Gill, 2004). These environments are ecither
programming microworlds such as Karel J. Robot (Bergin et
al., 2004), Jeroo (Sanders and Dorn, 2003), JkarelRobot
(Buck and Stucki, 2000b), objectKarel (Xinogalos,
Satratzemi, and Dagdilelis, 2006; Xinogalos and Satratzemi,
2002), Alice (Cooper, Dann, and Pausch, 2003), or
integrated programming environments with educational
features like BlueJ (Kolling et al., 2003).

These environments focus on introductory OO
concepts, but they hide the details of the programming
language as well as the notion of developing programs “from
scratch”. It has been reported that students upon completion
of this introduction still face difficulties in using an actual
programming environment, in smoothly transiting to the use
of such environments (Kolling et al., 2003; Xinogalos,
Satratzemi, and Dagdilelis, 2006) and of course in the
acquisition of skills of writing bigger and more complete
programs using an OO programming language, such as C++,
VB.NET, Java, etc. (Ragonis and Ben-Ari, 2005b; Benander,
Benander, and Sang, 2004).

In general, a large body of work has been published on
topics such as the didactics of OOP and the instructional

243

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(2)

methods in OOP (Fjuk, Karahasanovic, and Kaasbell, 2006).
This paper presents an empirical pilot study of a web-
enhanced 9-week seminar on OOP for undergraduate
students. The seminar was designed based on some best
practices of didactics and pedagogy in OOP (e.g. the
adoption of “objects-first” strategy (K6lling and Rosenberg,
2001), the gradual explanation of concepts from simple to
higher level ones (Bennedsen and Caspersen, 2004), etc.).
Our goal was to investigate which factors might affect the
learning effectiveness of learning OOP via web-enhanced
technologies. Leamning effectiveness is conceptualized as
being related to a multiple measurement index consisting of
cognitive and attitudinal outcomes (e.g. students’
comprehension of basic OO concepts-principles, acquisition
of OOP programming skills, self-estimation about their
knowledge level in OOP and their feelings and attitudes
towards OOP) (Psaromiligkos and Retalis, 2003).

The 9-week seminar followed a blended learning
approach which contained face to face lectures as well as
web-enhanced learning activities offered via the Moodle
Learning Management System (LMS)
(http://www.moodle.org) that incorporated learning material
chunks structured according to the sections recommended by
the IEEE/ACM Computing Curricula, students’ assignments
and a complete well documented case study. Special
emphasis was given on encouraging the asynchronous
discussions between students and teacher in the sense of a
community of practitioners (Lave and Wenger, 1991).

In this paper, we present the overall design philosophy
of this seminar along with the results of a systematic
evaluation study of its learning effectiveness that we
performed. The evaluation study was based on “pre” and
“post-test” questionnaires along with in depth focus group
interviews of the students (since they were just 13).

The structure of this paper is as follows: We first
describe the instructional approach, i.e. philosophy, material,
tools, delivery mode of the 9-week seminar. Later, we will
present the conceptual framework of the evaluation study
and its results. Finally some concluding remarks about the
didactics and pedagogy of OOP teaching using Java as
programming language and future plans will be given.

2. THE EMPIRICAL STUDY

2.1 Instructional philosophy

As in most introductory courses/seminars which deal with
OOP, the designed seminar had as learning objectives that
upon its completion students should be able to:

* describe the principles of object-oriented
programming and design,

* analyze problems from an object-oriented perspective
and demonstrate object-oriented problem solving
techniques,

= create OO designs which will be ready for coding,

* implement, test and debug a pilot OO project utilising
programming environments.

Our ultimate goal was to make students effectively
acquire certain programming behaviors (i.e. according to the
OO paradigm). To achieve this goal, we designed learning
activities according to the social cognitive model of
sequential skill acquisition of Zimmerman and Kitsantas

(Zimmerman and Kitsantas, 1999). This model suggests that
learners' acquisition of new skills occurs via four sequential
levels: observation, emulation, self-control, and self-
regulation.

The observation level of skill is mainly characterized by
modeling. The student is forming through observation, a
mental model of the activity from the other person’s actions,
hearing descriptions, observing consequences. At the
emulation level, the student mimics the experiences occurred
in the first level and uses feedback from teacher and peers to
refine his performance and to develop standards of correct
performance that are essential for higher levels of learning.
In the stage of self-control, the learner compares his practice
efforts with personal standards acquired previously from a
model's performance. At the final level of self-regulation,
students learn to adapt their performance to changes in
internal and external conditions. Students are mainly
interested in performance outcomes.

The various learning activities either face to face or
web-enhanced incorporated into our seminar aimed to:

* introduce students gradually to the OO concepts and
how they can be applied in practice within OO
software applications,

* motivate students to correspond to OO programming
challenges (simple ones at the beginning and more
difficult at a later point),

* build learning communities in such a way so that all
members could help each other in answering
questions, etc.,

* scaffold leaming up to the autonomous learning,

* ensure the premises for formative performance
evaluation,

= support the curriculum-embedded assessment.

2.2 Adoption of best practices in teaching QOP

As already mentioned, when designing this seminar we made
an extensive literature review in order to collect effective
principles (best practices) in teaching OOP. These practices
have been recorded either as short guidelines or as design
patterns. Most of these practices are OO language
independent, while few of them focus on teaching OOP
using Java. The practices adopted in our seminar are the
following:

* Deal with the important OO concepts from the
beginning. This constitutes the “objects-first” strategy
(Kolling and Rosenberg, 2001; Bergin, 2006b, pattern
“Early Bird”).

* Use a concept-driven approach that emphasizes the
role of OO concepts in program development
(Hadjerrouit, 1998; Hadjerrouit, 1999) and do not
focus on the programming language’s details.
Introduce concepts gradually from simple to higher
level ones (Bennedsen and Caspersen, 2004).

* Pay special attention to the quality of the designed
learning material (examples, exercises) in order for
students to be benefited while using and studying it
(Kolling and Rosenberg, 2001; Buck and Stucki,
2000a; Fleury, 2000; Bergin, 2006a, pattern “Quality
is Job One”).

= Design appropriate learning activities for active
construction of knowledge by the students

244

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(2)

(Hadjerrouit, 1999; Fleury, 2000; Fleury,
Bergin, 2006a, pattern “Active Student”).

= Use representative examples to start a new topic
(Fricke and Voelter, 2000, pattern “Relevant
Examples™).

= The course notes should not attempt to explain every
single detail of an OO language, instead the focus
should be on concepts, terminology and usage (Ben-
Ari, 2004).

= Follow the guidelines like “Don’t start with a blank
screen”, and “Read code” (Kolling and Rosenberg,
2001; Bergin, 2006a, pattern “Read before Write™), in
order students to become gradually able to develop
programs. Thus, focus on reading and debugging
activities (Fleury, 2000) and on an apprenticeship
model of learning (Astrachan and Reed, 1995).

s Use “case studies” for the application of OO
principles (Linn and Clancy, 1992; Fleury, 2001).

» Do not defer for a long the presentation of a “class-
program” with main method (Ragonis and Ben-Ari,
2005a).

= Integrate appropriately the utilization of an actual
programming environment for handling the difficulty
in using such environments (Kolling et al., 2003;
Xinogalos, Satratzemi, and Dagdilelis, 2006).

= Use technology to keep in touch with students
(Bergin, 2006a, pattern “24 by 77).

» Provide individual help to students (Fleury, 2000;
Bergin, 2006a, pattern “Differentiated Feedback™).

= Notice students’ mistakes and difficulties and consider
them in course’s improvement (Anthony, 1996,
pattern “Pitfall Diagnosis and Prevention™).

= Review and improve the course after each application
(Anthony, 1996, pattern “Iterative = Course
Development™).

2001;

2.3 Didactic decisions concerning the seminar’s syllabus
The seminar’s syllabus comprised of the following seven (7)
didactic units so as to be aligned with the Computing
Curricula Recommendations of IEEE/ACM (CC2001, 2001):
(1) Introduction to the Object-Oriented Programming
philosophy.
(ii) Object, Class, Attributes, Methods, diagrammatic
presentation.
(iii) Abstraction, Encapsulation — information-hiding —
Separation of behaviour and implementation.
(iv) Objects’ creation — Memory allocation — Constructor
— References to objects.
(v) Static variables and methods.
(vi) Methods overloading.
(vii) Class hierarchies — Inheritance — Polymorphism —
Methods overriding — Dynamic Binding.

We also took into account the already known learning
difficulties and we designed carefully the learning material
so as to help students avoid misconceptions (Holland,
Griffiths, and Woodman, 1997; Teif and Hazzan, 2004;
Anthony, 1996, pattern “Pitfall Diagnosis and Prevention™).

* More specifically, the following decisions have been
made:

o Attention was paid for the existence of specially

designed examples and exercises that aimed at

avoiding misconceptions and misconstructions of
specific topics. This means that: (i) concrete
examples of classes with their attributes and
methods and objects derived from these classes
have been designed for distinguishing class and
object concepts and comprehending the “abstract”
concept of class and the “concrete” concept of
object, (i) in all the examples and exercises,
classes have more than one attribute (instance
variable) each of different type (int, String, double,
etc.) in order to avoid the confusion between
object/variable (Holland, Griffiths, and Woodman,
1997), (iii) special care has been taken to present
classes with an appropriate design model, i.e.
mainly with private attributes and public methods
and also to work with teaching examples and
exercises having more than one instances from a
class in order to eliminate the confusion between
object/class (Holland, Griffiths, and Woodman,
1997).

o To help students overcome the difficulty in
understanding the constructor method and the
instantiation (Ragonis and Ben-Ari, 2002), we
designed and presented examples with all possible
cases of the constructor method definition (by
default and explicitly declared) and for the
initialization of attributes (by default constructor
without or with initialization of attributes in their
declaration, constructor explicitly declared in class
giving constant values to attributes or giving
values using parameters).

o To help students better understand what happens in
memory during program execution (Milne and
Rowe, 2002), we took measures in the unit that
contains the internal — invisible operations in OOP
(memory allocation during objects’ creation,
during reference types’ definition, during
assignment and de-assignment of reference types
with and from objects, during objects’ destruction
and also during the implicit calling of constructor
method by operator “new”). We integrated an
attempt of dynamic visualization (Ben-Ari,
Ragonis, and Ben-Bassat Levy, 2002) of all these
subjects in question, using video of simulated
program execution and a few carefully selected
program statements. Besides this measure, we used
the static graphical presentation of memory
situation as well.

2.4 Web-enhanced learning environment

The seminar consisted of face to face lecturing as well as
web-enhanced learning activities. Lectures occurred twice
per week. Each lecture lasted two hours. Lecturing followed
a live coding approach (Hyland and Clynch, 2002). For
supporting the ex-cathedra teaching method, an on-line
learning environment was set up. Students could access the
Moodle LMS to get the study guide, the online learning
material, the lecture slides as video presentations and other
informative material such as tools’ installation and usage
manuals links to other resources on Java language, etc.
Moodle was also used as a medium for asynchronous

245

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(2)

discussions, as well as for collecting and grading students’
assignments.

Figure 1 portrays the delivery mode, the utilized tools
and the characteristics of the learning material for the
proposed approach.

Fraciice with Blusd & SUN Ons Shudy

Attpod Leckuss Iy e’

P i ,
beamet o "*} Teacher

.
Canswinicate-Unlibarate

Leamnears
Figure 1. Overview of the Web-enhanced Learning
Environment

The online learning material was structured as course
notes about the fundamental OO concepts-principles and not
as a Java language’s textbook, assuring the ‘“concepts
driven” philosophy of our approach. Each unit consisted of
learning objectives to inform students about the concepts-
principles covered and what was expected from them to be
achieved in terms of concepts’ consolidation and their
application in programs, using the BlueJ educational
environment and the SUN One Studio professional
programming development tool. Source code files, as well as
the implemented Blue) projects’ source code files of
examples and exercises, were also included in the material.
Figure 2 shows a screenshot of the learning material that
concerns the memory allocation. The online learning
material was delivered as an IMS content package (IMS
2003b).

pasdelic dess x)

grarkedic Bk v

Figure 2. Screen Shot of the Online Learning Material
about the Memory Allocation, Packaged Using IMS
Content Package Specification

Each unit was also accompanied by a carefully designed
set of questions and exercises that needed to be solved and
handed in by students within pre-determined deadlines.
These exercises were used for assessing students’ knowledge
level and skills according to the learning objectives of each
unit.

An important learning asset was the case study. The
requirements specification, the design decisions, the
documentation, the testing and the source code of a simple
application were given to the students. With this case study,
the basic Object-Oriented Programming principles were
applied and demonstrated (details about the case study can
be found in the appendix of this paper). The importance of
the educational use of case studies has been well documented
in the past (Linn and Clancy, 1992) and also teaching
recommendations include the existence of case studies in
order to present a total picture about program organization
(Fleury, 2001).

Care had also been taken in order to ensure that the
source code of given examples was well written and well
commented. In this way students could be benefited from
reading this code (K&lling and Rosenberg, 2001) and could
access well-designed object-oriented programs from the
early start of the course (Buck and Stucki, 2000a).

For better consolidating the OOP concepts, students had
to perform learning activities using two (2) programming
tools:

(i) The BlueJ Educational Programming Environment
(Kolling et al, 2003; Barnes and Kélling, 2005).
BlueJ was chosen because of its full support of the
“objects-first” approach, its “simplicity” in use, its
“visualization” capability of objects and classes and
its potential to “interact” with classes creating objects
and with objects invoking methods and “inspecting”
their state.

(ii)The Integrated Development Environment in Java,
SUN One Studio. This environment was chosen so as
to help students become competent in using a
professional software development environment. We
also aimed at creating a “full picture” about Object-
Oriented programs and their dynamic flow by the
students, using programs’ code, which make use of
classes, create objects and invoke methods. Since a
professional software engineer or computer scientist
should be able to utilize professional tools, it is
necessary for the students to get used to such tools
(Ksolling et al., 2003).

Students had also access to a great number of well
documented Java programs (running examples in BlueJ or
SUN One Studio), with which they could experiment so as to
better understand concepts and to familiarize themselves
with coding themes, such as compilation and execution
errors. In parallel students were asked to solve few exercises
of gradually increasing difficulty.

3. THE EVALUATION STUDY OF THE SEMINAR
The seminar was organized for undergraduate students of all

semesters during the spring semester of 2005, in the
Department of Technology Education and Digital Systems of

246

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(2)

the University of Piraeus. The primary objective of this
department is to provide students with the knowledge and
practical experience in various fields of net-centric systems
and their development methodologies and environments. In
total, the seminar lasted 9 weeks comprised by 17 two-hour
lectures, twice per week. Attendance was not obligatory.
Actually, 20 students registered for the seminar. Their age
ranged from 18 to 23. During the first 12 lectures (out of 17)
almost all the students attended, but during the rest 5
lectures, about twelve (12) students attended. The main
reasons for the decrease of attendance was the heavy
obligations of other compulsory courses and/or scheduling
conflicts and the fact that students had eventually to focus on
studying for the forthcoming examination period.

All participants had already been taught the procedural
programming paradigm with the C programming language
and were highly interested in learning OOP, since that
knowledge would be helpful in accomplishing the learning
goals of other courses in the curriculum. The students'
motivation was to enhance their knowledge and skills in
OOP. Only three students attended the seminar in order to
get better prepared for passing the course's exams.

3.1 Instruments for Data Collection — Participants

The evaluation study was performed by analyzing students’
assignments and students’ performance in the final OOP
course examination, studying the journal kept by the lecturer
and analyzing the students’ opinion about the learning
effectiveness of the seminar. The latter was collected with
the aid of a “pre-test” and a “post-test” questionnaire
electronically submitted by the students and with focus
group interviews.

The “pre-test” questionnaire was filled out during the
first days of the seminar and not later than the first week. It
consisted of 46 questions. Students filled out the
questionnaire after listening about the seminar’s instructional
philosophy. The questions concerned with “demographic
data”, background in programming, self-estimation about
programming, learning styles, attitudes towards OOP.
Additionally some questions pertained to the identification of
their expectations from the seminar, its instructional
philosophy and its delivery mode.

The “post-test” questionnaire was filled out
immediately after the end of the seminar and consisted of 41
questions. Some questions of the “pre-test” replicated in the
“post-test” in order to measure the seminar’s -effect.
However, this questionnaire mainly consisted of a wide
number of closed-end questions that were used to evaluate
the contribution of various factors to the seminar’s
effectiveness, such as the type and quality of the various
learning resources, the usability of the utilized programming
tools, the type and relevance of seminar’s learning activities,
etc. The answers in closed-end questions were measured in a
five-point Likert-type.

It also included a section with a number of open-ended
questions to supplement the quantitative data. The open-
ended section related to students’ likes and dislikes towards
the learning material, the deficiencies concerning the
material and the approach and suggestions for improving
either of them.

The total number of undergraduate students who
responded to the evaluation study were 13 (out of 20), 8
women and 5 men, originated from all semesters (2nd, 4th,
6th, 8th semester of undergraduate studies).

The majority of the students (61.5%) utilized only the
seminar’s resources and this “adds more value” to their
evaluation and comments, as their learning was not
influenced by other sources.

3.2 Data analysis and Findings

This 9-week seminar seemed to be successful. Three students
participated in a final examination of the course about OOP.
One student succeeded full-marks (10/10), another one a
“very well” grade (8/10) and a third student got a pass
(6/10).

Students stated that their knowledge level about OOP
was much better after the seminar. More specifically, the
mean values of the students answers to the question “Based
on what you have been taught till now, how well do you
think that you have learned OOP?” increased from 2.1 (at the
“pre-test”) to 3.8 at the “post-test” (Answer’s coding
scheme: 4 =1 learned well, ..., 1 = I did not learn at all). Of
course, these statistics are just descriptive and show some
trend since the number of students who participated in the
evaluation study was relatively small.

Those statements were accurate since we made a cross-
reference of students’ opinion to the quality of their
assignments. The analysis of the students’ assignments also
revealed that students acquired solid knowledge about the
OO0 concepts and became able to solve problems applying
the OO philosophy. Several didactical problems had been
eliminated such as: understanding the difference between the
concepts of class and object, understanding the meaning of
the constructor method and its place within the class
(Ragonis and Ben-Ari, 2002), perception of the
encapsulation principle (Fleury, 2001), etc. However, some
difficulties remained such as the confusion between
attributes of an object and its parts (Teif and Hazzan, 2004),
the correct identification of attributes for the classes, the
comprehension of the composed classes.

Furthermore, as shown in Table 1, the students’ feelings
towards OOP were more positive after the seminar and the
degree of students’ satisfaction was high. The seminar’s
instructional approach offered great help to the students in
overcoming their difficulties and fears concerning the OOP.
While interviewing students, we found out that their fears
about OOP remained almost the same. They stated that,
although OOP is a much simpler subject than previously
believed (i.e. before attending the seminar); it demands a lot
of effort to become a competent OO programmer. A possible
explanation for these beliefs is that students performed a lot
of learning activities in OOP during the seminar and thus
they formulated a clearer opinion about this unquestionably
demanding subject.

As already discussed, with this evaluation study we
wanted to check which factors contribute to the acquisition
of knowledge and skills in OOP. Thus, we asked students
before and after the seminar to estimate the importance of
various factors to the enhancement of knowledge and skills
in OOP. The mean values of their answers are shown in
Table 2.

247

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(2)

Mean Mean
Question (“pre- | (“post
test”) ~test”)
Have the reasons that brought you - 4.7
to attend the seminar been satisfied?
Do you appreciate the cognitive 2.3 4.1
subject of OOP?
Do you have difficulties with OOP? 3.5 33
The seminar aided me to get over - 42
the difficulties that [was facing
concerning QOP.
Do you fear OOP? 2.5 2.5
Do you agree that QOP is a much - 4.0
simpler subject than previously
believed?
The seminar aided me to get over - 4.0
fears that I was feeling concerning
OOP.

Answers’ coding: 5= Very much, ..., 1= Not at all
Table 1. Students’ Feelings and Attitudes Towards OOP

Question: Estimate the | Mean Mean
importance of the following | (“pre- | (“post
factors to the enhancement of | test”) | -test”)
knowledge and skills

The assignments. 4.7 4.9
The lectures’ slides uploaded on 4.6 4.8
Moodle.

The online course notes. 4.7 4.7
The case study. 4.2 4.6
The hands-on practice with 4.5 4.6
programming environments/tools.

The discussions on the subject 44 4.5
matter with teachers via Moodle.

The discussions on the subject 3.8 3.8
matter with other students via

Moodle environment.

The comments/corrections of - 4.9
teachers to submitted assignments.

Examples with Java source code - 4.5
files included in the material.

Answers’ coding: 5= Absolutely important, ..., 1= Totally

unimportant

Table 2. Contribution of Various Factors to the
Enhancement of Knowledge and Skills in OOP

therefore their appropriateness and their successful design
was emerged.

The case study also contributed greatly to the
enhancement of knowledge and skills, although students
initially estimated the contribution of this factor lower
compared to the others.

As predicted, the students highly appreciated the easy
and flexible access to the presentation slides, the examples in
Java and the on-line reference material via the Moodle LMS.
Moreover, they considered pedagogically effective their
involvement in learning activities utilizing the educational
tools. The visualization of classes and objects that BlueJ
supports had been highly appreciated by the students. The
environment considerably helped in the clarification of
various concepts such as class, object, method, inheritance
and operations such as instantiation and method invocation.

Characteristically, two students said that: “BlueJ helped
me because I could see what happened when I was writing
the code and how classes were interrelated within the
program” and “BlueJ aided me considerably to realize what
happens inside a program, how classes are related to each
other and to objects”.

Students were asked in the “post-test” questionnaire to
state the most valuable features/reasons for using the BlueJ
environment such as ease-of-use, interactivity, etc. The
collected results are depicted in the Table 3. Students
particularly appreciated the simplicity of the environment.
As expected, the strengths of the Blue] tool had been its
interactivity, visualization and simplicity attributes (Kolling
and Rosenberg, 2001; Kolling et al., 2003).

As can be seen from Table 2, the comments/corrections
made by the teachers on the students’ assignments had been
rated as the most important factor. This factor in
combination with the one about “teacher-student
communication via Moodle” indicates how beneficial the
interaction with the teachers was for the students. On the
contrary, the discussions among students had not been highly
appreciated. This may be explained by the fact that the
students had not been used to such collaborative working
schemes. Perhaps, the fact that students came from different
semesters with different expectations prevented the creation
of a “learning community”.

Students estimated that the assignments contributed
significantly in increasing their knowledge and skills, and

Question: Which features of the BlueJ | Number

environment made you use it for of

performing learning tasks? Select those | students

that you think. (max 13)

Ease-of-use of the BlueJ environment. 11/13

Classes and objects are represented 10/13
raphically.

Users can interact directly with classes and 8/13

objects.

Easy instantiation and visual representation 9/13

of objects.

Users can easily invoke methods and check 9/13

their function (you can pass parameters and

get the returning result in an easy way)

without the need to write a single line of

code.

Users can easily inspect attributes’ values 7/13

of the objects.

It’s easy to compile programs. Compile- 9/13

time errors are displayed directly in the

source editor by highlighting the error line.

The environment shows the 6/13

“implementation” aspect and “interface”

aspect of classes.

The environment incorporates an easy-to- 4/13

use debugger.

You can get immediate feedback after 5/13

having experimented with it.

Table 3. Students’ Opinion about the Most Valuable
Features/Reasons for Using the BlueJ Environment

248

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(2)

Of course, students had some dislikes towards the
seminar’s instructional approach. Few students stated the
need for practical lab sessions with the physical presence of
a tutor. Also, some students said that the sections (a)
Encapsulation — information-hiding — Separation of behavior
and implementation and (b) Polymorphism, need
improvement.

The observations during the lectures and some students’
answers to interviews, made us decide some revisions of the
instructional philosophy. More specifically, the order of
presentation of some didactic units should change such as
swap between the third (abstraction-encapsulation) and the
fourth topic (instantiation-constructor), because constructors
should come before any other concept and right after the
introduction of main OOP concepts, as well as a change for
the assignments that students have to submit after the end of
each didactic unit should happen. Each assignment should be
a part or a piece of a medium-size software development
project that could be gradually developed step by step. Thus,
the students will more easily understand how the various OO
concepts are interrelated.

Having made the aforementioned changes based on the
evaluation findings and students’ feedback, we performed in
spring semester of 2006 a new evaluation study with a
considerably larger group (66 students).

More specifically, 66 students voluntarily attended a 9-
week course on OOP which followed the blended learning
approach already described. The students’ profile was the
same to the one of the students who participated to the first
experiment. Students originated from all semesters of
undergraduate studies in the Department of Technology
Education and Digital Systems at the University of Piraeus.
Apart from having assessed the student’s assignments
students had also to take exams on OOP at the end of the
course. Six students did not appear due to unspecified
personal reasons. 45 out of 60 students passed the exams (i.e.
75%). The average score of students’ grades was 6.28 with
standard deviation of 3.50. The success rate is impressive
when compared to the success rate of the same course being
taught using traditional methods in the same Department.
The success rate at the same academic year was 27.38% (23
out of 84 students). The course’s examination included
questions and exercises that aimed to:

= examine students’ comprehension about OO concepts
and their application in Java programs,

= ask students analyze problems in object-oriented
terms and create short programs in Java language in
order to solve these problems,

» test if students were able to write Java programs from
a given class diagram design.

From the assessment of students’ assignments and final
examination papers as well as the analysis and interpretation
of the students’ answers to “pre” and “post-test”
questionnaires, we can mention that:

= Students stated that their knowledge level about OOP
was much better after the new course and appreciated
the importance of OOP for their studies and their
professional future.

» The same instructional design factors contributed to
the enhancement of students' knowledge and skills in
OOP at almost the same high level. For example,

Table 4 shows students answers before and after the
seminar. Students’ opinions about the importance of
various factors to the enhancement of their knowledge
and skills in OOP are quite close to ones given by the
first small group of students.

= The discussions on the subject matter among students
via the Moodle environment had been considered an
important factor to their enhancement of knowledge
and skills. This new finding can be justified by the
fact that emphasis was given on creating an active
online learning community during the new seminar.

Question: Estimate the | Mean | Mean
importance of the following | (“pre- [(“post-
factors to the enhancement of | test”) | test”)
knowledge and skills.

The case study. 4.50 4.39
The discussions on the subject 422 4.10
matter with other students via

Moodle environment.

The discussions on the subject 4.56 4.28
matter with teachers via Moodle

The assignments 4.39 4.28
The lectures’ slides uploaded on 430 432
Moodle.

The hands-on practice with 4.50 -
programming environments/tools.

The online course notes. 4.56 4.44
Attending the face to face - 3.89
meetings of the seminar and the

lectures during these meetings.

The comments/corrections of - 4.10
teachers to submitted

assignments.

Examples with Java source code - 4.28
files included in the material.

Answers’ coding: 5= Absolutely important, ..., 1= Totally
unimportant
Table 4. Contribution of Various Factors to the
Enhancement of Knowledge and Skills in OOP

4. CONCLUDING REMARKS

In this paper, we presented our efforts for building up an
undergraduate course on OOP whose instructional approach
was based on didactical guidelines and design patterns that
have been proposed in previous studies. We designed the
learning material, i) emphasizing on the dissimilarity of OO
programming philosophy, ii) focusing on OO concepts-
principles with the use of representative examples, iii)
providing a great number of well documented exemplar
programs in Java and complete “class-programs” as case
examples, iv) asking students to perform learning activities
and submit assignments using the Bluel educational tool as
well as the SUN One Studio professional programming
environment. We also offered to students an on-line learning
environment for the submission and grading of assignments,
the communication with teachers and their peers, as well as
the easy access to the various learning resources.

We performed two evaluation case studies which
showed that the proposed approach is effective. Students’

249

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(2)

achievements in submitted assignments as well as their
performance in final exams, confirmed that several didactical
problems have been solved successfully. Via an analysis of
teacher’s journal as well as students’ answers to
questionnaires and interviews, we found out that most of the
design decisions made when setting up the course had been
appreciated by the students and contributed to its learning
effectiveness.

Concluding, we plan to formalize the instructional
approach of this seminar using the IMS Learning Design
specification (IMS 2003a), thus augmenting its re-usability.
It’s also under our consideration to enrich our instructional
approach by giving more emphasis on the modeling
perspective of OOP, since a model is itself an abstraction of
something for the purpose of understanding it (Groven,
Hegna, and Smerdal, 2003; Berge et al., 2003).

5. ACKNOWLEDGMENT

We would like to thank all students who participated to the
evaluation study for giving us valuable feedback.

6. REFERENCES

Anthony, D. L. G. (1996), Patterns for Classroom Education,
Pattern Languages of Programming 2, Vlissides, Coplien,
Kerth (editors), Addison Wesley, 1996, pp 391, retrieved
October 1, 2006, from
http://fianchaiwriting 30megs.convclassroom-ed. html

Astrachan, O., and Reed, D. (1995), “AAA and CS1: The
Applied Apprenticeship Approach to CS1.” ACM
SIGCSE Bulletin, 27(1), 1-5.

Barnes, D. J.,, and Kalling, M. (2005), Objects First with
Java, A Practical Introduction using Blue]. o edition,
Prentice Hall.

Benander, A., Benander, B., and Sang, Janche (2004),
“Factors related to the difficulty of learning to program in
Java—an empirical study of non-novice programmers.”
Information and Software Technology, 46(2), 99-107.

Bennedsen, ., and Caspersen, M. (2004), “Teaching Object-
Oriented Programming — Towards Teaching a Systematic
Programming Process.” Paper presented at 18" European
Conference on Object-Oriented Programming, 8%
Workshop on Pedagogies and Tools for the Teaching and
Leaming of Object Oriented Concepts, Oslo, Norway.

Ben-Ari, M., Ragonis, N., and Ben-Bassat Levy, R. (2002),
“A Vision of Visualization in Teaching Object-Oriented

Programming.” Proceedings of the 2™ Program
Visualization ~Workshop, 83-89, HornstrupCentret,
Denmark.

Ben-Ari, M. (2004), “Situated Learning in Computer Science
Education.” Computer Science Education, 14(2), 85-100.
Berge, O., Borge, R. E., Fjuk, A., Kaasbell, J. and
Samuelsen, T. (2003), “Learning Object-Oriented

Programming.” Norsk Informatikkonferanse.

Bergin, J., Stehlik, M., Roberts, J., and Pattis, R. (2004),
Kare] J. Robot a gentle introduction to the art of object
oriented programming in Java. Published manuscript,
retriecved July 13, 2006, from hittp:/esis.pace.
edu/~bergin/Karellava2ed/Karel++-JavaEdition. himl

Bergin, J. (2006a), Some Pedagogical Patterns, retrieved
October 1, 2006, from
hitp:/esis. pace.edu/~bergin/patterns/fewpedpats hitml

Bergin, J. (2006b), Fourteen Pedagogical Patterns, retrieved
October 1, 2006, from
http//esis.pace.edu/~bergin/PedPat .3 htnl

Brusilovsky, P., Kouchnirenko, A., Miller, P., and Tomek, L.
(1994), “Teaching programming to novices: a review of
approaches and tools.” Proceedings of ED-MEDIA 94-
World Conference on Educational Multimedia and
Hypermedia, Vancouver, Canada, 25-30 June, 103-110.

Brusilovsky, P., Calabrese, E., Hvorecky, Y., Kouchnirenko,
A. and Miller, P. (1997), “Mini-languages: a way to learn
programming principles.” Journal of Education and
Information Technologies, 2(1), 65-83.

Buck, D., and Stucki, D. (2000a), “Design early considered
harmful: Graduated exposure to complexity and structure
based on levels of cognitive development.” ACM SIGCSE
Bulletin, 32(1), 75-79.

Buck, D., and Stucki, D. (2000b), “JKarclRobot: A Case
Study in Supporting Levels of Cognitive Development in
the Computer Science Curriculum.” ACM SIGCSE
Bulletin, 33(1), 16-20.

CC2001 Computing Curricula 2001 (final report) (2001),
The Joint Task Force on Computing Curricula (IEEE
Computer Society and ACM), December 15, retrieved
January 27, 2007, from http://www.computer.ore/portal/
cms_docs_ieeecs/iececs/education/cc2001/ce2001.pdf

Cooper, S., Dann, W.,, and Pausch, R. (2003), “Teaching
Objects-first in Introductory Computer Science.” ACM
SIGCSE’03, 191-195.

Fjuk, A., Karahasanovic, A., and Kaasbell, J. (2006),
Comprehensive Object-Oriented Learning: The Learners
Perspective. Informing Science Press, California.

Fleury, A. E. (2000), “Programming in Java: Student-
constructed rules.” ACM SIGCSE Bulletin, 32(1), 197-
201.

Fleury, A. E. (2001), “Encapsulation and reuse as viewed by
java students.” ACM SIGCSE Bulletin, 33(1), 189-193.
Fricke, A., and Voelter, M. (2000), “Seminars: A

Pedagogical Pattern Language About Teaching Seminars
Effectively.” Proceedings of EuroPLoP 2000, retrieved
October 1, 2006, from

hitp:/fwww.voelter.de/publications/seminars.htmi

Gill, T. Grandon (2004), “Teaching Flowcharting with
FlowC.” Journal of Information Systems Education, 15(1),
65-78.

Groven, A., Hegna, H., and Smerdal, O. (2003), “00
learning, a modeling approach.” Paper presented at 17™
European Conference on Object-Oriented Programming,
7h Workshop on Pedagogies and Tools for the Teaching
and Learning of Object Oriented Concepts, July,
Darmstadt, Germany.

Hadjerrouit, S. A. (1998), “Constructivist Framework for
Integrating the Java Paradigm into the Undergraduate
Curriculum.” ACM SIGCSE Bulletin, 30(3), 105-107.

Hadjerrouit, S. (1999), “A Constructivist Approach to
Object-Oriented Design and Programming.” ACM
SIGCSE Bulletin, 31(3), 171-174.

250

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(2)

Holland, S., Griffiths, R., and Woodman, M. (1997),
“Avoiding object misconceptions.” ACM SIGCSE
Bulletin, 29(1), 131-134.

Hyland, E., and Clynch, G. (2002), “Initial experiences
gained and initiatives employed in the teaching of Java
programming in the Institute of Technology Tallaght.”
ACM International Conference Proceeding Series
(AICPS), Vol. 25, 101-106.

IMS Learning Design Specification (2003a), retrieved
October 11, 2006, from
hitp:/fwww. imselobal. org/learningdesign/index.cfm

IMS Content Packaging Specification (2003b), retrieved
October 11, 2006, from
hitp://www.imsglobal.org/content/packaging/index.¢fm

Kolling, M., and Rosenberg, J. (2001), “Guidelines for
Teaching Object Orientation with Java.” ACM SIGCSE
Bulletin, 33(3), 33-36.

Kélling, M., Quig, B., Patterson, A., and Rosenberg, I.
(2003), “The BlueJ system and its pedagogy.” Journal of
Computer Science Education, Special Issue on Learning
and Teaching Object Technology, 13(4), 249-268.

Lave,], and Wenger, E. (1991), Situated learning:
Legitimate peripheral participation. Cambridge University
Press, Cambridge.

Linn, M., and Clancy, J. (1992), “The case for case studies of
programming problems.” Communications of the ACM
35(3), 121-132.

Luker, P.A. (1994), “There’s more to oop than syntax!”
ACM SIGCSE Bulletin, 26(1), 56-60.

Milne, J., and Rowe, G. (2002), “Difficulties in Learning and
Teaching Programming — Views of Students and Tutors.”
Education and Information Technologies, 7(1), 55-66.

Psaromiligkos, Y., and Retalis, S. (2003), “Re-Evaluating the
Effectiveness of a Web-based Learning System: A
Comparative Case Study.” Journal of Educational
Multimedia and Hypermedia, AACE, 12(1), 5-20.

Ragonis, N., and Ben-Ari, M. (2002), “Teaching
Constructors: A Difficult Multiple Choice.” Paper
presented at 16™ European Conference on Object-Oriented
Programming, 6™ Workshop on Pedagogies and Tools for
the Teaching and Leaming of Object Oriented Concepts,
Malaga, Spain.

Ragonis, N., and Ben-Ari, M. (2005a), “On Understanding
the Statics and Dynamics of Object-Oriented Programs.”
ACM SIGCSE’05, 226-230.

Ragonis, N., and Ben-Ari, M. (2005b), “A Long-Term
Investigation of the Comprehension of OOP Concepts by
Novices.” Computer Science Education, 5(3), 203-221.

Sanders, D., and Dorn, B. (2003), “Jeroo:a tool for
introducing object-oriented programming.” ACM SIGCSE
Bulletin, 35(1), 201-204.

Schulte, C., and Niere, J. (2002), “Thinking in Object
Structures: Teaching Modeling in Secondary Schools.”
Paper presented at 16" European Conference on Object-
Oriented Programming, 6" Workshop on Pedagogies and
Tools for the Teaching and Learning of Object Oriented
Concepts, Malaga, Spain.

Teif, M., and Hazzan, O. (2004), “Junior High School
Students’ PerceEtion of Object Oriented Concepts.” Paper
presented at 18" European Conference on Object-Oriented
Programming, 8" Workshop on Pedagogies and Tools for

the Teaching and Learning of Object Oriented Concepts,
Oslo, Norway.

Xinogalos, S., and Satratzemi, M. (2002), “An Integrated
Programming Environment for Teaching the Object-
Oriented Programming Paradigm.” Lecture Notes In
Computer Science (LNCS), Vol. 2510, 544-551.

Xinogalos, S. Satratzemi, M., and Vassilios Dagdilelis, V.
(2006), “An introduction to object-oriented programming
with a didactic microworld: objectKarel.” Computers &
Education, 47(2), 148-171.

Zimmerman, B. J., and Kitsantas, A. (1999), “Acquiring
writing revision skill: Shifting from process to outcome
self-regulatory goals.” Journal of Educational Psychology,
91(2), 241-250.

AUTHOR BIOGRAPHIES

Stavroula C. Georgantaki graduated from Department of
Physics, School of Sciences of the
National and Kapodistrian University
of Athens, Greece, and received the
MSc degree in Electronic Automation,
School of Sciences, National and
Kapodistrian University of Athens,
Greece. She had been employed as
software engineer in private
organizations. Her current job is
teacher of Informatics in Secondary Education. She has
taught for over 10 years. She is currently a PhD Candidate at
the Department of Technology Education and Digital
Systems of the University of Piraeus, Greece. Her main
research interests are in the Didactics of Object-Oriented
Programming.

Symeon D. Retalis is Associate professor at the Department
of Technology Education & Digital
Systems, University of Piraeus. He
holds a diploma of Electrical and
Computer Engineer from the
Department of Electrical and
Computer Engineering studies,
National Technical University of
- Athens, Greece, an MSc degree in
Information Technology-Knowledge Based Systems from
the Department of Artificial Intelligence, University of
Edinburgh, Scotland, and a PhD diploma from the
Department of Electrical and Computer Engineering,
National Technical University of Athens, Greece. His
research interests lie on the development of web-based
learning systems, design of adaptive hypermedia systems,
web engineering, and human computer interaction. He has
coordinates and participated in various European R & D
projects such as WEENET, MAUSE, TELL, ELEN,
UNIVERSAL, etc. He serves in the editorial board of
Computers in Human Behavior, IEEE Journal of Educational
Technology and Society, ACM Computing Reviews, Journal
of Information Technology Education. He participates to the
ACM Web Engineering special interest group, to the
CEN/ISSS learning technologies workshop. He is also
director of the CoSy LLab (Computer Supported Learning
Engineering Laboratory)[http://cosy.ted.unipi.gr]. His pub-
lication list contains more than 70 items.

251

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(2)

APPENDIX
SOME ASPECTS OF THE CASE STUDY

This appendix contains highlight some aspects of the case study included in the instructional material. The case study was
used for explaining students the analysis, design and implementation process of a small OO application, step by step. The OO
application concerned a “street market”.

Description of the Problem to Be Solved
In a “Street Market” consumers, walk around the stands that sellers use to exhibit their products and choose products. The
consumers have a basket for placing inside it the products and a wallet with money for paying the products. Correspondingly,
the sellers have their “cash” with money receipted from sales.
The sellers weigh the chosen products and calculate their total price that the costumers have to pay before placing them in the
shopping baskets and the sellers add the paid amount to their “cash”. The products of the Market are of two kinds. The first-
quality products, which have the marked price and the second-quality ones having a percentage discount.

Design of the Situation Using the Bluej Educational Environment
The first task concemns the creation of a class diagram for the “Street market” application. Students first see the hierarchy of
classes and the specification of their characteristics. Class diagrams are shown in the BlueJ environment, as shown in Figure 3.

Rt i Miakot
Broms g Bak e

£
% &
i

Figure'i A screen shot of the class diagra{;h in the BlueJ environment

Adding Functionality to Classes Using the Bluej
Students are gradually learning how to specify and add methods to the classes already specified during the previous step.
Bodies of the methods added to the class specification are shown below (Figure 4).

public void addProduct(product productl) {
myproduct.add(productl);

public double weigh(){
return Math.random()*10;

public void pay(double amount) {
amountInWallet = amount;

public void receivePayment(double amount) {
cashAmount += amount;
}
public double calculateValue(product productl, double quantity){
return (productl.price * quantity);

}

public double salePrice() {

return (price * (1 - (discountRate/100)));
}

Figure 4. Some methods’ bodies for the “Street market” application

252

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(2)

Testing and Debugging Step-By-Step an OO Application Using the Bluej Environment

Students are also been taught how to test and debug an OO application using the BlueJ environment. Figure 5, shows how the
application runs where objects are being created and methods have been invoked using the BlueJ interactivity feature.

Figure 5. Testing and debugging step-by-step the “Street market” application

Transferring Classes’ Code from Bluej to SUN One Studio, Creation of A “Class-Program” With Main Method, and
Execution

The last step of the case study deals with showing students how to transfer the OO source code from the BlueJ environment to
the SUN One Studio for further enrichment of the application’s functionality and documentation. Figure 6 shows a screenshot
of the “”Street Market” application source code in the SUN One Studio.

i
Pedie SNkl vk skn irrumg 11w
Basnt ko g daeRe
e b - e e £, 20
L pivastentivhiaiaet v o mew Drevtied 2hpPratat i e S

Figure 6. A screenshot of the “”’Street Market” application source code in the SUN One Studio

253

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISCCID Evsic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2007 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

