Contemporary Approaches and Techniquesfor the Systems Analyst
Batra, Dinesh;Satzinger, John W

Journal of Information Systems Education; Fall 2006; 17, 3; Research Library

pg. 257

Journal of Information Systems Education, Vol. 17(3)

Contemporary Approaches and Techniques for the
Systems Analyst

Dinesh Batra
Decision Sciences and Information Systems
College of Business Administration
Florida International University
University Park, Miami, FL 33199

batra@fiu.edu

John W. Satzinger
Computer Information Systems Department
Missouri State University
901 S. National Avenue
Springfield, MO 65804
JohnSatzinger@MissouriState.edu

ABSTRACT

A recent survey of methodologies and techniques currently used in organizations for developing information systems indicates
significant trends that call for a revision of the Information Systems (IS) Systems Analysis and Design (SA&D) course to
define what methodologies, techniques, models, and tools need to be taught. As authors of analysis and design textbooks, we
are particularly concerned about these trends, as are all who are involved in information systems educational programs. Each
program needs to consider how to incorporate three fundamental changes on the SA&D curriculum — the growing popularity
of object-oriented techniques, the emergence of the iterative approach, and the increasing adoption of the agile approach. This
article discusses these three fundamental changes and references research describing the recent trends. Based on this research
and on our experience teaching and writing about analysis and design, we make some recommendations. Given the vast
number of topics in analysis and design, it is time to seriously consider including two courses in the IS curriculum that can
deal with the breadth of the system related topics in the contemporary environment. In terms of functional requirements and
analysis issues, we argue for employing a use case driven approach. We recommend that the SA&D courses use Unified
Modeling Language (UML) whenever possible for modeling; however, we note some of the usability problems of UML. We
suggest that the time has come to drop the data flow diagram (DFD). We also consider the impacts of the outsourcing trend
on the course coverage.

Keywords: Trends in Analysis and Design, Analysis and Design Techniques, Teaching Analysis and Design

1. INTRODUCTION examine the systems analysis and design course in the IS

curriculum and to define what methodologies, techniques,

Recent and substantial developments in systems analysis and
design methodologies and techniques have probably affected
the need for a significant revision of the IS Systems Analysis
and Design (SA&D) course. After many relatively stable
years emphasizing a waterfall system development life cycle
(SDLC) using structured analysis and design modeling
techniques, the analysis and design course gradually evolved
in the 1990’s to add more emphasis on data concepts,
interactive interfaces, prototyping, client-server systems,
enterprise systems, and more recently Web-based
technologies. Additionally, object-oriented technologies and
techniques as well as agile development methodologies have
emerged to address such trends. Thus, it is time to re-

models, and tools need to be taught in the IS Systems
Analysis and Design course.

Most MIS degree programs have just one SA&D course
(Gorgone et al., 2002; Gorgone et al,, 2006). The typical
SA&D instructor faces a number of difficult questions when
trying to fit the much larger range of topics into a single
course. How does one fit the structured, the iterative, and the
agile approaches in one course? Should the life cycle notion
be taught as iteration to reap the advantages of the structured
and iterative approaches? Can agile principles be included in
the same course even though there are some fundamental
differences with the structured and the iterative? Is it time to

257

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

drop the data flow diagrams (DFD’s)? Should the use case
be the basic unit of requirements documentation? Can use
cases be employed in a structured approach? Can data
modeling be used along with object-oriented techniques?
How many UML diagrams need to be covered? How do we
reconcile object-oriented development with relational
systems? Should the focus of the course be toward web-
enabled systems? Given the outsourcing environment, how
much design and implementation should be covered as
compared to requirements gathering, analysis, and project
management? Should the MIS program consider a second
course to fit the topics? Or, should the SA&D instructor
work with the instructor who teaches the project
management (PM) course, which can incorporate the
management principles of the three systems development
approaches?

In this paper, we attempt the arduous task of finding
reasonably satisfactory answers to such questions faced by
the SA&D instructor. In our opinion, there is no optimum
solution; we provide guidelines and recommendations that
can be adapted based on specific privileges or constraints of
the MIS program.

We employ the terms approach, methodology, technique,
model, and tool, terms which are sometimes used
interchangeably in the literature. So it is appropriate to
provide a working definition of each of these terms. An
approach refers to an essential systems analysis and design
philosophy. Currently, there are three popular approaches —
structured, iterative, and agile. A methodology is an
instantiation of an approach, e.g., Rational Unified Process
(RUP). Sometimes a methodology is called a method,
although we try to avoid the use of the latter term. A model

is a formalism and a way of representing important
constructs. A fechnique denotes how the model is used. An
ER model (Chen, 1976) can be described as a model or a
technique depending on the context. As a model, ER
provides the constructs (entity, relationship, attribute,
generalization). As a technique, ER provides a procedure for
data modeling (e.g., see Teorey, Yang, and Fry, 1986). A
tool is software support for a technique or a methodology.
We admit that there is overlap among these terms, and that
the usage sometimes is ambiguous.

2, WHAT IS THE FUNDAMENTAL CHANGE?

A recent survey of methodologies (Lang, 2006) currently
used in organizations for developing web-based systems
shows that the notion of methodology in the traditional
systematic sense seems to have been largely displaced by
hybrid aggregations of techniques and other method
fragments. These aggregations and fragments are selected on
the basis of usefulness and purposefully blended within the
overarching framework of an in-house development process.
The survey reported that the use of methods is 23% for
hybrid, 22% for structured, 15% for agile, 14% around tools,
13% for iterative/incremental, and 8% for object-oriented,
among others (see Table 1). Note that the adoption of object-
oriented development is low because models and techniques
involving UML are not standalone methodologies. It might
be better to view object-orientation in the realm of
techniques.

The use of models/techniques is 95% for flowcharts, 74% for
entity relationships models, 72% for use case diagrams, 62%
for class diagrams, and 50% for state machine diagrams,
among others (see Table 2). It can be deduced that the use

Approach Adoption
Hybrid, customised, or proprietary in-house method or approach 23%
Traditional “legacy” software development methods and approaches, or variants 229
(e.g. SSADM, Yourdon, JSP, SDLC / Waterfall) o
Rapid or agile development methods and approaches (e.g. RAD, Extreme 15%
Programming) °
Approaches that are focused around the use of tools and development 14%
environments (e.g. PHP, Java, Flash, ASP, J2EE, InterDev) ¢
Incremental or evolutionary methods and approaches (e.g. Spiral Model, RUP, 13%
Staged Delivery, Iterative Design) °
Object-oriented development methods and approaches (e.g. OOAD, UML, J2EE) 8%
No method used / development is “ad hoc” 8%
HCI / Human Factors Engineering methods (e.g. User Centred Design, Goal-based Y
Requirements) ¢
Technique-driven development (e.g. Storyboarding, Flowcharts, UML, 6%
Prototyping)

Specialised non-proprietary methods for Web/hypermedia systems design (e.g. 5%
Fusebox, WSDM, HDM) °

Table 1: Use of Methodologies in Web Enabled Systems (adapted from Lang, 2006)

258

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

Technique Adoption
Screen prototypes / Mockups 97%
Flowcharts 95%
2-D site mapping techniques 91%
Storyboards 85%
Entity-Relationship Diagrams T74%
Use Case Diagrams / Scenarios 2%
Object-Oriented Class Diagrams 62%
3-D site mapping techniques 52%
Statecharts / State Diagrams 50%

Table 2: Use of Techniques for Modeling in Web-Enabled Systems (adapted from Lang, 2006)

case and class diagrams are employed beyond the iterative
and object-oriented approaches, and the entity relationship
model is used beyond the structured approach. The overall
trend is toward employing techniques normally associated
with object-oriented development (e.g., use case, class, and
state machine diagrams) while retaining certain key
techniques from legacy (e.g., entity relationship and
flowcharts).

In revising the analysis and design course, the first question
to address is how to refer to the fundamental changes
affecting the course. Although Lang (2006) does not
explicitly compare methods over a time period, the results
indicate that there are changes along two dimensions — the
techniques, and the methodologies. In terms of techniques,
the change is obvious — the predominant increase is in terms
of what are normally associated with object-oriented
development. Many of the techniques did not exist a decade
ago. This is the first fundamental change. It seems that the
developers associate “object-oriented” with techniques, but
not with a methodology. This is not surprising; for example,
RUP is presented as an iterative methodology that employs
object-oriented techniques (Kroll and Kruchten, 2003). Some
changes are subtle. For example, the use case diagram is
widely employed suggesting it not the hegemony of object-
oriented development. Overall, the trend is, indeed, toward
increasing use of object-oriented (OO) techniques.

There are many sound reasons for defining the shift based on
OO techniques. First, the emphasis on OO programming in
introductory programming courses makes the use of OO
analysis and design techniques the logical direction.
Additionally, the most publicized of the UML diagrams refer
explicitly to OO constructs (Booch, Rumbaugh, and
Jacobson, 1999), so teaching UML class diagrams and
sequence diagrams in the analysis and design course is a
reasonable direction, although many UML diagrams are not
strictly OO (e.g., activity diagram, use case diagram,
package diagram). Finally, OO has been the buzzword for
newer, better, faster, and smarter, even though the impact is
more complicated.

In terms of methodologies, there are varied approaches with
none clearly dominating over others (see Table 1), a clear

shift from the singular domination of the structured approach
until about a decade ago. Many view a second fundamental
change as the shift from a waterfall life cycle to an iterative
life cycle. A major adjustment is required when describing
iterative project planning and project management. Iterative
life cycles began with early prototyping methodologies. The
spiral model (Boehm, 1988) was the first to formalize
iterative development by breaking away from the waterfall
life cycle model and focusing on iteration planning based on
risk. The Unified Process (UP) life cycle provides a mature
iterative approach for project planning and project
management (Jacobson, 2000).

Superimposing the first change (techniques) and the second
change (methodologies) leads to some interesting
combinations. Thus, it is possible to teach SA&D in a
sequential, waterfall framework including all of the
traditional analysis and design activities and techniques but
substituting OO analysis and design models. At the same
time, it is possible to teach analysis and design for an
iterative, adaptive environment while still using structured
analysis and design models.

The third fundamental change is the move from a more
formal (disciplined) approach toward a more agile system
development. The frustration with the bureaucracy of the
disciplined approaches has led to the proposal for agile
development (Boehm and Turner, 2004). The new approach
is defined by the Agile Manifesto
(http://agilemanifesto.org/), which states that developers
should value individuals and interactions over processes and
tools, working software over comprehensive documentation,
customer collaboration over contract negotiation, and
responding to change over following a plan (Larman, 2003).
Examples of agile development include methodologies such
as XP (Beck, 1999; Auer and Miller, 2002), Adaptive
Software Development (Highsmith, 2000), Crystal
(Cockburn, 2004), and Scrum (Schwaber and Beedle, 2002).
Ambler and Jeffries (2002) argue that the Unified Process
can be used in a more agile manner with some modifications.
Agile methodologies have emerged in response to a dynamic
environment, where requirements changes need to be
accepted and incorporated. The agile approach focuses on
developing working code built through short iterations and

259

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

relies on feedback rather than planning as a guiding
mechanism. Agile methods require a high level of
interaction, collaboration, and face-to-face communication
among users and developers. The methods emphasize
simplicity, prescribe less documentation, and rely mostly on
the tacit knowledge developed through collaboration.

In summary, probably the most fundament question to
answer when updating the SA&D course is choosing the
most important emphasis for your local needs. It is important
to remember that each of these three fundamental changes
can be combined together in varying degrees, and there is a
need for research toward a framework that more formally
defines these changes. The scope of this paper, however, is
restricted to pedagogical issues.

3.ISIT REASONABLE TO HAVE TWO ANALYSIS
AND DESIGN COURSES?

It is evident that given the magnitude, the three fundamental
changes discussed in the previous section are difficult to
address in one cohesive analysis and design course. It may
be time to argue for a second analysis and design course in
the IS curriculum or to incorporate some of the additional
material in an existing course. In fact, there are many more
issues to address related to requirements determination,
analysis, and design (discussed later in this paper). Further,
another trend in today’s business environment is distributed
software development (Coar, 2003; Brown and Wilson,
2005). This trend is more pervasive as a result of
globalization, outsourcing, mergers and acquisitions, and the
support of advanced communication technologies (Sahay,
2003). In distributed projects, team members are usually
located in different places, which may belong to different
countries as in the case of off shoring. Distributed
environment increases complexity of the software
development process due to differences in time zones,
geographies, language, and culture (Herbzleb and Mockus,
2003; Olson and Olson, 2003). The outsourcing trends and
the projected need for more diverse skills entail additional
coverage for the SA&D course.

We discuss five reasonable but not exhaustive solutions to
accommodating the additional material in two courses. These
are based on our observations and experience as textbook
authors as well as course recommendations in the Gorgone et
al. (2006) report.

One approach to having two analysis and design courses is to
have the first course focus on the SDLC, project
management, defining the system vision, and defining the
functional and non-functional requirements. This course can
be called Systems Analysis. The second course can focus on
the detailed design, implementation, testing, and support.
This course can be called Systems Design. This approach
provides instructors enough time to cover both topics. It is a
problematic approach, however, because iterative and agile
approaches do not have a clear distinction between analysis,
design, and implementation. This is the approach that was
once followed by the first author, but the courses were
merged about a decade ago because of curriculum
constraints.

Another approach is to have the first analysis and design
course cover a predictive approach to the SDLC with
structured analysis and design techniques. The second course
can build on the first course but cover an adaptive, iterative
approach with OO analysis and design techniques. Agile
approaches can also be introduced. This is the approach that
was followed by the second author until recently.

A third approach is to offer one course that addresses the
importance of project management issues in analysis and
design, and a second course that covers analysis and design
techniques and models. The project management course can
address basic project management principles, feasibility,
information gathering, predictive versus adaptive life cycles,
package selection issues, outsourcing issues, and other
important aspects of IS development projects. The analysis
and design techniques and models course can address
business modeling, requirements modeling, analysis, design,
and implementation as well as techniques based on UML
diagrams. This approach is quite feasible because many
curricula already have a project management course. If the
program is willing to allocate a significant portion of the
project management course to analysis and design
methodologies and their management, the additional
materials can be covered without having to introduce another
course. Further, introducing a human-computer interaction
course as recommended by Gorgone et al. (2006) can
provide more space in the regular SA&D course, as the
interface issues are transferred to the new course.

A fourth approach is based on teaching analysis and design
concepts iteratively. A first course can cover the entire
SDLC and introduce project management, iterative
development, requirements modeling, design, and
implementation. After students have completed their
database and programming courses, an advanced analysis
and design course can go into the same topics and techniques
in more depth, reinforcing the ideas through iteration.
Because it is very difficult to teach modeling without
addressing both analysis and design, an iterative approach to
teaching makes sense. However, the first course can be more
analysis oriented while the second course can be more design
and implementation oriented. Just as we learn more about the
requirements by exploring design and evaluating the
implementation, students learn more about the analysis and
design techniques by going through a second iteration of the
course in more depth. This is feasible in programs that have
two courses that go in tandem with the second course geared
toward implementation.

A fifth approach might be defined based on layered
enterprise application architecture (Fowler, 2003). One
course might introduce the three layers and cover defining
the domain model and functional requirements at a high
level. Then the focus can shift to designing the user interface
(presentation layer) using storyboards, prototypes, and
interface design principles and practices. Many IS
researchers are calling for more emphasis on user interface
and human-computer interaction in IS courses (Gorgone et
al.,, 2006). With the importance of interface design and
hypermedia for Web-development, there is also an appeal in

260

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

this approach for those emphasizing design for the Web. A
second course could focus on detailing the functional and
non-functional requirements and designing the problem
domain (business logic) layer. The database course in the IS
curriculum can be recast as a third course focused on
designing the data source/data access layer.

Note that our recommendations do not necessarily require
that we have courses such as SA&D I and SA&D II. An
existing project management course or a new human-
computer interaction course may provide space to cover the
additional materials required to be covered in the
contemporary environment.

4. REQUIREMENTS AND ANALYSIS ISSUES

If only one SA&D course is available, some difficult
decisions will need to be made on removing the less useful
topics. Even with two courses, too many concepts in the
analysis and design courses can confuse students. Probably,
the time has come to eliminate the data flow diagram (DFD).
Systems development needs to incorporate component based
development as part of the overall methodology. The DFD is
not suitable to incorporate component development, which
requires a different manner of thinking that separates the
implementation of a subsystem from its interface. This
separation entails an object-oriented approach. Thus, if there
is room for only one course, requirements definition based
on the object-oriented approach should be considered.

Most textbooks that emphasize object-oriented systems
analysis and design (OOSAD) provide extensive coverage of
use cases. However, there is no reason that use cases cannot
be applied in other approaches. Use cases are detailed in a
story-like fashion, but they capture only about one-third the
total requirements (Rosenberg, 1999). Guidelines also need
to be provided for capturing the remaining requirements.
Should these requirements be captured as text, screen
prototypes, or storyboards? What other representations
would be appropriate? There is a need to provide an
integrated approach to requirements capture and
documentation.

The use-case approach is neither top-down nor bottom-up; it
is a middle of the road approach. This can be effective in
small to medium size applications. In large systems,
however, a systems decomposition approach can be very
effective. The idea of decomposition is central to dealing
with large systems. A system must be decomposed into
interrelated sub-systems recursively until a sub-system can
be understood and analyzed. However, we have not seen the
decomposition idea emphasized in use cases although
functional decomposition has been a well accepted approach
in structured methodologies. A student will not be trained to
handle large systems if a SA&D course does not teach
system decomposition.

Cockburn’s (2001) book “Writing Effective Use Cases”
provides some clue to the possibility of marrying the use
case and systems decomposition ideas. He illustrates four
practical levels of use cases: cloud, kite, sea level, and fish.
Although his focus is mainly on the sea level and to some

extent on the kite level, the different levels of abstraction of
these use cases suggest that the decomposition idea is
implicit even in the object-oriented world, even though
Cockburn does not explicitly acknowledge it. However,
multiple levels of use case abstraction can be a problem.
There is no empirical study evaluating the usability of such
an approach. Conversely, it might be better to have
decomposition in to business areas or subsystems, with a use
case always defined at the elementary business process level.
This may run against the popular notion that use cases
cannot coexist with systems or process decomposition, but it
seems that it is a practical approach that as a start addresses
an important but unresolved issue.

Lang’s (2006) study shows an interesting finding — the
prevalence of the entity relationship (ER) model today is as
predominant as the prevalence of use cases. Given the
overriding prevalence of both, it is evident that the two
coexist. However, the ER model has its genesis in the data
oriented approaches, while the use case diagram and use case
descriptions came out of OO techniques and UML.
Somehow, the two have met in practice.

It seems clear that system requirements covered in the
analysis and design course can focus on systems
decomposition, identifying use cases and actors, describing
use cases, modeling the data requirements with a domain
model class diagram or an entity relationship (ER) diagram,
and documenting other requirements using a selection of
text, flowcharts, UML activity diagrams, UML state machine
diagrams, UML system sequence diagrams, storyboards, as
preferred by the instructor. We see little lost and much
gained by more narrowly defining the content by eliminating
DFD modeling. There is no reason to discourage entity
relationship (ER) modeling as it is very similar to domain
modeling and can provide the link between the database
design course and the SA&D course. In fact, the domain
model class diagram used in object-oriented development is
remarkably close to the entity relationship (ER) model.

S. DESIGN ISSUES

Systems design is much more complex today than it was ten
years ago, making it more difficult to decide what to
emphasize in the analysis and design course. First, there are
Web applications that range from informational sites to
dynamic data-driven sites with hypermedia functionality that
includes enhanced navigation, highly visual interfaces, and
multimedia content (Lang, 2006). Physical design differs
when using Web technology, and applications with
hypermedia functionality call for a different collection of
design models and techniques.

A significant trend in today’s environment is outsourcing the
design and implementation given well-defined requirements
are defined locally. In this case, the design part of analysis
and design includes more emphasis on coordinating with
external designers/developers, possibly offshore, and
evaluating their work. The course might not emphasize
detailed design techniques and models at all. Some courses
cover a comprehensive list of design patterns used for
detailed design (Fowler, 2003). Perhaps many students in IS

261

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

do not need the detailed design depth if they pursue
opportunities in business modeling, requirements, and
project management, while other students will need
extensive design and implementation techniques.

Whether design and implementation are covered extensively
depends on local needs of the program. If the business
environment generally outsources design and/or
implementation (as currently in the US), then certain topics
(e.g., design patterns) may be of less interest. If the business
environment carries on all SA&D activities (e.g., currently in
Ireland), then two courses are a must, and all topics need
extensive coverage. In some business environments (e.g.,
currently in India), design and implementation may be even
more important than analysis. The local needs can, however,
change rapidly in today’s fast paced business environment.

For those interested in detailed design and implementation, it
might be better to include detailed design and appropriate
design patterns in an advanced programming/development
course rather than in analysis and design. Thus, different
development courses can be used to teach detailed design for
each type of technology emphasized.

Another aspect of design is the need to define system
interfaces to other applications as part of an integrated
solution. Package solutions and components also require
integration. The skills needed by an IS graduate require more
about packaged solutions and integration.

If use case driven detailed OO design is taught using UML
and the three-layer architecture, the UML models can
become very complex and they can require deep
programming knowledge. UML sequence diagrams and
design class diagrams need to be studied in depth, and design
patterns need to drive design decisions (Larman, 2004). It is
also difficult to separate the programming and the design
aspects of use case driven OO detailed design. So, it might
be better to think of this as a programming/development
course rather than analysis and design.

Systems analysis and design courses taught in MIS curricula
focus on business applications that are usually data intensive,
transaction-based applications. In the last two decades,
management of data has been accomplished mainly by
relational DBMS such as Oracle, DB2, Informix, SQL
Server, etc. There is no Object-Oriented DBMS (OODBMS)
that is even remotely comparable in sales to any of these
products. Despite some promise and a fair number of
products such as Gemstone, O2, Iris, ObjectStore, ORION,
and Vbase, the object-oriented DBMS have achieved
shallow success. Although some of the object-oriented
features are slowly being incorporated in relational DBMS
like Oracle, there is no evidence that these features are
actually being used in business applications in a significant
way. With the application end going object-oriented, but the
back end (database) still predominantly relational, the end
result is an “impedance mismatch” (Muller, 1999), which
can create confusion in pedagogy and in practice. Muller
(1999) reminds us that the use of an object-oriented approach
does not mean the database disappears.

The problems with relational DBMS are well known. Yet,
the tremendous productivity gains possible by using a
declarative language like SQL tilt the adoption scale in favor
of them. Further, the market, keen to maintain compatibility
with legacy applications, is not responding with a
revolutionary change to OODBMS, but with an evolutionary
change to Object-Relational DBMS (ORDBMS). Overall,
Object-Relational DBMS are more relational than object-
oriented.

The challenge, therefore, is to develop a method that can
bridge the mismatch between OOSAD and ORDBMS. The
method needs to incorporate key concepts of UML such as
generalization and aggregation, yet maintain the time-tested
advantages of conceptual data models like the entity
relationship (ER) approach, the logical data models like the
relational model and its object-oriented extensions, and the
implementation gains attributed to SQL. Currently, the
impedance mismatch is handled by using object wrappers.
An object wrapper is basically a layer on top of a
conventional relational engine that simulates object-oriented
features. Using object wrappers, the system appears object-
oriented although the back end is relational.

6. LIFE CYCLE ISSUES

A key issue when considering what to cover in the analysis
and design course is the approach taken toward the system
development life cycle (SDLC). There are several options to
evaluate. In a project management oriented course, there is
room to discuss the predictive, waterfall SDLC and then one
or more adaptive, iterative SDLCs. When time is limited,
and when too many options tend to confuse students, it might
be easier to focus on one SDLC model. Which SDLC to use
depends on the goals of the instructor.

One SDLC model commonly used is to define the generic
phases of the SDLC—Planning, Analysis, Design,
Implementation, and Support. Once the activities of each
phase are understood, an iterative approach to development
is described using the same generic phases, but defining a
series of iterations or mini projects. This model can be
confusing when teaching about a waterfall model with
management checkpoints and then asking students to
abandon it in practice and adopt a more complicated
management model for the iterative approach.

Another SDLC model is based more explicitly on the spiral
model (Boehm, 1988). Many texts emphasizing object-
oriented analysis and design use a spiral model to visually
represent the SDLC. Planning, analysis, design, and
implementation occur in each iteration, but the waterfall idea
of management checkpoints after each phase and the idea of
phases themselves are dropped. The advantage of a spiral
model is students learn iterative development from the start.
There is no need to unlearn one life cycle to understand
another. We find no recent methodologies that do not advise
iterative development as a best practice. However, in
industry, the waterfall model is alive and well (Lang, 2006)
and students might benefit from understanding it. Also, the
spiral model representation mitigates project planning and

262

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

project management issues that need to be addressed in
analysis and design courses.

An attractive alternative to the generic SDLC and the spiral
model is provided by the Unified Process (UP) life cycle
model (see Figure 1). The UP life cycle retains project
phases and management checkpoints based on phases. But
the phases are not named planning, analysis, design, and
implementation. Therefore, project management issues in a
sequential life cycle can be discussed and modeled. The UP
phases are Inception, Elaboration, Construction, and
Transition (Kroll and Kruchten, 2003). Each phase consists
of one or more iterations. Once these concepts are learned,
there is nothing to unlearn. However, it is a more

complicated model of systems development project
management.
Unified Process life cycle model
UP phases
UP disciplines | csvorstion | S—

Conntruction

!
This is 2 seven-interation preject. Each iteration is & miniproject that
inciudes work in most eisciptines and snds with A stable execiutadie.

Figure 1: The Unified Process Life Cycle Model
(reprinted courtesy of Thompson Course Technology)

Instead of parsing the field into analysis and design, the UP
defines nine disciplines used by system developers. A
developer draws on each of these disciplines during any
given iteration. The disciplines are business modeling,
requirements, design, implementation, testing, deployment,
configuration and change management, project management,
and managing the development environment. The concepts
and techniques of each discipline can be discussed in any
order and in any iteration. Discussing the nine disciplines
gives students a useful framework for understanding the
broad set of knowledge and skills required in the IS field.

7. COMPLEXITY OF UML

The advent and popularity of Unified Modeling Language
(UML) is impacting the Systems Analysis and Design
(SA&D) course. UML, which is based on object-oriented
concepts, is now taught in practically all MIS programs.
Even textbooks that have structured analysis and design as
the main theme devote at least a chapter or two to UML. But
in recent empirical studies (Siau and Cao, 2001; Siau,
Erickson, and Lee, 2005; Dobing and Parsons, 2006), UML
has been found to be complex by a number of analysts. UML
has too many diagrams and the usefulness of some of the
diagrams has been questioned. The use case diagram, the
class diagram, and the sequence diagram have been found to
be the most useful. Lang’s (2006) study shows that the

activity diagram is pervasive, and the state machine diagram
has fair usage. The communication diagram (which was
earlier called collaboration diagram) has been found to be
redundant. For the student learning UML for the first time,
the scope needs to be restricted to a small subset of the
diagrams. An instructor needs to customize the coverage of
UML based on prior skill levels of the students.

In the Siau and Loo (2006) study, students found that the
transition from the structured concepts to UML was difficult.
Prior programming knowledge helped, but those who had
procedural backgrounds had more problems than those who
had object-oriented backgrounds. As mentioned -earlier,
UML needs to be covered in a SA&D course that employs
object-orientation. Further, students were found to have
difficulty in deciding between the activity diagram and the
state machine diagram. This is a natural consequence of
having too many models. They found it difficult to house
constraints. Although there are languages like Object
Constraint Language (OCL), which are specifically designed
to model constraints, one wonders the usability impact of
adding more mechanisms for modeling. Also in the Siau and
Loo (2006) study, students reported having trouble
understanding the relationships between the diagrams and
putting them together to get an overall picture. These issues
suggest that the systems analysis and design area today has a
wider scope, and that compressing a large number of topics
into one course is problematic. Trying to squeeze a vast
number of topics into one course, putting a quick fix on it
hoping the novice student mind will somehow absorb the
material, is an approach that is unlikely to work in practice.

8. RECOMMENDATIONS

The substantial recent developments in systems analysis and
design methodologies models, tools, and techniques clearly
call for a careful and detailed evaluation of the new and
expanded role of SA&D in the curriculum. In this paper, we
have outlined the major issues affecting analysis and design
that call for a significant revision of SA&D courses. Each IS
educational program will have its own traditions and needs
that will require specific solutions. However, each program
should consider how to incorporate the three fundamental
changes the SA&D curriculum - the diversity of
methodologies, the emergence of the iterative approach, and
the increasing adoption of the agile approach — as discussed
in this paper.

There is no one comprehensive methodology that can be
recommended for adoption by the IS educational
community. Research shows there is great diversity in
methodologies used in practice. Although best practices and
development principles seem to be moving in an adaptive
and agile direction, there are many life cycle models,
techniques, models, and tools that can be combined into
reasonable hybrid methodologies. We recommend that at
some point in the SA&D curriculum, specific methodologies
such as the Rational Unified Process (RUP), Extreme
Programming (XP), Adaptive Software Development,
Crystal, and Scrum might be surveyed, but mainly to show
the similarities in terms of best practices and development
principles.

263

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

Given the number of issues in analysis and design, we
recommend serious consideration of including two courses in
the IS curriculum that can cover the range of topics on
analysis and design techniques as well as system
development methodologies. We outlined five possible pairs
of courses to consider, and listed the key topics. In the two
courses the following topics should be covered: project
management, use cases, UML modeling, iterative
development, agile development, package selection and
integration, Web development, outsourcing/off shoring, and
at least conceptual design for system controls, user
interfaces, and database management. Eventually, local
needs and preference must play a role in the decision.

In terms of functional requirements and analysis issues, we
argue for employing a use case driven approach. We feel it is
time to drop the data flow diagram (DFD) model as it does
not support component development, a common practice
today. Use cases are also more prevalent than DFD’s in
practice. Non-functional requirements can be modeled in a
variety of ways, and procedural logic can be taught using
UML activity diagrams or traditional flow charts. Because
use cases are not inherently object-oriented, a use case
driven approach can be used with a more traditional
approach to technology. Employing use cases does not
necessarily require switching to OO. While we suggest that
the time has come to drop the data flow diagram (DFD), the
entity relationship (ER) diagram and diagramming technique
are widely used and quite appropriate for data requirements
and database design.

We recommend that the SA&D courses use UML, the long-
needed standard, whenever possible for modeling. We
recommend that whatever approach to SA&D is emphasized,
it is probably best to focus on a few key models and
techniques rather than feeling the need to cover everything as
a rapid survey. Therefore, although we recommend using
UML, we do not argue for covering every UML diagram.
The use case diagram, class diagram, and sequence diagram
provide the best overall view. The instructor needs to also
demonstrate how the diagrams are related to each other, and
how they present an integrated picture.

We propose that for many students in western countries,
detailed system design techniques and models may not be as
important as methodology knowledge, requirements models,
and project management skills. First, outsourcing and off-
shoring trends point to the need for increased expertise in
analysis and project management skills and less on detailed
design and programming. Similarly, component-based
development, service oriented architecture (SOA), and
package integration call for increased analysis and project
management skills. Finally, specialized technical
environments and development tools call for more
specialized detail design techniques that might be better
taught in an advanced programming/development course
rather than in the analysis and design sequence. Thus,
students more interested in detailed design and programming
will be exposed to detailed design in the right course.

Although there are many ways to teach and model an
adaptive SDLC, we also argue that teaching one life cycle
model might be appropriate for initial learning. The Unified
Process (UP) life cycle is a good choice because it models
phases, iterations, and activities in all disciplines throughout
the project. The UP life cycle and disciplines can be taught
without having to adopt other details of the Rational Unified
Process.

9. CONCLUSIONS

There are many issues related to SA&D that require
research, discussion, and debate. The paper outlined and
discussed many of the issues and made some
recommendations. Often, the devil is in the details, and it is
likely that the SA&D course will remain challenging,
controversial, and important. We feel that in the next few
years, a generally accepted approach to the SA&D
curriculum will emerge. In the meantime, everyone involved
in teaching the SA&D curriculum should be open to trying
some new approaches.

10. REFERENCES

Ambler, S. W. and Jeffries, R. Agile Modeling: Effective
Practices for Extreme Programming and the Unified
Process, Wiley, 2002.

Auer, K. and Miller, R. Extreme Programming Applied,
Indianapolis, IN: Pearson Education, 2002.

Beck, K. Extreme Programming Explained, Reading, MA:
Addison-Wesley, 1999.

Boehm, B. “A Spiral Model for Software Development and
Enhancement,” Computer, Vol. 21, 1988, pp. 61-72.

Boehm, B. and Turner, R. Balancing Agility and Discipline,
Boston, MA: Addison Wesley, 2003.

Booch, G., Rumbaugh, J., and Jacobson. 1. The Unified
Modeling Language User Guide, NJ: Addison Wesley,
1999.

Brown, D. and Wilson, S. The Black Book of Outsourcing:
How to Manage the Changes, Challenges, and
Opportunities, Wiley, 2005.

Chen, P.P. "The Entity-Relationship Model - Toward a
Unified View of Data," ACM Transactions on Database
Systems, 1(1), 1976, pp. 9-36.

Coar, K. “The Sun Never Sits on Distributed Development,”
ACM Queue, vol. 1, no. 9, pp. 32-39, 2003.

Cockburn, A. Writing Effective Use Cases, NJ: Addison
Wesley, 2001.

Cockburn, A. Crystal Clear:
Methodology for Small Teams,
Development Series, 2004.

Dobing, B. and Parsons, J. “How the UML is used,”
Communications of the ACM (forthcoming).

Fowler, M. UML Distilled: A Brief Guide to the Standard
Object Modeling Language, Third Edition, Addison-
Wesley Professional, 2003.

Gorgone, J. T., Gordon B. Davis, Joseph S. Valacich, Heikki
Topi, David L. Feinstein, and Herbert E. Longnecker. “IS
2002 Model Curriculum and Guidelines for Undergraduate
Degree Programs in Information Systems,” The Data Base
Jor Advances in Information Systems, Volume 34, Number
1, Winter 2002, pp. 1-52.

A Human-Powered
Agile Software

264

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

Gorgone, J. T., P. Gray, T. Stohr, Joseph S. Valacich, and
R.T. Wigand. “MSIS 2006: Model Curriculum and
Guidelines for Graduate Degree Program in Information
Systems,” Communications of the AIS, Volume 17, 2006,
pp. 1-56.

Herbsleb, J.D. and Mockus, A. “An Empirical Study of
Speed and Communication in Globally Distributed
Software Development,” [EEE Transactions on Software
Engineering, Vol. 29, No. 6, 2003, pp. 481-494.

Highsmith, J. Adaptive Software Development: A
Collaborative Approach to Managing Complex Systems.
Dorset House, 2000.

Jacobson, 1. Unified Software Development
Cambridge University Press, 2000.

Kroll, P. and Kruchten, P. The Rational Unified Process
Made Easy: A Practitioner's Guide to Rational Unified
Process, Addison-Wesley Professional, 2003.

Lang, M. “New Branches, Old Roots: A Study of Methods
and Techniques in Web / Hypermedia Systems Design,”
Information Systems Management (forthcoming), 2006.

Larman, C. Agile & Iterative Development: A Manager's
Guide, Boston, MA: Pearson Education, 2003.

Larman, C. Applying UML and Patterns: An Introduction to
Object-Oriented Analvsis and Design and lterative
Development (3rd Edition), Prentice Hall PTR, 2004.

Muller, R.J. 1999 Database Design for Smarties, CA:
Morgan Kaufmann, 1999.

Olson, J.S. and Olson, G.M. “Culture Surprises in Remote
Software Development Teams,” ACM Queue, vol. 1, no. 9,
pp- 52-59, 2003.

Rosenberg, D. Use Case Driven Object Modeling, MA:
Addison Wesley, 1999.

Sahay, S. “Global Software Alliances: the Challenge of
Standardization,” Scandinavian Journal of Information
Systems, Vol. 15, 2003, pp. 3-21.

Schwaber, K., and Beedle, M. Agile Software Development
with Scrum, Upper Saddle River, NJ: Prentice-Hall, 2002.
Siau, K. and Cao, Q. “Unified Modeling Language (UML) —

A Complexity Analysis,” Journal of Database
Management, 12(1), 2001, pp. 26-34.
Siau, K., Erickson, J., and Lee, L.Y. “Theoretical vs.

Process,

Practical Complexity: The Case of UML,” Journal of

Database Management, 16(3), 2005, pp. 40-57.

Siau, K and Loo, P. “ldentitying the Learning Difficulties
with Unified Modeling Language (UML),” Information
Systems Management (forthcoming), 2006.

Teorey, T.J., Yang, D., and Fry, J.F. “A Logical Design
Methodology for Relational Databases Using the Extended
Entity-Relationship Mode,” Computing Surveys, 18(2),
1986, pp. 197-222.

AUTHOR BIOGRAPHIES

Dinesh Batra is Professor of MIS in the College of Business

Administration at the Florida
International University. He is a co-
author of the book Object-Oriented
Svstems Analysis and Design published
by Pearson Prentice-Hall. His
publications have appeared in,
Communications of the ACM
Management Science, Journal of MIS,
Data Base, European Journal of
Information Systems, International Journal of Human
Computer Studies, Computers and Operations Research,
Information and Management, Journal of Database
Management, CAIS, Decision Support Systems, and others.
He has served as the President of the AIS SIG on Systems
Analysis and Design.

John W. Satzinger is Professor of Computer Information
Systems at Missouri State University.
He is co-author of five system
development book titles published by
Thomson Course Technology,
including Svstems Analysis and Design
in a Changing World, 4th Edition
(2007) and Object-Oriented Analvsis
and Design with the Unified Process
(2005). He has also published
numerous articles about analysis and
design and human-computer
in journals such as [nformation Systenis

interaction
Research, Journal of MIS, Database, and Communications
of the AIS. He received his Ph.D. in MIS from the Claremont

Graduate University in 1991.

265

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISCCp Eosic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2006 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

