

Journal of
Information
Systems
Education

Volume 29

Issue 2
Spring 2018

Scrum-Based Learning Environment: Fostering
Self-Regulated Learning

Tanya Linden

Recommended Citation: Linden, T. (2018). Scrum-Based Learning Environment: Fostering Self-
Regulated Learning. Journal of Information Systems Education, 29(2), 65-74.

Article Link: http://jise.org/Volume29/n2/JISEv29n2p65.html

Initial Submission: 16 August 2017
Accepted: 30 January 2018
Abstract Posted Online: 21 March 2018
Published: 13 June 2018

Full terms and conditions of access and use, archived papers, submission instructions, a search tool,

and much more can be found on the JISE website: http://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

http://jise.org/Volume29/n2/JISEv29n2p65.html
http://jise.org/

Scrum-Based Learning Environment: Fostering Self-

Regulated Learning

Tanya Linden
Department of Business Technology and Entrepreneurship
Swinburne Business School, Faculty of Business and Law

Swinburne University of Technology
Hawthorn, Victoria 3122, Australia

tlinden@swin.edu.au

ABSTRACT

Academics teaching software development courses are experimenting with teaching methods aiming to improve students’ learning
experience and learning outcomes. Since Agile software development is gaining popularity in industry due to positive effects on
managing projects, academics implement similar Agile approaches in student-centered learning environments. In this paper, we
discuss teaching introductory programming based on Scrum. Our learning environment, supported by the Doubtfire learning
management system, fosters perceived autonomy and perceived competence by providing tools and opportunities for self-regulated
learners to adjust their learning strategies. Evaluation of the learning environment revealed that students want to be in control of
their learning.

Keywords: Agile, Scrum, Self-regulated learning, Introductory programming, Programming

1. INTRODUCTION

Knowledge of programming concepts is perceived as being
important for information systems (IS) and information
technology (IT) courses as it facilitates development of problem
solving and reasoning skills, as well as provides a foundation
for learning other subjects in IS and IT. There is anecdotal
evidence that introductory programming subjects are often the
reason for high dropout rates and high failure rates. So far, there
have only been two formal studies on the failure rates in
programming. According to Bennedsen and Caspersen (2007),
failure rates are on average around 30%; however, they indicate
that the study was limited by the low number of respondents
and data coming mainly from U.S.-based institutions. The same
levels of failure were reported by the second study conducted
by Watson and Li (2014). The authors of this paper found
similar results in introductory programming subjects in IS
courses. Therefore, it is not surprising that the research
literature widely suggests that introductory programming is
among the most difficult subjects for students and explores
reasons behind these difficulties (Gomes and Mendes, 2007;
Jenkins, 2002; Ma et al., 2011). Interestingly, Watson and Li
(2014) came to the conclusion that the choice of the first
programming language did not have an effect on pass rates.
Thus, the investigation of issues affecting pass/failure rates in
introductory programming continues.

In many institutions, introductory programming is taught in
a traditional way with lectures, labs, and assessments
containing lab exercises, assignments, and a final exam.
According to Bennedsen and Caspersen (2007), in many

colleges and universities, the final grade in the first-year
programming course is affected by a large assessment such as a
final exam, an assignment, or a project. Swinburne University
of Technology chose a different approach. This approach is
based on the adaptation of Scrum to teaching and learning in
the context of the self-regulated learning framework (Young,
2005). Although the university is using Blackboard as its main
learning management system (LMS), it was decided that
Blackboard is rather inflexible in supporting the Agile approach
to students’ learning, and its user interface lacks the necessary
features to support frequent resubmission of work and student-
tutor communications, the views also supported by previous
research (Carvalho, Areal, and Silva, 2011; Kim and Booth,
2015). An LMS named Doubtfire has been developed, and
although it is treated as a work in progress by its developers, it
has been successfully used to support IT and IS students in their
learning explorations of programming concepts. This study
explores the effects of a non-traditional approach to teaching
programming concepts on students’ self-regulated behavior as
well as pass/failure rates in this category of subjects.

2. PARALLELS BETWEEN SOFTWARE
DEVELOPMENT METHODOLOGIES AND

TEACHING AND LEARNING METHODOLOGIES

Academics teaching software development subjects often see
similarities between IT projects and teaching IT subjects
(Alfonso and Botía, 2005; Chun, 2004). Although there exist
multiple definitions of the term “project,” most of them are
based on the definition of the Project Management Institute

Journal of Information Systems Education, Vol. 29(2) Spring 2018

65

defining a project as a “temporary endeavor undertaken to
achieve a unique product, service, or result” (Project
Management Institute, 2017). Reiss (2007) adds a time
dimension to this definition by emphasizing that a project is “a
human activity that achieves a clear objective against a time
scale” (p. 12). For a software development team, the goal is to
produce a product that will be accepted by the customer,
whereas for a student, learning a subject is a project with the
clear objective to pass the subject.

Academic staff who observed these similarities examined
software development methodologies hoping to learn from best
practices in one industry and apply those practices in another.
Initial reports on introducing Agile software development
practices in software engineering subjects describe students
working through software development projects using, for
example, eXtreme programming (XP) methods (Johnson and
Caristi, 2002; Reichlmayr, 2003; Williams and Upchurch,
2001); however, these reports focus on the adoption of software
development practices in educational settings only to teach
students this method of software development. They do not
consider approaches of adopting the metaphor of XP or another
Agile approach to projects of teaching and student learning.

In contrast with those reports, Chun (2004) examined Agile
software engineering in order to apply its best practices to
teaching and learning. He proposed the Agile
Teaching/Learning Methodology (ATLM) which was later
adopted by other academics in a variety of tertiary education
settings. The ATLM facilitates self-learning and promotes
knowledge sharing through an ATLM e-learning platform.

Alfonso and Botía (2005) combined the Agile Rational
Unified Process (RUP) with selected features of XP and Scrum
development approaches and applied them to pedagogical tasks
from building knowledge to assessing it in a group-work
environment where students learn through active participation
in software engineering projects. The teaching staff act as
development team managers.

D’Souza and Rodrigues (2015) also based their work on XP
features. They developed Extreme Pedagogy by identifying
correlations between fundamentals of the software process
(product, customer, developer) with the cornerstones of the
pedagogical processes (learning, student, and teachers as
“developers of learning”) (p. 830). The main characteristics of
Extreme Pedagogy are “learning by continuous doing,”
“learning by continuous collaboration,” and “learning by
continuous testing.” All these features are known as facilitating
active student learning.

Some academics examining the literature on Agile
approaches to teaching (e.g., Grossman et al., 2011; Tengberg,
2015) note the lack of studies exploring Agile approaches to
teaching and learning. The studies that exist report on the
success of adopting Agile practices, however further
exploration is required. Consequently, this study develops these
ideas by exploring aspects of adopting Scrum as an Agile
approach to teaching and learning.

3. ADOPTING BEST SOFTWARE DEVELOPMENT
PRACTICES FOR EDUCATION

As observed by Chun (2004), students’ learning needs are
affected by many variables and therefore educators should
consider Agile teaching approaches. This is similar to software

developers discovering that the most well-known and popular
waterfall model was gradually losing its suitability for modern
projects. The waterfall model is too rigid to allow software
developers to easily adjust based on changing project needs and
customer requirements (Balaji and Murugaiyan, 2012).
Therefore, alternative approaches have been developed, tried,
and adopted. The Agile movement proposes approaches to deal
with the unpredictability of projects. The movement proposed
12 software development principles, but they are also relevant
for the actual learning process undertaken by students. Table 1
lists the principles of Agile development (Beck et al., 2001) and
discusses adoption of the principles in the context of the
students’ learning process. In this interpretation, we treat a
student as a developer being in charge of studying a subject
through the semester. This interpretation is in line with the
student-centered teaching and learning concepts which focus on
what the student does (O’Neil and McMahon, 2005). In this
analogy to software development, a teaching staff member
becomes a customer providing useful feedback on a student’s
deliverables, which is different to previous research where
teaching staff are considered to be managers of student
development teams.

One of the popular Agile approaches to software
development is Scrum, which is defined as an iterative
development method where the product is being developed in
increments (Beedle et al., 1999). The development happens
within short time intervals called sprints which are mapped onto
the development stages. Within each sprint, developers work on
specified tasks, called backlog. Each sprint ends with a
deliverable, a demo to the customer. After a demo, re-
prioritization happens which involves creating a new backlog
(based on leftovers from the previous sprint and new tasks
planned for the current sprint). A burndown chart graphically
represents the progress of the project by comparing the ideal or
targeted progress line with the depiction of the real progress
(Karlesky and Voord, 2008). Although Scrum often assumes
teamwork, its techniques are equally applicable to single
developers (Blom, 2010). The Scrum approach, if applied to an
educational setting, could foster self-regulated learning,
especially if supported by an appropriate learning environment.

4. SELF-REGULATED LEARNING

For centuries, educators have been searching for ideal teaching
approaches. For more than 20 years, we have been observing a
strong shift from traditional teaching methods where the focus
is on the content fed to a learner to learner-centered approaches
focusing on the “needs, skills, and interests of the learner”
(Norman and Spohrer, 1996, p. 26). This shift has been
supported and facilitated by rapid development and adaptation
of educational technologies. Technological advances fostered
the creation of engaging learning environments that support
individual learning styles, self-paced learning, and interactivity
that significantly complement if not replace “traditional”
teaching (Hannafin and Land, 1997). Such environments are
supposed to foster students taking control of their learning and
becoming self-regulated learners. Self-regulated learners are
active participants in the knowledge construction process who
“set goals for their learning and then attempt to monitor,
regulate, and control their cognition, motivation, and behavior

Journal of Information Systems Education, Vol. 29(2) Spring 2018

66

Agile Manifesto Principles
(Beck et al., 2001)

Our Interpretation of Principles in the Student-Centered Learning
Environment

“Our highest priority is to satisfy the customer
through early and continuous delivery of valuable
software.”

Students continuously complete tasks and provide deliverables for
assessment by teaching staff.

“Welcome changing requirements, even late in
development. Agile processes harness change for
the customer's competitive advantage.”

A student may need to adjust his/her learning style to achieve the subject
learning outcomes within the expected timeline.

“Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.”

Due to a semester being a strictly 12 weeks period, students’ deliverables
should happen from every week to every fortnight.

“Business people and developers must work
together daily throughout the project.”

A student and teaching staff need to work together for the student to achieve
the subject learning outcomes.

“Build projects around motivated individuals.
Give them the environment and support they need,
and trust them to get the job done.”

Teaching staff expect students to be motivated to learn and should provide
a challenging and exciting learning environment which supports student-
centered learning.

“The most efficient and effective method of
conveying information to and within a
development team is face-to-face conversation.”

Although a variety of methods are used for modern communications, there
should be face-to-face communication opportunities where students support
each other as well as get necessary instruction and help from teaching staff
during formal and informal sessions.

“Working software is the primary measure of
progress.”

Students’ learning is judged by the quality of the deliverables.

“Agile processes promote sustainable
development. The sponsors, developers, and users
should be able to maintain a constant pace
indefinitely.”

The subject should be designed to maintain a constant learning pace, with
regular deliverables. Instead many subjects seem easy in the first 3-4 weeks
with an unexpected jump in difficulty levels closer to the middle – end of
the semester rapidly increasing workload and amount of stress for students
(as well as marking workload for teaching staff).

“Continuous attention to technical excellence and
good design enhances agility.”

Teaching staff should provide valuable feedback on improvement
opportunities and students should be given an opportunity to implement and
deliver improved versions of their work as evidence of their learning.

“Simplicity – the art of maximizing the amount of
work not done – is essential.”

Students should be able to see how much more they could learn beyond the
constraints of the subject.

“The best architectures, requirements, and designs
emerge from self-organizing teams.”

Students being in charge of their learning approaches often find a “study
buddy” to maximize their learning, they decide on getting support based on
their individual needs.

“At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its
behavior accordingly.”

At the end of each semester students should be encouraged to reflect on their
learning approaches to ensure that they learn from the mistakes and adjust
their learning style and time management for the next subject.

Table 1. Agile Manifesto Principles and their Application to Student-Centered Learning Environment

guided and constrained by their goals and the contextual
features in the environment” (Pintrich, 2000, p. 453).

Young (2005) proposed a social cognitive framework for
self-regulated learning. Empirical work evaluating the
framework was conducted with students learning core
marketing subjects (see Figure 1). The framework depicts four
areas for self-regulation identified by previous studies (Pintrich,
2000; Zimmerman, 1995): cognition, motivation, behavior, and
context. Self-regulated behavior is characterized by learning
strategies that students employ to achieve quality learning

outcomes (Pintrich and Groot, 1990). Young (2005) established
that self-regulated behavior is affected to various degrees by
self-regulated motivation (intrinsic or extrinsic), self-regulated
cognition, and classroom environment. Intrinsic motivation has
been shown to be driven by satisfaction with the learning and
interest in the subject matter, whereas extrinsic motivation is
more rewards- or grades-oriented. The model confirmed the
link between intrinsic motivational value and self-regulated
behavior and cognitive strategies which is in line with previous
studies (e.g., Pintrich and Groot, 1990; Zimmerman, 1990).

Journal of Information Systems Education, Vol. 29(2) Spring 2018

67

Figure 1. A Social Cognitive Framework for Self-Regulated Learning (Young, 2005)

Self-regulation of cognition depends on achievement goal
orientation, perceived autonomy, and perceived competence.
Young (2005) comes to the conclusion that students with a high
sense of perceived competence and autonomy are intrinsically
motivated. He interprets perceived autonomy as students’
control over the factors influencing their outcomes in learning
the course and perceived competence as their ability to
complete tasks and perform through the course. Achievement
goal orientation is a personal set of beliefs motivating a person
to undertake learning and can be mastery-oriented, i.e., the goal
is learning and self-development, or ego-socially oriented with
the focus on rewards, such as grades and social standing (Urdan
et al., 1998; Young, 2005).

The parameter “classroom environment” of the framework
was assessed using three general subcategories: the instructor
climate, the learning climate, and the performance climate.
Each sub-category in turn was assessed using specific criteria.
For the instructor climate, the criteria affecting students’
learning are student-instructor personal interaction, informative
supportive feedback, and enthusiasm of the instructor. Learning
climate is comprised either of traditional teaching including
lectures and readings or active/interactive teaching with hands-
on learning activities and real-world applications. Performance
climate is characterized by clear course goals and expectations,
emphasis on learning, and contrast between grades being
determined by individual versus group performance. The
results of the framework evaluation emphasize the importance
of instructor-student personal interactions including formative
supportive feedback and their positive effect on students’
intrinsic motivation and self-regulated behavior.

Educators recognize two types of feedback: summative
feedback where students’ achievements are represented by their
scores and grades and formative feedback which is feedback
provided with the aim to support a student throughout the
learning process (Yorke, 2003). Formative evaluation of
student learning has been widely discussed in the research
literature (Black and Wiliam, 2003; Bloom, 1971; Shute, 2008).
Nicol and Macfarlane-Dick (2006) evaluate formative
assessment and feedback in the context of self-regulated
learning and discuss seven principles that address the three
aspects of self-regulated learning, i.e. behavior, motivation, and
cognition.

Since the classroom environment plays an important role in
increasing intrinsic motivation and subsequently self-regulated

learning strategies, we investigate the application of the Scrum
approach to create a learning environment supported by an
LMS that would facilitate self-regulated learning.

5. SCRUM APPROACH FOR SELF-REGULATED
LEARNERS

At Swinburne University of Technology, introductory
programming subjects in computer science and information
systems are taught using the Doubtfire system developed at this
university. In our application of Scrum, students play the role
of developers whereas teaching staff become customers. At the
beginning of the semester, students are given a list of tasks for
development which they are supposed to deliver on a regular
basis within a sprint (e.g., weekly or biweekly).
Students/developers work through a backlog within each sprint
(a weekly set of tasks), whereas teaching staff/customers
provide regular feedback on submissions, either accepting a
deliverable or sending it back for improvement. The formative
feedback reflects on bugs in the code, user-friendliness, as well
as suggesting the ways to optimize the code. Collaboration is
optional and students only resolve to use it when they need help
in completing the tasks.

Burndown charts are used to show students’ progress
through tasks (Woodward et al., 2013). In Doubtfire, burndown
charts depict target completion, actual completion, and
projected completion (see Figure 2). The target completion line
is based on task due dates as set in Doubtfire. Actual completion
reflects dates of students’ submissions, and projected
completion is the result of calculating the end date of
submissions based on the velocity of actual submissions.

Students do not get marks for submitted deliverables, but
instead they get detailed feedback and an opportunity to
resubmit the program code until it is working and efficient. That
is when the deliverable is marked as complete. The goal of the
student is to get all submissions marked as complete by the end
of the teaching period.

Grading occurs based on the difficulty of tasks. The tasks
are evaluated as pass (P), credit (C), distinction (D), and high
distinction (HD) level. Each student sets a goal for themselves,
and Doubtfire gives each student access to the tasks based on
their set goal. For example, a student who decided to go for a
Pass will be shown pass level tasks only. A student aiming at

Journal of Information Systems Education, Vol. 29(2) Spring 2018

68

Figure 2. Student’s Dashboard in Doubtfire

Credit will be shown Pass and Credit level tasks (as depicted in
Figure 2). For control purposes, all students must complete two
closed-book tests to ensure their understanding of important
programming concepts.

By the end of the teaching period, students generate a
portfolio of completed tasks. Based on the quality of the
portfolio and test results, each student is evaluated against his
or her goal and to what extent it is reached (e.g., for a student
aiming at distinction, we have a range of marks 70-79 so the
evaluation is conducted on whether this student reached the
distinction level and, if yes, what their mark would be within
the distinction range).

Table 2 maps the features of our non-traditional classroom
environment onto the four aspects of the social cognitive
framework for self-regulated learning proposed and validated
by Young (2005). Our classroom environment is comprised of
the Doubtfire LMS where the subject convener sets up the tasks
to be completed as sprints with set deadlines and where
teaching staff can provide formative feedback for students.

The environment created for teaching introductory
programming fosters perceived autonomy and perceived
competence. In the first week of the semester, students decide
on the grade for which they wish to aim. By giving students an

opportunity to make this choice, we encourage students to be in
control of their learning from the very beginning.

Most students start with aiming at high distinction which
reflects on their goal-orientation behavior and their perceived
competence. Those who are mastery-oriented usually keep this
goal throughout the semester and take action to achieve it. If
they scale back, it is usually to distinction level. Students
selecting high distinction for ego-social reasons often do not
achieve this level when they discover that the learning curve is
steep and the tasks are getting more difficult from one week to
another and require constant efforts and regular submissions
and resubmissions to achieve the required quality. These
students try to wear down staff by re-submitting the work with
little changes and show a lack of interest in gaining knowledge
(Woodward et al., 2013).

Self-regulated learning and active learning environments
are linked by the bi-directional relationship (Boekaerts, 1999).
Engaging classroom environments promote self-regulated
behavior and facilitate improvement of self-regulatory skills. At
the same time, a student needs self-regulatory skills to take full
advantage of resources offered by a non-traditional learning
environment. Throughout the semester, we observed
improvement in self-regulatory skills through students’

Classroom
environment

Self-regulated
cognition

Self-regulated motivation Self-regulated behavior
(learning strategies)

 Doubtfire
(LMS)

 Sprints with
pre-set tasks (by
difficulty level)

 Teaching staff
 Formative

feedback
 Burndown

charts

 Setting a goal
(choice of
grade)

 Ability to
change the goal
grade

Intrinsic:
 setting the goal and sticking to

it throughout the semester
 accepting feedback positively

Extrinsic:
 superficial approach,

resubmissions just to get a
“complete” mark

 sometimes negative reaction to
formative feedback requiring
resubmission

 Re-submitting tasks
 Follow-up on provided

feedback
 Selecting

communication
methods with staff

 Adjusting order of
tasks in the backlog

 Dealing with deadlines
 Opting to work alone

or with classmates

Table 2. Scrum Approach as Facilitator of Self-Regulated Learning

Journal of Information Systems Education, Vol. 29(2) Spring 2018

69

adjusting their learning strategies. For example, some students
opt for sending longer messages in response to staff formative
feedback via email or they opt for discussing the feedback face-
to-face asking for clarification, explanations, and examples,
therefore demonstrating a desire for deep understanding of
concepts and genuine learning. Students also decided on the
regularity of attending face-to-face sessions such as labs and
consultations.

Strategies on adjusting the order of submitted tasks is often
related to the issues of dealing with submission deadlines. Some
students observe weekly deadlines with minimal deviations
whereas others focus on Pass and Credit tasks as a safety net
and start working and submitting distinction and high
distinction tasks only closer to the end of the teaching period.
Less confident students start with Pass tasks and need some
encouragement from teaching staff to convince them to attempt
Credit level tasks. As reported by Cain, Woodward, and Pace
(2013), our learning environment gives an opportunity to
students with the slow start (e.g., initially struggling with
concepts) to catch up by applying their own learning strategies.
Many of these students demonstrate sufficient mastery resulting
in good learning outcomes and good final grade for the subject.

6. EMPIRICAL WORK

Cain, Woodward, and Pace (2013) discussed themes and
patterns in students’ progress while learning introductory
programming within our non-traditional learning environment.
Their work was based on data extracted from burndown charts.
This study explores two additional questions:

1. What is students’ acceptance of our non-traditional
approach using Scrum to facilitate the acquisition of
self-regulated learning skills?

2. Does our non-traditional, Scrum-based approach
improve students’ pass rates in the introductory
programming subject?

6.1 Data Collection and Survey
To answer the first question, the main features of our approach
were identified and a questionnaire of five questions was
developed (see Table 3). To foster perceived autonomy, we
allow students to set their target grade and change it if they want
to. The tasks allocated to them are based on the target grade. To
achieve the target grade, students are allowed to keep
resubmitting the tasks until the marker assesses the submission
as meeting the requirements. We wanted to know what students
think about these features.

Question 1 asked students to mark their preference by
choosing between a traditional assessment approach (e.g.,
assignment, test, exam) and an alternative approach using
sprints and Doubtfire for submissions. Questions 2-5 required
Agree/Disagree answers, and a textbox was provided for further
elaboration on the student’s answer.

1. Which assessment approach do you prefer:
Traditional or Alternative (using Doubtfire)?

2. A student should be able to decide upfront what
grade (Pass, Credit, Distinction, High
Distinction) he/she wants to achieve in the
subject.

3. A student should be able to change the grade as a
goal for the subject during the semester.

4. Students aspiring for a different grade level (Pass,
Credit, Distinction, High Distinction) should be
given assessment tasks varying in the difficulty
levels.

5. Students should be given an opportunity to
resubmit their work to achieve a grade they are
aspiring to.

Table 3. Questionnaire

For sample selection we targeted students who are currently
learning programming concepts in the information systems
undergraduate degrees at Swinburne University of Technology.
These students are using our non-traditional learning
environment based on Scrum and supported by Doubtfire.
Eighty eight students were sent a request to complete the
questionnaire. The invitation to participate in the survey was
advertised in the last three weeks of the teaching period on
Blackboard. Students were notified that participation is
voluntary with the implied consent, i.e., students who opened
the survey had an option to read the questions and after that
make their decision on participation. Thirty five students (40%)
provided their responses. Students who stopped attending
classes and/or submitting their deliverables were unlikely to see
the invitation to participate in the survey.

6.2 Students’ Acceptance of Our Non-Traditional Scrum-
Based Approach
The distribution of students’ responses to the survey questions
is shown on Figure 3. Some students also provided explanations
of their choices. Open coding was used to identify themes
emerging from students’ answers. Some elaborations simply
confirmed the choice of the answer whereas others provided
interesting insights including students commenting on
Doubtfire features, as well as their self-regulated learning skills
and expectations.

In response to Question 1, 88.6% preferred the non-
traditional approach used in the programming concepts.
Elaborating on this choice, many students commented on
Doubtfire features providing the ability to track their progress
in the subject:

Doubtfire is the easiest way of keeping track of work
that has been completed and marked or the work which
is due

More frequent feedback, motivation to keep up with
content and feedback/tasks etc. are all in one place for
revision

Journal of Information Systems Education, Vol. 29(2) Spring 2018

70

I love the use of Doubtfire as it gives me a weekly
gauge as to what level I am at and what I should have
learnt by now. In other subjects that do not use
Doubtfire, I have to wait for a topic test or something
similar in order to gauge my understanding of the
subject

In response to Question 2, 88.6% of students agreed that

they should be able to decide upfront on the grade to be
achieved. Many students feel that setting a grade creates a clear
goal for them. They also commented on the system feature that
by setting the grade they can see upfront which tasks they need
to complete to achieve the goal:

The destination is clearer than the traditional marking
scheme.

Set the goal and then try to achieve it.

See what you have to do to achieve that grade.

I think this is a very clever, transparent way of grading
students at university. ‘If you complete all of these tasks
to a suitable standard, you are guaranteed a grade of X.’

Of the 11.4% (4 students) who selected ‘Disagree,’ one

anecdotal response indicated preference of the traditional
assessment system:

I personally think all students should be required to
attempt all tasks – if they are unsuccessful or provide
poor content then that should lower their grade.

For Question 3, all respondents (100%) voted in favor of

being able to change their goal grade. The comments show
students’ interpretation of the grade as a goal they set to
achieve, subject difficulty, and their ability to catch up with
work:

You may start with high expectations for yourself but
soon realize that these may not be realistic.

Things change throughout the semester, the unit could
be harder than expected so you should be able to change
grades during the semester.

If a student begins aiming for a credit, but finds this
relatively easy, they should be able to rectify what
they’ve missed and still achieve a distinction.

Although the point of the workload was not in the question

(it was addressed in Question 4), some students linked the grade
with workload, clearly showing that they agree with the
arrangement ‘the higher the grade the more work a student will
have to do:’

Students may find the workload easier or harder as they
progress through the semester and should therefore be
able to modify their goals accordingly.

At the start of the semester most students aren't aware
of exactly how much work a particular unit might need.
So if they start to struggle to keep up they can make the
decision which units they are less likely to do very well
in and re-adjust those unit's workload.

In the realization of other subjects piling up, it may be
difficult to complete tasks if you are unable to change
grades during the semester.

Some comments (the last one being a good example) also

show the link between grades and time management in
students’ minds.

Question 4 asked students’ opinions on whether students
aspiring for a different grade should have to complete
assessment tasks varying in the difficulty levels with 17.1% of
respondents not in favor of this approach. For example, a

Figure 2. Survey Responses (%)

88.6
100

82.9
94.3

11.4
0

17.1
5.7

88.6

11.4

0
10
20
30
40
50
60
70
80
90
100

0
10
20
30
40
50
60
70
80
90

100

Q1 Q2 Q3 Q4 Q5

Pa
rt

ic
ia

pn
ts

 (%
)

Survey responses

Agree Disagree Alternative
(Using Doubtfire)

Traditional

Journal of Information Systems Education, Vol. 29(2) Spring 2018

71

comment below notes a weakness of such an approach in the
case of students under-estimating their ability to reach a higher
grade:

Although someone may be aiming to just pass, they
may have the ability to surpass this. By providing them
with a task of an alternative difficulty you are limiting
their ability to perform and therefore grading in an
unfair way. It makes the most sense to provide
everybody with the same, flat and even assessment and
then mark students based on this with their goals in
mind.

The second comment against this approach was:

Everyone should be given the same tasks, whether or
not you want to complete it is up to you.

All other comments supported the idea that students

aspiring for different grades should have different sets of tasks
to complete, e.g.:

Credit should be harder than a Pass? Yes, they should
be showing a deeper knowledge of the subject not just
more of the same.

If a student wants a HD it is expected that they will have
to complete more difficult tasks in order to achieve it.

However, one student felt that there should be no overlap in

tasks:

It seems that the harder tasks should be given to the
people who want higher marks, but I think if you
complete the harder Credit tasks, you should not need
to complete the Pass tasks.

Finally, in responding to Question 5 on the opportunity to

resubmit work to achieve the desired grade, only two students
(5.7%) were against such an option. In their comments, students
linked the resubmission not to grades but to learning:

It is a good way to learn and improve throughout the
semester while still getting the grade you want.

Only way to learn.

Feedback is key to improvement and everyone should
be given a second chance to succeed.

Resubmission helps gain a deeper understanding of the
tasks especially if the student is struggling.

The above results demonstrate that the majority of our
students are in favor of the environment that allows them to
work using a Scrum approach and supports self-regulated
learning. Their responses and comments show their satisfaction
with the ability to work in short sprints, submitting incremental
deliverables, and having a way to keep track of their progress.
These responses also illustrate the importance of perceived
autonomy and perceived competence. They show appreciation
of feedback and the ability to learn from it. One student directly
referred to feedback in a workplace environment:

In a job, it would be necessary to get feedback.

Responses to this question also demonstrate students’

learning strategies, such as taking advantage of formative
feedback to improve the quality of deliverables, being able to
learn from formative feedback, and demonstrating
implementation of learned concepts through resubmission. One
student commented on his strategy as:

I personally keep a file with all of the major mistakes I
have made so that I don't make them again.

Responses to Questions 2 and 3 demonstrate that many

students want to be in control of their learning. Although these
questions ask about setting goals as grades to be achieved,
students interpret setting such a goal as setting an amount of
work they will have to accomplish. Responses to Question 5
reflect on students’ views on learning. Although none of our
questions referred to learning as an objective of studies,
students turned their comments from grades to learning
outcomes. The responses not only identified the importance of
formative feedback for the learning process, but also an
opportunity to act on feedback and demonstrate learning from
the feedback. Something that teaching staff always knew and
previous research confirmed now becomes conventional
wisdom for our students who use formative feedback and
resubmission opportunities as their self-regulated learning
strategies.

6.3 Does Scrum Approach Improve Pass Rates?
The short answer to the second question under investigation is
“no.” We examined results of the last three semesters of the
subject “Introduction to Programming” taught at the Faculty of
Science, Engineering and Technology, Swinburne University
of Technology (Table 4). Only students who attempted the
subject were considered (i.e., we did not count those who
enrolled but did not submit any deliverables).

These results are in line with the discussion of students’
progress reported by Cain, Woodward, and Pace (2013). In the
sample of the burndown charts of students’ progress Cain,
Woodward, and Pace examined, 38% completed less than 75%

Number of Students Semester 2, 2015 Semester 1, 2016 Semester 2, 2016
Pass or higher 207 349 158
Fail 65 97 87
Total 272 446 245
Failure rate 23.9% 21.7% 35.5%

Table 3. Failure Rates in Introductory Programming

Journal of Information Systems Education, Vol. 29(2) Spring 2018

72

of tasks, and according to their findings, these students
demonstrated a superficial approach to their studies and a lack
of interest in learning. So, although the Scrum approach is
beneficial for students who are motivated and are receptive of
facilitation of self-regulated learning, it is not helpful for
students who are not interested in learning.

7. CONCLUSION

Introductory programming subjects are known for having
disappointingly high failure rates. For years, educators have
been examining variables affecting students’ learning.
Academics teaching IT and IS courses noticed similarities in
teaching IT subjects and running IT projects, and as a result,
there have been several approaches in applying Agile
development to teaching IT subjects. In this paper, we reflected
on the implementation of Scrum to create a teaching and
learning environment that fosters self-regulated learning. We
explored students’ views on this non-traditional approach to
teaching programming concepts and found that the majority of
students were in favor of being in control of their learning. They
showed support of the option of setting the goal for themselves
and being able to develop learning strategies to reach that goal,
as well as the chance to adjust the goal based on their perceived
competence. Students also expressed appreciation of having
formative feedback and the opportunity to act on it, to learn
from mistakes, and to be able to demonstrate their learning
through resubmission. However, although this non-traditional
approach benefited self-regulated learners, it did not improve
motivation of disinterested students and did not have any
positive effect on the ratio of pass/failure rates. So, it is not
enough to provide a computer-based learning environment to
support self-regulation. Further research is needed on which
tools affect students’ motivation and how we can improve self-
regulation skills. Future studies may consider triangulated data,
i.e., data from larger student cohorts and data from teaching
staff to provide a better understanding of variables influencing
self-regulation.

8. REFERENCES

 Alfonso, M. I. & Botía, A. (2005). An Iterative and Agile

Process Model for Teaching Software Engineering.
Proceedings of the 18th Conference on Software Engineering
Education & Training, IEEE.

Balaji, S. & Murugaiyan, M. S. (2012). Waterfall vs. V-Model
vs. Agile: A Comparative Study on SDLC. International
Journal of Information Technology and Business
Management, 2(1), 26-30.

Beck, K., Beedle, M., Bennekum, A. V., Cockburn, A.,
Cunningham, W., Fowler, M., & Thomas, D. (2001).
Principles Behind the Agile Manifesto. Retrieved from
http://agilemanifesto.org/principles.html.

Beedle, M., Devos, M., Sharon, Y., Schwaber, K., &
Sutherland, J. (1999). SCRUM: An Extension Pattern
Language for Hyperproductive Software Development. In B.
Foote, H. Rohnert, & N. Harrison (Eds.), Pattern Languages
of Program Design (Vol. 4, pp. 637-651). Boston, MA:
Addison-Wesley Longman Publishing Co., Inc.

Bennedsen, J. & Caspersen, M. E. (2007). Failure Rates in
Introductory Programming. ACM SIGCSE Bulletin, 39(2),
32-36.

Black, P. & Wiliam, D. (2003). ‘In Praise of Educational
Research:’ Formative Assessment. British Educational
Research Journal, 29(5), 623-637.

Blom, M. (2010). Is Scrum and XP Suitable for CSE
Development? Procedia Computer Science, 1(1), 1511-
1517.

Bloom, B. S. (1971). Handbook on Formative and Summative
Evaluation of Student Learning. New York: McGraw-Hill.

Boekaerts, M. (1999). Self-Regulated Learning: Where We are
Today. International Journal of Educational Research,
31(6), 445-457.

Cain, A., Woodward, C. J., & Pace, S. (2013). Examining
Student Progress in Portfolio Assessed Introductory
Programming. Proceedings of the IEEE International
Conference on Teaching, Assessment and Learning for
Engineering (TALE), Kuta, Indonesia.

Carvalho, A., Areal, N., & Silva, J. (2011). Students’
Perceptions of Blackboard and Moodle in a Portuguese
University. British Journal of Educational Technology,
42(5), 824-841.

Chun, A. H. W. (2004). The Agile Teaching/Learning
Methodology and Its E-Learning Platform. Proceedings of
the International Conference on Web-Based Learning (ICWL
2004). Lecture Notes in Computer Science.

D’Souza, M. J. & Rodrigues, P. (2015). Extreme Pedagogy: An
Agile Teaching-Learning Methodology for Engineering
Education. Indian Journal of Science and Technology, 8(9),
828-833.

Gomes, A. & Mendes, A. J. (2007). Learning to Program –
Difficulties and Solutions. Proceedings of the International
Conference on Engineering Education – ICEE 2007,
Coimbra, Portugal.

Grossman, F., Tappert, C., Bergin, J., & Merritt, S. M. (2011).
A Research Doctorate for Computing Professionals – A Ten
Year Experience. Communications of the ACM, 54(4), 133-
141.

Hannafin, M. J. & Land, S. M. (1997). The Foundations and
Assumptions of Technology-Enhanced Student-Centered
Learning Environments. Instructional Science, 25(3), 167-
202.

Jenkins, T. (2002). On the Difficulty of Learning to Program.
Proceedings of the 3rd Annual Conference of LTSN, Centre
for Information and Computer Science, Loughborough, UK.

Johnson, D. H. & Caristi, J. (2002). Using Extreme
Programming in the Software Design Course. Computer
Science Education, 12(3), 223-234.

Karlesky, M. & Voord, M. V. (2008). Agile Project
Management (or, Burning Your Gantt Charts). Proceedings
of the Embedded Systems Conference Boston, Boston, MA.

Kim, J. & Booth, A. (2015). Rethinking Blackboard: Teaching
Models for Interactive Learning. Proceedings of the 13th
APacCHRIE Conference, Auckland, New Zealand.

Ma, L., Ferguson, J., Roper, M., & Wood, M. (2011).
Investigating and Improving the Models of Programming
Concepts Held by Novice Programmers. Computer Science
Education, 21(1), 57-80.

Journal of Information Systems Education, Vol. 29(2) Spring 2018

73

Nicol, D. J. & Macfarlane-Dick, D. (2006). Formative
Assessment and Self-Regulated Learning: A Model and
Seven Principles of Good Feedback Practice. Studies in
Higher Education, 31(2), 199-218.

Norman, D. A. & Spohrer, J. C. (1996). Learner-Centered
Education. Communications of the ACM, 39(4), 24-27.

O’Neil, G. & McMahon, T. (2005). Student–Centred Learning:
What Does It Mean for Students and Lecturers? In G.
O’Neill, S. Moore, & B. McMullin (Eds.), Emerging Issues
in the Practice of University Learning and Teaching (27-36).
Dublin, Ireland: All Ireland Society for Higher Education
(AISHE).

Pintrich, P. R. (2000). The Role of Goal Orientation in Self-
Regulated Learning. In M. Boekaerts, P. R. Pintrich, & M.
Zeidner (Eds.), Handbook of Self-regulation (451-529). San
Diego, CA: Academic Press.

Pintrich, P. R. & Groot, E. V. D. (1990). Motivational and Self-
Regulated Learning Components of Classroom Academic
Performance. Journal of Educational Psychology, 82(1), 33-
40.

Project Management Institute. (2017). What is Project
Management? Retrieved from
http://www.pmi.org/about/learn-about-pmi/what-is-project-
management.

Reichlmayr, T. (2003). The Agile Approach in an
Undergraduate Software Engineering Course Project.
Proceedings of the 33rd Annual Conference Frontiers in
Education, Westminster, CO.

Reiss, G. (2007). Project Management Demystified (3 ed.).
London, UK: Taylor & Francis Ltd.

Shute, V. J. (2008). Focus on Formative Feedback. Review of
Educational Research, 78(1), 153-189.

Tengberg, L. G. W. (2015). The Agile Approach with Doctoral
Dissertation Supervision. International Education Studies,
8(11), 139-147.

Urdan, T., Anderman, L. H., Anderman, E., & Roeser, R.
(1998). The Development and Validation of Scales
Assessing Students’ Achievement Goal Orientations.
Contemporary Educational Psychology, 23(2), 113-131.

Watson, C. & Li, F. W. B. (2014). Failure Rates in Introductory
Programming Revisited. Proceedings of the Conference on
Innovation Technology in Computer Science Education
(ITiCSE '14).

Williams, L. & Upchurch, R. (2001). Extreme Programming for
Software Engineering Education? Proceedings of the 31st
Annual Conference Frontiers in Education, Reno, NV.

Woodward, C. J., Cain, A., Pace, S., Jones, A., & Kupper, J. F.
(2013). Helping Students Track Learning Progress Using
Burn Down Charts. Proceedings of the IEEE International
Conference on Teaching, Assessment and Learning for
Engineering (TALE), Kuta, Indonesia.

Yorke, M. (2003). Formative Assessment in Higher Education:
Moves towards Theory and the Enhancement of Pedagogic
Practice. Higher Education, 45(4), 477-501.

Young, M. R. (2005). The Motivational Effects of the
Classroom Environment in Facilitating Self-Regulated
Learning. Journal of Marketing Education, 27(1), 25-40.

Zimmerman, B. J. (1990). Self-Regulated Learning and
Academic Achievement: An Overview. Educational
Psychologist, 25(1), 3-17.

Zimmerman, B. J. (1995). Self-Efficacy and Educational
Development. In A. Bandura (Ed.), Self-Efficacy and
Changing Societies (202-231). New York: Cambridge
University Press.

AUTHOR BIOGRAPHIES

Tanya Linden is a Lecturer in Information Systems at the

School of Business, Swinburne
University of Technology. She has a
diverse educational background with
qualifications and expertise that
cover developing the technical side
of information systems, web design,
and HCI, as well as teaching and
learning in higher education. She is
the recipient of numerous teaching
awards from the universities where
she has worked. Her research

interests are in e-learning, educational technologies, and
multimedia development practices. She is well-published in all
these areas and regularly presents her work throughout North
America, Europe and Australasia.

Journal of Information Systems Education, Vol. 29(2) Spring 2018

74

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2018 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 2574-3872

	6.1 Data Collection and Survey
	6.3 Does Scrum Approach Improve Pass Rates?

