

Using a Semi-Realistic Database to Support a Database

Course

Kwok-Bun Yue
Department of Computer Information Systems

University of Houston-Clear Lake

Houston, Texas, USA

yue@uhcl.edu

ABSTRACT

A common problem for university relational database courses is to construct effective databases for instructions and

assignments. Highly simplified ‘toy’ databases are easily available for teaching, learning, and practicing. However, they do

not reflect the complexity and practical considerations that students encounter in real-world projects after their graduation. On

the other hand, production databases may contain too much domain nuances and complexity to be effectively used as a

learning tool. Sakila is a semi-realistic, high quality, open source, and highly available database provided by MySQL. This

paper describes the use of Sakila as a unified platform to support instructions and multiple assignments of a graduate database

course for five semesters. Based on seven surveys with 186 responses, the paper discusses our experience using Sakila. We

find this approach promising, and students in general find it more useful and interesting than the highly simplified databases

developed by the instructor, or obtained from textbooks. We constructed a collection of 124 problems with suggested solutions

on the topics of database modeling and normalization, SQL query, view, stored function, stored procedure, trigger, database

Web-driven application development with PHP/MySQL, Relational Algebra using an interpreter, Relational Calculus, XML

generation, XPath, and XQuery. This collection is available to Information Systems (IS) educators for adoption or adaptation

as assignments, examples, and examination questions to support different database courses.

Keywords: Database design & development, Data modeling, Database management systems (DBMS), Normalization, Query

language

1. INTRODUCTION

A common problem for university relational database

courses is to construct effective databases for instructions

and assignments. Limited by spaces and with the focus to

provide easy-to-understand examples on core concepts,

database textbooks usually contain highly simplified

databases which are regarded by many as ‘toy’ databases

(Elmasri and Navathe, 2010; Gillenson, 2011; Hoffer,

Ramesh and Topi, 2013; Jukić, Vrbsky and Nestorov, 2013;

Pratt and Adamski, 2011; Rob and Coronel, 2007; Watson

2005). Although effective in illustrating underlying

principles, these simple examples do not reflect the

complexity and practical considerations that are common and

crucial in real-world problems. They would “under no

circumstance prepare the students for the true feel and

experience of the massive data sets and the database

problems they will need to cope with once they graduate and

work in the real world” (Jukić and Gray 2008).

However, using real-world production databases to teach

database concepts is also not without challenges. Their

intricate domain constraints, intrinsic complexity, and

extensive practical considerations of technical, managerial,

and organizational issues create a significant barrier for

students to understand the problem. Their complexity can

obscure the underlying principles and hinder effective

learning, especially for novices. Students need to overcome a

steep learning curve before being able to work on examples

and assignments based on them. Thus, a well-designed

‘semi-realistic’ database with the right balance of complexity

represents an appropriate compromise. It can allow students

to quickly practice relational theory and techniques, while

working in an environment resembling their future

professional careers. This paper describes our five-semester

experience in using Sakila, a well-designed and highly

available semi-realistic database provided by MySQL, to

support instructions and multiple assignments in a graduate

database course. It describes a set of 128 Sakila-based

problems we developed in diverse topics in databases. They

can selectively be used to support different database courses.

Our surveys show that this semi-realistic approach is both

promising and effective.

The paper is organized as follows. Section 2 provides the

background literature research. Section 3 describes Sakila

and the database course. Section 4 describes the set of course

materials with examples. Section 5 discusses our learned

experience based on the survey results of studying the

Journal of Information Systems Education, Vol. 24(4) Winter 2013

327

effectiveness of using such a semi-realistic database. We

draw our conclusions in Section 6.

2. BACKGROUND AND LITERATURE RESEARCH

Many IS educators have the impression that the vast majority

of database examples and assignments used in database

textbooks and courses tend to be highly simplified. This

simplified approach helps to minimize complexity and

highlight core principles to students. To evaluate the validity

of this impression, we studied the Teradata University

Network, a popular resource for supporting various kinds of

database courses for both faculty members and students

(Teradata University Network, 2013). It provides the

Teradata Database DBMS, which is accessible via Teradata

SQL Assistant through the Web (Jukić and Gray, 2008).

Teradata Database DBMS contains a collection of databases

used in various popular DBMS textbooks. We analyzed all

textbook databases through Teradata SQL Assistant. In the

collection, there are databases with large amount of

overlapping schema and data. When given a choice, we

selected the versions with the larger sizes. We obtained and

analyzed information on 13 databases from the most recent

versions of six textbooks (Gillenson, 2011; Hoffer, Ramesh

and Topi, 2013; Jukić, Vrbsky and Nestorov, 2013; Pratt and

Adamski, 2004; Rob and Coronel, 2007; Watson 2005).

Table 1 contains the result. Note that the database db_watson

contains all databases used in Watson (2005). Its 24 tables

include at least seven independent databases and we selected

only the largest one for inclusion in Table 1: qsale.

Database textbook Database # Tables # Records
Average # records per

table

Gillenson, 2011 db_fdms_ba 4 52 13.0

 db_fdms_qam 6 102 17.0

 db_fdms_hcl 6 71 11.8

 db_fdms_sbl 6 55 9.2

Hoffer, Ramesh and Topi, 2013 db_pvfc11_std 15 86 5.7

Jukić, Vrbsky and Nestorov, 2013 db_jukic_hafhmore 9 159 17.7

 db_jukic_zagimore 8 131 16.4

Pratt and Adamski, 2011 db_gts_pp 5 39 7.8

 db_gts_hb 6 173 28.8

 db_gts_amg 5 46 9.2

Rob and Coronel, 2007 db_robcor_ch07 8 113 14.1

 db_robcor_ch08 10 131 13.1

Watson 2005 db_watson: qsale 6 131 21.8

Average 7.2 99.2 14.3

Median 6 102 13.1

Table 1. Number of tables, number of records, and average numbers of records per table in 13 databases from six

database textbooks from Teradata University Network

We identified several common characteristics:

 The databases are indeed small.

 An analysis of the relational schemas revealed that they

are highly simplified and similar to the classical and

popular employee/department/project and

student/course/enrollment domains (Wagner, Shoop and

Carlis, 2003).

 All databases contain only the basic tables and indices.

None of them contains any useful advanced RDBMS

features such as views, stored procedures, stored

functions, or triggers.

 The textbooks use multiple databases as examples and

exercises.

This confirms the common brief that databases from

textbook tend to be based on ‘toy’ applications. On the other

hand, IS educators also believe that highly simplified data

domains do not adequately prepare students for the

complexity of real world projects that they face after

graduation (Jukić and Gray 2008, Wagner, Shoop and Carlis

2003). For this purpose, a common approach is to

incorporate database projects based on real-world problems,

such as partnering with industrial companies (Seyed-

Abbassi, King and Wiseman, 2007), using realistic scientific

datasets (Wagner, Shoop and Carlis, 2003), or reverse

engineering existing databases (Enciso and Soler, 2013).

Although these semester long projects are effective in

providing realistic capstone experience in databases, these

real-world domains are designed for production, and not for

instructional purposes. They may contain too much

complexity and domain knowledge for students to use

efficiently as learning platforms to apply their database

knowledge in design, programming, and query languages.

Like many other IS educators, we attempted to incorporate

realistic databases of the appropriate complexity into our

courses. In particular, we sought to identify and use a

balanced, semi-realistic database as a common vehicle for

examples and assignments in diverse topics in relational

databases: design and modeling, query languages, SQL, and

database-driven Web development. Eventually, we selected

and used Sakila for five semesters in a graduate database

course.

3. SAKILA

Sakila is a sample database included in the standard

installation package of MySQL, a popular and industrial

strength open source DBMS (Sakila, 2013a; MySQL, 2013).

It was “intended to provide a standard schema that can be

Journal of Information Systems Education, Vol. 24(4) Winter 2013

328

used for examples in books, tutorials, articles, samples, and

so forth. Sakila sample database also serves to highlight the

latest features of MySQL such as Views, Stored Procedures,

and Triggers” (Sakila, 2013b). Because of the popularity of

MySQL, Sakila enjoys good documentation and community

support. It has been used for widely different purposes, such

as testing and verification of MySQL (Cobb, et al., 2011), as

exercises and test cases (Sakila, 2013b), and as sample

datasets in database research (Bourennani, Guennoun and

Zhu, 2010). Sakila is designed to support a DVD film rental

application. Figure 1 shows the visual relation schema of

Sakila (2013a). Table 2 shows the relations with attributes.

Most of the tables are easy to understand and work with.

Table 3 summarizes the basic statistics of Sakila we

tabulated together.

Figure 1. Visual Sakila Schema

Sakila Relation Schema

actor(actor_id, first_name, last_name, last_update)

address(address_id, address, address2, district, city_id, postal_code, phone, last_update)

category(category_id, name, last_update)

city(city_id, city, country_id, last_update)

country(country_id, country, last_update)

customer(customer_id, store_id, first_name, last_name, email, address_id, active, create_date, last_update)

film(film_id, title, description, release_year,language_id, original_language_id, rental_duration, rental_rate, length,

replacement_cost, rating, special_features, last_update)

film_actor(actor_id, film_id, last_update)

film_category(film_id, category_id, last_update)

film_text(film_id, title, description)

inventory(inventory_id, film_id, store_id, last_update)

language(language_id, name, last_update)

payment(payment_id, customer_id, staff_id, rental_id, amount, payment_date, last_update)

rental(rental_id, rental_date, inventory_id, customer_id, return_date, staff_id, last_update)

staff(staff_id, first_name, last_name, address_id, picture, email, store_id, active, username, password, last_update)

store(store_id, manager_staff_id, address_id, last_update)

Table 2. Sakila’s relations and their attributes

Journal of Information Systems Education, Vol. 24(4) Winter 2013

329

Entities Number

Tables 16

 Total number of records 46,076

 Average number of records per table 2,958

 Medium number of records per table 585

 Total number of foreign keys 23

 Number of key indices (not counting primary keys) 25

Views 7

Stored Procedures 3

Stored Functions 3

Triggers 6

Table 3. Basic statistics of Sakila

Comparing to the textbook databases in Table 1, Sakila is

significantly larger, more complex, and more realistic.

Furthermore, it contains advanced RDBMS features,

including views, stored procedures, stored functions, and

triggers.

At the University of Houston-Clear Lake, all graduate

students in Computer Information Systems (CIS) and

Computer Science (CS) are required to take a graduate

DBMS course. The course covers the usual topics in

relational database, including modeling, design, querying,

and normalization. It also includes other advanced topics

such as Web database development, XML, etc. It is a little

more technical than the typical database course in MIS. Our

search for a suitable database of balanced complexity led us

to experiment with Sakila.

4. USING SAKILA IN THE DATABASE COURSE

We started to use Sakila to support our course in the fall

semester of 2011. Although it is also used in lecture

examples and examinations, the main emphasis is to support

assignments to provide students with realistic practices on

relational theory and techniques. Table 4 summarizes our

steadily increasing uses of Sakila in our homework

assignments from one in fall 2011 to five in fall 2013.

Topic
Semester

F11 S12 F12 S13 F13

Modeling, Design and Normalization √ √ √

SQL Query √ √ √

SQL View, Triggers, Stored Functions and Procedures √ √ √ √ √

PHP MySQL Web Application √ √ √ √

Full Text Search √

Data Mining and Pattern Recognition √ √

Relational Algebra √

Relational Calculus √

XML Generation by Scripts √

XPath and XQuery √ √ √ √

Number of assignments based on Sakila 1 3 4 4 5

Total number of assignments in the semester 8 8 8 8 9

Percentage of assignments based on Sakila 12.5% 37.5% 50% 50% 55.5%

Table 4. Sakila-based assignments on different topics in the five semesters

from Fall 2011 to Fall 2013

We refined and organized our Sakila-based problems

from assignments, examinations, and examples into a

collection. Every problem has a suggested solution. Table 5

summarizes the number and the perceived level of difficulty

of the problems in various topics. The problem collection is

available to IS educators through the Journal of Information

Systems Education (JISE) and can easily be adapted as

examples, assignments, examination questions, or quizzes to

support different database courses.

Journal of Information Systems Education, Vol. 24(4) Winter 2013

330

Topic
Number of Problems

Easy Medium Hard Total

Modeling, Design and Normalization - 2 2 4

SQL Query 11 13 6 30

SQL View 5 5 - 10

SQL Stored Functions 7 1 2 10

SQL Stored Procedures = 4 1 5

SQL Trigger 2 2 - 4

PHP MySQL Web Application 5 4 2 11

Relational Algebra 2 3 3 8

Relational Calculus 4 6 6 16

XML Generation by Scripts - 2 - 2

XPath 12 6 3 21

XQuery 2 4 1 7

Total 50 52 26 128

Table 5. Numbers and levels of difficulties of Sakila-based problems

We briefly describe the problems in different topics with the

examples below.

4.1 Modeling, Design and Normalization

Sakila documentation includes a structure diagram showing

tables and their foreign key relationship. It does not include

an ER diagram modeling the data requirements and

assumptions. A significant problem is to reverse engineer a

suitable data model using either ER diagram or UML class

diagram in a way similar to Enciso and Soler (2013). Other

problems are constructed to conduct normalization analysis

and table redesign to enhance performance. An example of a

problem of a medium level of difficulty on normalization

analysis is described below.

Problem. [Medium] Is the table film in first normal

form? Why? If it is not in 1NF, describe a redesign

to remove the violation of 1NF.

The problem requires the students to study the film table and

find out that one of the columns, special_features, has a data

type of set with four possible elements: "Trailers,

Commentaries, Deleted Scenes, Behind the Scenes." Because

the value is not atomic, it violates the first normal form. In

pure relational theory, the use of any aggregate data type

violates the first normal form. The problem highlights the

need of balance between practical considerations in real-

world database and theoretic consideration based on the

relational model. This is usually absent in ‘toy’ databases.

The redesign to eliminate 1NF violation includes creations of

new tables such as special_feature and film_feature. The

table redesign in this problem does not involve triggers but

other redesign problems may need triggers.

4.2 SQL Query

A strong background in SQL query is crucial in any database

course. Sakila provides plenty of opportunities to construct

interesting query problems of various levels of difficulties

and focuses. The following example shows that even a

conceptually simple problem may involve many tables, six in

this case.

Problem. [Easy] List all actors who have appeared

in a film rented by the customer "MARY SMITH".

Note that the result should be sorted in ascending

order of the first name and then last name of the

actors.

Suggested Solution.

SELECT DISTINCT CONCAT(A.first_name, ' ',

 A.last_name) AS "ACTOR"

FROM ACTOR A JOIN FILM_ACTOR FA

 ON A.actor_id = FA.actor_id

 JOIN FILM F ON FA.film_id = F.film_id

 JOIN INVENTORY I ON F.film_id = I.film_id

 JOIN RENTAL R ON I.Inventory_id =

R.inventory_id

 JOIN CUSTOMER C ON R.customer_id =

C.customer_id

WHERE C.last_name = "SMITH"

AND C.first_name = "MARY"

ORDER BY A.first_name, A.last_name;

As another example of a more difficult query, the following

problem requires the students to study the MySQL manual to

learn to use the results of additional SELECT statements

inside the FROM clause and the WHERE clause of a

SELECT statement.

Problem. [Hard] List the names of the actor with a

number of film appearances within 10 that of the

number of film appearances of the most prolific

actor. In our relation instance, the most prolific actor,

"GINA DEGENERRES", appears in 42 films. Thus,

the query should list all actors that appear in 33 or

more films.
+--------------------+-----------------+

| ACTOR | Number of films |

+--------------------+-----------------+

| GINA DEGENERES | 42 |

| WALTER TORN | 41 |

…

| RIP CRAWFORD | 33 |

| CAMERON ZELLWEGER | 33 |

+--------------------+-----------------+

Suggested Solution.

SELECT afc.ACTOR, afc.N_FILMS AS "Number

of films"

Journal of Information Systems Education, Vol. 24(4) Winter 2013

331

FROM

 (SELECT DISTINCT CONCAT(A.first_name, ' ',

 A.last_name) AS "ACTOR",

 COUNT(FA.film_id) AS N_FILMS

 FROM ACTOR A, FILM_ACTOR FA

 WHERE A.actor_id = FA.actor_id

 GROUP BY A.actor_id, A.first_name, A.last_name

 ORDER BY COUNT(FA.film_id) DESC) AS afc

WHERE afc.N_FILMS + 9 >=

 (SELECT MAX(fcounts)

 FROM (SELECT count(*) as fcounts

 FROM actor a, film_actor fa

 WHERE a.actor_id = fa.actor_id

 GROUP BY a.actor_id) as temp

);

Overall, the set of the 30 problems in SQL queries

requires students to learn and understand a variety of general

SQL techniques as well as specific MySQL features, such as

group functions, simulation of the division operator of the

relational algebra, regular expressions, full text search, and

performance optimization.

4.3 Views, Stored Functions, Stored Procedures and

Triggers

A major strength of Sakila compared to the textbook

databases surveyed in Section 2 is its inclusion of advanced

features such as views, stored subprograms, and triggers. As

an example, the following problem asks students to write a

stored function to return a feature vector of a customer. The

function is then used in other problems in stored

subprograms that serve as the basis of a simple data mining

recommender application to find customers with shared

tastes using a similarity vector. The suggested solution is not

shown here because of space consideration.

Problem. [Hard] Write a function,

category_feature_length(customer_id INT), to compute

the length of the category feature vector. Each element in

the category feature vector is the number of the films the

customer has rented in a category.

For example, for customer 1, the category feature vector

is (2,2,6,5,2,4,1,1,1,4,2,2,2,2,1). She has rented 2, 2, 6 and 5

films in categories 1, 2, 3 and 4 respectively, and so on. For

customer 20, it is (1,1,3,2,3,2,2,1,1,1,1,7,0,4,1). Note the 0 as

the value of the 12th element as she has not rented any film

in category 12.

The length of the vector is the square root of the sum of

the square of each element.

□

4.4 Relational Algebra and Relational Calculus

Relational Algebra (RA) and Relational Calculus (RC) are

core components of relational theory. However, most

students do not have hands-on practice, partly because of a

lack of suitable interpreters. We used the RA interpreter

developed by Sunderraman (2010). The RA interpreter

requires databases to be prepared in a certain format. Its

queries use a special textual format (as opposed to the

standard mathematical notation of RA). We prepared data

files to populate the interpreter with Sakila and designed

problems as illustrated in the example problem below. Since

the interpreter does not support some RA operators such as

division and logical disjunction, the solutions sometimes

tend to be more complicated than those using the standard

RA mathematical notation. This provides an example of the

needs to work around unsupported features in the selected

technology in real world environment.

Problem. [Medium] List the customer id of

customers who have rented film 1 but not film 21. □

Suggested Solution.

(PROJECT [CUSTOMER_ID] (RENTAL JOIN

 (PROJECT [INVENTORY_ID]

 (SELECT [FILM_ID = 1] (INVENTORY)))))

MINUS

(PROJECT [CUSTOMER_ID] (RENTAL JOIN

 (PROJECT [INVENTORY_ID]

 (SELECT [FILM_ID = 21] (INVENTORY)))));

Students also learn to be mindful of practical nuances.

For an example, many textbook examples teach students to

first perform a natural join to combine information from two

tables and then extract the desired information through

project and select. In the example above, that will not work.

Projection must be performed first and a query like

RENTAL JOIN INVENTORY returns an empty table. This

is because besides the expected common attribute of

inventory_id, both tables also have another common

attribute, last_update, which have different meanings. If not

removed by a projection first, the equality of last_update is

incorrectly included in the JOIN operation. Sunderraman

(2010) also developed an interpreter for RC. Because of time

restriction, we have not used it in our problem set. Instead,

we asked our students to construct both Tuple Oriented

Relational Calculus and Domain Oriented Relational

Calculus solutions using standard mathematical notation.

4.5 Database-Driven Web Application Development with

PHP

Sakila provides sufficient details for non-trivial database-

driven Web application development. We selected PHP as

our language of choice as it is open source, popular, feature

rich, and well supported. Since it is usually counted as one

assignment out of a total of 8 to 9 assignments in the

semester, the problem requirement is minimalistic with little

demand on Web design. The focus is on embedded database

programming in PHP and MySQL, as demonstrated by the

example problem below. The suggested solution is not

shown here because of space consideration.

Problem. [Medium] Write a very simple toy PHP

MySQL Web application to display category

information of customers from Sakila for the DVD

systems manager. The emphasis is on the PHP to

MySQL database access component. Thus, the

homework does not expect refined Web design. The

minimum requirement is to allow the manager to

select from the first character of the customer's last

name from a drop down list. After the manager

selects the character, it should lead to the page

customer.php, which shows all customers in a list

Journal of Information Systems Education, Vol. 24(4) Winter 2013

332

format. For an example, if the character A is

selected:

Figure 2. Web display example of customer.php with last

name starting with the character ‘A’

Clicking the link leads to another page, showAnalysis.php, to

display the following information:

Figure 3. Web display example of showAnalysis.php

4.6 XML Generation, XPath, and XQuery

XML provides a standard way to store meta-data about

information (Elmasri and Navathe, 2010). It is especially

useful in data transmission. Many database courses have a

good treatment of XML. We designed two kinds of

problems. The first is to write script programs to create XML

content by reading data from Sakila.

Problem. [Medium] Write a script program (such as

a standalone PHP program) to access the Sakila

database to generate an XML file: film.xml. Your

program can be quick and dirty as the goal is the

generation of XML content. Reasonable

assumptions, such as no XML special characters in

the data, can be made. A part of the film.xml is

shown in Table 6.

We provided the students with a suggested solution in

standalone PHP. Note that PHP is usually used in Web

application but not in standalone mode. A suggested solution

in other scripting languages such as Python or Perl can easily

be developed instead. However, we do not want to incur

more complexity to the course by adding another scripting

language. The suggested solution is not included here

because of space consideration.

<?xml version="1.0"?>

<films>

<film id="1">

 <title>ACADEMY DINOSAUR</title>

 <releaseYear>2006</releaseYear>

 <category>Documentary</category>

 <actor id="1">PENELOPE GUINESS</actor>

 …

 <actor id="198">MARY KEITEL</actor>

</film>

<film id="2">

…

</films>

Table 6. A portion of the file film.xml □

The second kind of problems is the construction of

XPath and XQuery expressions for queries on the generated

XML files. For example:

Problem. [Medium] Write an XQuery expression to

generate an XML document of actors and the number of

film appearances of the actors using the format below.

Note that it is in ascending order of actor id.

<?xml version="1.0" encoding="UTF-8"?>

<actors>

 <actor id="1">

 <numFilms>19</numFilms>

 </actor>

 ...

 <actor id="200">

 <numFilms>20</numFilms>

 </actor>

</actors>

Suggested Solution.

<actors>

 {for $id in fn:distinct-values(//film/actor/@id)

 order by xs:int($id)

 return

 <actor id="{$id}">

 <numFilms>

 { fn:count(//film[actor/@id=$id]) }

 </numFilms>

 </actor>

 }

</actors>

4.7 Other Topics

Sakila can also be used to support other database course

objectives such as performance optimization and database

security. For examples, we have assignments that ask

students to provide several query solutions, such as using

and not using join, using and not using subqueries, etc., and

then compare their execution times to study their relative

performance. Although not used in our classes, Sakila can

Journal of Information Systems Education, Vol. 24(4) Winter 2013

333

also be extended to support an encryption-based online

customer account system.

5. RESULTS AND DISCUSSION

To gauge the effectiveness of the approach, we conducted

student surveys in four semesters. The surveys do not

represent a quantitative analysis in support of any

hypothesis. However, they provide insights on the potential

of our approach. Table 7 lists the averaged results of the 186

responses on seven surveys. We did not conduct a survey in

the spring semester of 2013. Most responses use a scale of 5

with 3 being neutral and 5 being the most positive answer

(for examples, very interesting or very useful). On the

question on the level of difficulties, 5 means very difficult.

Standard deviations are shown in parenthesis after the

averages.

Survey # Responses
Past

Experience
Interestingness Usefulness

Level of

difficulty

Fall 2011 30 0.28 (0.74) 3.48 (1.16) 3.76 (1.16) 3.96 (1.02)

Spring 2012 Survey 1 18 0.88 (1.50) 4.12 (0.99) 4.24 (1.09) 3.41 (0.80)

Spring 2012 Survey 2 18 0.38 (0.81) 3.71 (1.16) 3.71 (1.05) 3.76 (0.97)

Fall 2012 Section 1 29 0.41 (0.87) 4.35 (1.06) 4.29 (1.10) 4.12 (0.60)

Fall 2012 Section 2 31 0.09 (0.43) 4.50 (0.91) 4.65 (0.57) 3.78 (0.79)

Fall 2013 Section 1 30 0.52 (1.33) 4.19 (0.93) 4.05 (1.24) 3.29 (0.72)

Fall 2013 Section 2 30 0.92 (1.20) 4.12 (0.99) 4.58 (0.58) 3.35 (0.56)

Average 186 0.50 (0.98) 4.07 (1.03) 4.18 (0.97) 3.67 (0.91)

Table 7. Average student responses on past experience (number of similar assignments done in the past),

and interestingness, usefulness and level of difficulties of Sakila-based assignments.

Standard deviations are shown in parenthesis after the averages.

The result indicates that students found that Sakila-based

assignments are in general interesting and useful. The

surveys also asked students to provide textual comments.

Out of 186 responses, 148 provided textual comments. We

analyzed these comments and count the occurrences of

different perceptions. For example, the comment “Useful and

helps students as we have to do it practically which will be

helpful when working” is counted as a perception of both

usefulness and providing real-world experience. Similarly,

the comment “Assignments are interesting and are difficult.

By practicing and doing hard work I can complete the

assignment” is counted as a perception of both

interestingness and difficulty. The result is shown in Table 8

below. It correlates well with the numeral responses.

Survey # Responses # Comments Difficult Interesting Useful R/W Exp. Need help

F11 30 25 11 3 12 3 4

Sp12 #1 18 17 8 3 8 2 4

Sp12 #2 18 17 8 3 8 2 4

F12 #1 29 17 2 6 10 2 0

F12 #2 31 23 5 5 14 8 3

F13 #1 30 23 3 3 15 6 0

F13 #2 30 26 3 3 15 6 0

Total 186 148 40 26 82 29 15

Percentage 80% 27% 18% 55% 20% 10%

Table 8. Content analysis on comments showing the number of responses indicating in their written comments that the

Sakila based assignments are difficult, interesting, useful, provided real-world experience, and students needed help to

complete. The total number of students in classes and the number of responses are also shown.

It can be seen that the students had little prior experience and

have done an average of only 0.5 similar assignments in the

past. This may be one of the reasons why they found the

assignments to be a little difficult (an average response of

3.67 on the level of difficulties, with a response of 3 being

neutral). 27% of the textual comments mentioned that the

assignments were difficult, and 10% indicated that they

needed helps. PHP is the topic that was mentioned most as

both hard and interesting. This is understandable as most

students had no prior PHP experience and basically had only

two weeks to learn enough to construct the solution.

Note that in more recent semesters, students perceived

the assignments to be less difficult. No student explicitly said

that they needed help in the most recent semester. This is

likely due to accumulated instructor’s experience and that

Sakila is much more integrated into the course in more

recent semesters (five assignments in fall 2013 as opposed to

one assignment in fall 2011). This is a benefit of having

multiple assignments on the same database. It seems that the

students are able to learn quickly enough to be productive.

The students clearly found the assignments to be both

interesting (4.07) and useful (4.18). Furthermore, the

responses from more recent semesters (such as the average

responses of 4.15 and 4.31 on interestingness and usefulness

respectively on the two sections in fall 2013) are markedly

better than earlier semesters (such as the responses of 3.48

and 3.76 on interestingness and usefulness respectively in

fall 2011). Many students explicitly mentioned the benefits

Journal of Information Systems Education, Vol. 24(4) Winter 2013

334

of real-world experience. These responses are promising.

Since the responses may be biased by the overall student

perception of the general course and instructor quality, we

also included survey questions to compare Sakila to database

examples designed by the instructor and the textbook

(Elmasri and Navathe, 2010). Table 9 shows the results.

Survey
Relative usefulness vs.

Instructor’s examples

Relative Interestingness

vs. Instructor’s

examples

Relative usefulness vs.

book’s examples

Relative

Interestingness vs.

book’s examples

F11 3.20 3.20 3.32 3.28

Sp12 #1 3.88 3.65 3.71 3.65

Sp12 #2 3.53 3.41 3.59 3.18

F12 #1 4.06 3.88 3.94 3.94

F12 #2 3.96 3.95 3.68 3.95

F13 #1 3.90 3.90 3.76 3.76

F13 #2 3.81 3.88 3.77 3.81

Average 3.76 3.70 3.68 3.65

Table 9. Comparing using Sakila to database examples by the instructor and the textbook. A response of 3 means

‘about the same’ and a response of 5 means ‘much more interesting’ or ‘much more useful’.

Since a response of 3.0 represents a neutral perception,

the survey result range of 3.65 to 3.76 on usefulness and

interestingness thus shows that Sakila compares favorably to

instructor and textbook examples in a consistent manner.

This agrees with our teaching experience. In general, we find

that Sakila offers several important advantages.

1. It has the right balance of complexity: not too

simplistic, but also not bogged down by unnecessary domain

intricacies.

2. It is open sourced. The SQL files for creating and

populating the databases are available for study and

modification.

3. It is well designed and documented, and highly

available. It enjoys widespread support in the MySQL

community.

4. It exposes students to practical considerations in

realistic database without overwhelming them.

5. It includes advanced SQL features in views, stored

procedures, stored functions and triggers.

6. Because the targeted application is easy to

understand, it is not hard to set up assignments in multiple

topics.

7. It can be used as a unified database to support

multiple assignments to enhance learning efficiency and

increase depth of knowledge.

All of these advantages are illustrated by the examples

on various topics discussed in Section 4. Since an important

goal of selecting Sakila is its semi-realistic nature, advantage

#4 merits more discussion here. Sakila was designed not to

be a production system, which usually requires much more

complexity. However, it incorporates a lot of practical design

decisions not generally available in ‘toy’ databases.

Analyzing, understanding, and improving these practical

aspects prepare students better for the real-world

environment.

As another example of these practical considerations,

one problem asks students to study two tables: film and

film_text. They need to find out that the table

film_text(film_id, title, description) is a subset of the table

film. The values of the three columns in film_text are a copy

of the same columns in the table film. The table film has

additional columns to store other film properties. This is

obviously a violation of the relational database design theory

of avoiding unnecessary redundancy. However, in practice,

Sakila was designed initially for Version 5.5 of MySQL. The

table film uses the default and efficient MySQL database

engine InnoDB, which does not support full text indexing

and searching. To provide full text support on the columns

title and description, they are copied to form a new table

film_text. The new table uses the database engine MyISAM

to support full text indexing and searching. The contents of

the two tables are synchronized by triggers. This is an

example of the kind of workaround common in real world

projects but missing in idealized database examples.

Furthermore, in the newer version of MySQL, full text

indexing is supported by the InnoDB engine and there is no

need for a separate table film_text. In fact, a few brighter

students found this out independently. They ported the

database to a newer MySQL with a simplified design to

solve a Web application problem that requires full text

searching. Better solutions made available by technology

advances is common in the real world and students get a

taste of practical database refactoring to improve

performance and reliability (Ambler, 2003).

6. FUTURE WORK AND CONCLUSIONS

No single database can be used to satisfy all pedagogical

needs of a database course. Sakila is no exception. This

paper shows that a high quality semi-realistic database such

as Sakila can effectively be used as a unifying platform to

support multiple topics. However, Sakila is not without its

limitations. Its targeted problem of DVD rentals is not a new

and exciting application. Some of its data can also be more

illustrative. For an example, the table film_category allows

the possibility of a film to belong to multiple categories,

which makes for more interesting query problems. However,

the actual Sakila dataset does not take advantage of this

flexibility, and every film belongs to only one category.

Furthermore, Sakila may also miss some of the sophisticated

design patterns in more complicated production databases.

To address some of these issues in future semesters, we

are working on constructing a new instance of Sakila with

richer and more interesting data. Also on the design board

are assignments that use the Relational Calculus interpreter

by Sunderraman (2010), and that redesign Sakila to satisfy

Journal of Information Systems Education, Vol. 24(4) Winter 2013

335

new requirements. We are also investigating porting Sakila

to an object-oriented database and a NoSQL database.

7. ACKNOWLEDGEMENTS

We would like to thank our students for their interest,

participation, and feedback on this experiment. Ms. Chloris

Yue and scholars of the UHCL NSF Scholar Program (NSF

Grant # 1060039) also provided invaluable suggestions and

assistance.

8. REFERENCES

Ambler, S. (2003) Agile Database Techniques: Effective

Strategies for the Agile Software Developer, Wiley

Publishing, New York, NY.

Bourennani, F., Guennoun, M. and Zhu, Y. (2010)

"Clustering Relational Database Entities Using K-means,"

Second International Conference on Advances in

Databases Knowledge and Data Applications (DBKDA),

Menuires, France, pp.143-148.

Cobb, J., Jones, J., Kapfhammer, G. and Harrold, M. (2011)

“Dynamic invariant detection for relational databases,”

ACM Proceedings of the Ninth International Workshop on

Dynamic Analysis (WODA '11), New York, NY, pp.12-

17.

Elmasri, R. and Navathe, S. (2010) Fundamentals of

Database Systems, 6th Edition, Addison-Wesley, Boston,

MA.

Enciso, M. and Soler, E. (2013) "Teaching database design:

A reverse engineering approach," 2013 IEEE Global

Engineering Education Conference (EDUCON), Berlin,

Germany, pp.474-480,

Gillenson, M. (2011) Fundamentals of Database

Management Systems, 2nd Edition, Wiley Publishing,

New York, NY.

Hoffer, J., Ramesh, V. and Topi, H. (2013) Modern Database

Management, 11th Edition, Prentice-Hall, Upper Saddle

River, NJ.

Jukić, N. and Gray, P. (2008) “Using real data to invigorate

student learning,” SIGCSE Bulletin, Vol. 40, No. 2, pp.6-

10.

Jukić, N., Vrbsky, S. and Nestorov, S. (2013) Database

Systems: Introduction to Databases and Data Warehouses,

Pearson, Upper Saddle River, NJ.

MySQL (2013), Retrieved December 22, 2013 from

http://www.mysql.com/.

Pratt, P. and Adamski, J. (2004) Concepts of Database

Management, 5th edition, Cengage Learning, Stamford,

CT.

Pratt, P. and Adamski, J. (2011) Concepts of Database

Management, 7th edition, Cengage Learning, Stamford,

CT.

Rob, P. and Coronel, C. (2007) Database Systems: Design,

Implementation and Management, 8th Edition, Course

Technology Press, Boston, MA.

Sakila (2013a), Sakila Sample Database, Retrieved

December 22, 2013 from

http://dev.mysql.com/doc/sakila/en/.

Sakila (2013b), Sakila Introduction, Retrieved December 22,

2013 from http://dev.mysql.com/doc/sakila/en/sakila-

introduction.html.

Seyed-Abbassi, B., King, R. and Wiseman, E. (2007), “The

Development of a Teaching Strategy for Implementing a

Real-World Business Project into Database Courses,”

Journal of Information Systems Education, Vol. 18, No.

3, pp.337-343.

Sunderraman, R. (2010) Fundamentals of Database Systems

Laboratory Manual, 2nd Edition, Retrieved December 21,

2013 from http://tinman.cs.gsu.edu/~raj/elna-lab-2010/.

Teradata University Network (2013), Retrieved December

21, 2013, from

http://www.teradatauniversitynetwork.com/.

Wagner, P., Shoop, E. and Carlis, J. (2003). “Using scientific

data to teach a database systems course,” Proceedings of

the 34th SIGCSE technical symposium on computer

science education (SIGCSE '03), New York, NY, pp.224-

228.

Watson, R. (2005) Data Management: Databases and

Organizations, 5th Edition, Wiley Publishing, New York,

NY.

AUTHOR BIOGRAPHY

Kwok-Bun Yue (B.S., M.Phil., Chinese University of Hong

Kong, M.S., Ph.D., University of

North Texas) is a Professor of

Computer Information Systems

and Computer Science at

University of Houston-Clear

Lake (UHCL). His research

interests are in Internet

computing, semi-structured data,

and information systems and

computer science education. He

had published more than 30

technical papers. Dr. Yue is a recipient of s UHCL

Distinguished Teaching Award, the UHCL Piper Award, the

UHCL Alumni Association’s Outstanding Professor Award

and the UHCL Fellowship Award. He had served as a CTO

of a startup company.

Journal of Information Systems Education, Vol. 24(4) Winter 2013

336

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2013 by the Education Special Interest Group (EDSIG) of the Association of Information Technology Professionals.
Permission to make digital or hard copies of all or part of this journal for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use.
Permission requests should be sent to the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

