

An Experimental Investigation of Complexity in Database

Query Formulation Tasks

Gretchen Irwin Casterella

Leo Vijayasarathy

Computer Information Systems Department

College of Business

Colorado State University

Fort Collins, CO 80525-1277

Gretchen.Irwin@business.colostate.edu, Leo.Vijayasarathy@business.colostate.edu

ABSTRACT

Information Technology professionals and other knowledge workers rely on their ability to extract data from organizational

databases to respond to business questions and support decision making. Structured query language (SQL) is the standard

programming language for querying data in relational databases, and SQL skills are in high demand and are taught in most

introductory database courses. We examined students’ performance on query formulation tasks, in an experimental setting

which varied the complexity of the query and the ambiguity of the information request. Our results confirm the main effects of

query complexity and request ambiguity found in prior studies (Borthick et al. 2001). In addition, we found an interaction

effect between complexity and ambiguity, namely that low ambiguity is more important as tasks increase in complexity. We

also found that students’ confidence with entity-relationship diagrams corresponds to reduced time spent on query

formulation, and their ability to evaluate the accuracy of their queries reduces as query complexity increases. We discuss the

implications of these findings with some suggestions for future research.

Keywords: Query language, Database management systems (DBMS), Data modeling

1. INTRODUCTION

Information Technology professionals and other knowledge

workers rely on their ability to extract data from

organizational databases to respond to business questions

and support decision making. While there are many

graphical user interface tools that allow end-users to

summarize and view organizational data, structured query

language (SQL) is still the standard programming language

for formulating ad hoc queries against relational databases

(Allen & March, 2006). Query formulation with SQL is a

skill that is in high demand and is taught in most

introductory database courses. Query formulation can be a

complex task because it often includes a high degree of

requirements uncertainty (e.g., ambiguity in the request for

information), multiple solution paths that produce the correct

result, and a high degree of information overload when

working with large data models (Bowen et al., 2009;

Ashkanasy et al., 2007; Borthick et al., 2001; Campbell

1988).

In this study, we investigate two factors that impact

query writing performance—the ambiguity in the

information request and the complexity of the target solution.

We examine performance in terms of the accuracy of the

query solution, the time taken to produce the solution, and

the writer’s confidence in the quality of his solution. The

purpose of the study is to confirm the main effects of

ambiguity and solution complexity on performance (as in

Borthick et al., 2001) and to evaluate the interaction effects

of ambiguity and complexity on performance. Our goal is to

use these findings to better understand why some queries are

more difficult to formulate than others, and to identify

potential teaching strategies and techniques to facilitate

students’ acquisition of SQL skills.

2. PRIOR RESEARCH ON QUERY FORMULATION

Reisner’s (1981) classic model of the query formulation

process is shown in Figure 1. According to this model, the

query writer is given an information request (e.g., “Find the

salary of Smith’s manager”) and generates a mental “query

template” of an SQL SELECT statement. The template

specifies the structural foundation for the query. The query

writer then maps elements from the information request into

SQL components that can be inserted into the appropriate

“slots” of the template. The mapping involves three

transformational activities: (1) replacing words from the

information request with elements from the data model (e.g.,

replacing the “salary” with the column SAL), (2) adding

elements to the SELECT statement beyond what is in the

Journal of Information Systems Education, Vol. 24(3) Fall 2013

211

information request (e.g., “Smith’s manager”  NAME =

(SELECT MGR WHERE NAME = ‘Smith’), and (3)

ignoring terms from the information request that are not

needed in the SELECT statement.

This model of template-generation-plus-mapping

provides a reasonable starting point for understanding the

process of query formulation and two sources of complexity

in query formulation tasks—structural complexity and

(lexical) transformational complexity (Reisner, 1977).

Structural complexity addresses questions about the query

template, such as whether the FROM clause specifies an

inner or outer join, or whether a WHERE, GROUP BY, or

HAVING clause is needed.

Figure 1. Reisner’s (1981) Model of the Query

Formulation Process

Transformational complexity stems from the complexity

in the lexical mappings shown in Figure 1 – the replacing,

adding, and omitting of lexical elements from the natural

language request to fill in the “slots” in the query template.

Transformational complexity increases as the “gap” between

terms in the information request and elements in the data

model increases, and is influenced by the degree of

ambiguity in the information request (Borthick et al., 2001).

For example, a request such as, “Which customers placed

online orders over $3,000 last July?” could also be worded

more precisely as, “List the customer’s name and account

number, if the customer placed an order between July 1,

2012 and July 30, 2012 with an order total greater than 3000

and an online order flag equal to 1.” We would expect the

former task wording to create more transformational

complexity because the query writer has to know, for

example, that “online orders” translates into

“OnlineOrderFlag = 1” and that “placed last July” translates

into “OrderDate BETWEEN ‘7/1/2012’ AND ‘7/30/2012’.

Thus, lexical or transformational complexity is related to the

query writer’s knowledge of the user’s domain and of the

data model (Allen & Parsons, 2010).

Borthick et al. (2001) provide an alternative model of the

query formulation process, shown in Figure 2. According to

this model, query formulation begins with an analysis of the

information request, followed by an evaluation of the data

representation, and these two sources are used to create a

mental model of how the data will be manipulated to fulfil

the information request (e.g., “tables x and y need to be

joined on column z, and columns a and b need to be

returned”). Presumably, this mental model may be consistent

with Reisner’s (1981) model of a query template with “slots”

for the lexical data model elements. This mental model is

then translated into specific query language syntax.

Figure 2. Borthick et al.’s (2001) Model of the Query

Formulation Process

Borthick et al.’s model emphasizes two external sources

of information—the information request and the data

representation—that provide input to generating the correct

mental model (Borthick et al., 2001). Characteristics of the

information request and the data representation can hinder or

facilitate the formation of an appropriate mental model of the

query, and subsequently hinder or facilitate the formation of

a correct solution. One source of query formulation

complexity stems from the information requirement

distance, which is the gap between the words in the

information request and the operations and operators in the

query language, shown by paths (1) and (3) in Figure 2. This

is similar to Reisner’s transformational complexity, which is

higher when information requests have higher levels of

ambiguity. Borthick et al. (2001) investigated the impact of

ambiguity on query quality and found that participants

performed better with pseudo-SQL (low ambiguity) requests

than with manager-English (high ambiguity) requests. While

their study supported the main effect between information

request ambiguity and query performance, they did not study

the interaction between ambiguity and query complexity.

3. RESEARCH MODEL & HYPOTHESES

Figure 3 shows our research model of the query formulation

process, which extends Borthick et al.’s (2001) model. In our

model, the query writer generates a mental model of the

Journal of Information Systems Education, Vol. 24(3) Fall 2013

212

SELECT statement based on the information request, an

external representation of the database (e.g., an entity-

relationship diagram or relational schema), and three internal

sources of knowledge: (1) domain knowledge; (2) data

model knowledge; and (3) query language knowledge.

Domain knowledge and data model knowledge are used

to map elements in the information request into the

appropriate tables and columns in the database (i.e., lexical

mapping). Query language knowledge is needed to generate

the correct SELECT statement template (i.e., structural

mapping). In addition, the combination of these knowledge

sources is needed if data needs to be transformed in the

query (e.g., applying a YEAR function to a date column, or

an AVERAGE function to a set of column values).The query

writer formulates an SQL statement in a particular software

tool based on his mental model, executes the query, and

receives feedback in the form of error messages or a result

set. The query writer may use this feedback to modify his

mental model, which may signal the need for further

examination of one or more knowledge sources.

7. SQL Statement
(Query)

6. Mental Model

3. Domain Knowledge

4. Data Model
Knowledge

5. Query Language
Knowledge

1. Information Request

2. Data Representation

8. Feedback (Results
or Error Message)

Knowledge Sources

Legend:

Internal

External

Figure 3. Research Model of the Query Formulation

Process

To illustrate the process, consider the example from a

sales order database shown in Figure 4. In order to formulate

the correct query, the writer has to use domain and data

model knowledge to determine, for example, that “order

numbers” corresponds to the SalesOrderPK column in the

SalesOrderHeader table and that “online orders” will be

those where the OnlineOrderFlag column has a value of 1.

These are examples of lexical mappings.

The writer also needs query language knowledge to

recognize that WHERE and GROUP BY clauses are needed

but a HAVING clause is not. These are examples of

generating the appropriate structural components of the

query. In addition, the writer has to recognize that the “total

quantity” of an order is not stored in the database, but can be

derived by summing the OrderQty values after grouping by

SalesOrderPK, which involves both structural (the SUM

function, GROUP BY clause) and lexical (OrderQty)

elements.

The feedback loop (see Figure 3) is important because

users often accept or revise their initial queries (and,

implicitly, their mental models of the query) based on the

results or error messages they receive. If the mental model

needs changing, the user may revisit the information request

or the data model (external information sources), and/or

revise his/her understanding of the problem domain, the data

model, or the query language (internal knowledge sources).

With reference to our research model, this study varies

one characteristic of the information request, namely, the

level of ambiguity, across several query formulation tasks of

increasing complexity (in terms of the complexity of the

query solution). We hold constant the data model

representation, and we control for differences in domain,

data model, and SQL knowledge. We also control for other

individual characteristics. Our hypotheses examine the

impact of our independent variables on query outcomes:

H1: (Main Effect): Query formulation performance is

inversely related to the difficulty of the SELECT

statement solution.

H2: (Main Effect): Query formulation performance is higher

with a low-ambiguity request than with a high-

ambiguity request.

H3: (Interaction Effect) Request ambiguity has a more

pronounced effect on query formulation performance as

the queries increase in complexity.

4. RESEARCH METHOD

This section discusses the experimental design and the

measures, participants, tools, and procedure we used in this

study.

4.1 Subjects

The participants were thirty-three undergraduate juniors and

seniors enrolled in a database management course in the

Computer Information Systems department of a large US

public university. Similar to prior studies, we controlled for

some individual differences (e.g., age, educational

background) by choosing subjects from a fairly homogenous

pool of students and randomly assigning them to

experimental conditions (Bowen et al., 2009). We also used

self-reported measures of GPA, comfort reading ER

diagrams, and comfort with SQL as covariates, to control for

other individual differences (Bowen et al., 2004; Allen &

March, 2006).

4.2 Data Collection Tool – CeeKwel

We used Microsoft development technologies to build a

software tool, called CeeKwel, with a tabbed-interface with a

query editor for writing and executing SELECT statements,

and a feedback area for displaying error messages or query

results. CeeKwel created a participant-specific log of every

query that was executed, along with a timestamp and the

results of the execution (i.e., result set or error message).

This tool is similar to that used in other studies of query

formulation (e.g., Allen & Parsons, 2010; Bowen et al.,

2009; Allen & March, 2006; Bowen et al., 2006) in that it is

an online tool and participants are allowed to revise their

queries as often as they like, based on the query results or

error messages they receive.

Journal of Information Systems Education, Vol. 24(3) Fall 2013

213

External Knowledge Source Example

Information Request “List the order numbers, total quantity, and total dollars for all online orders over

$5,000 that were placed in 2012.”

Data Representation Entity-relationship diagram and data dictionary (see Figure 5).

(Correct) Query Statement* SELECT SalesOrderPK, SUM(OrderQty), TotalDue

FROM SalesOrderHeader JOIN SalesOrderDetail

ON SalesOrderPK= SalesOrder FK

WHERE OnlineOrderFlag= 1

AND TotalDue>5000 AND YEAR (OrderDate) = 2012

GROUP BY SalesOrderPK, TotalDue

* Italicized terms are lexical elements; other elements are structural.

Figure 4. Example Query Formulation Task

4.2 Experimental Tasks and Independent Variable

Measures

The two independent variables of interest in this study were

query difficulty and information request ambiguity. Query

difficulty was measured by calculating the Halstead (1977)

difficulty measure of the query solution for each task (see

Borthick et al., 2001). For information request ambiguity, we

used a dichotomous measure: pseudo-SQL (low ambiguity)

or manager-English (high ambiguity) wording (Borthick et

al., 2001). Each task was written with both wordings. The

managerial version was a natural language request, such as,

“How many products do we manufacture in-house?” The

pseudo-SQL version was written to facilitate the mapping

between user-requested information and specific table

names, column names, and data values in the query solution.

For example, a pseudo-SQL version of the previous request

would be, “Show the count of products that have a value of 1

for the MakeFlag column.”

Figure 5 shows the design of the database used in our

study, which was a modified subset of Microsoft’s SQL

Server AdventureWorks database. In addition to the Entity-

Relationship Diagram shown in Figure 5, we provided a data

dictionary with attribute definitions and data types. Figure 6

lists some of the experimental query tasks for this database,

with the pseudo-SQL and manager-English versions, the

corresponding query solution, and the Halstead difficulty

measure for the solution.

Figure 5. Entity-Relationship Diagram for Experimental Tasks.

Journal of Information Systems Education, Vol. 24(3) Fall 2013

214

Task

Task Wording

(Manager-English (M) or Pseudo-SQL (P))

Correct SQL Statement Halstead

Difficulty

1 (M) How many products are manufactured in-house?

(P) Show the number of products that are manufactured

in-house. (Hint: Products manufactured in house have a

value of 1 for the MakeFlag column.)

SELECT COUNT(*)

FROM Product

WHERE MakeFlag = 1

4.8

3 (M) List the name, job title, and total available vacation

and sick leave hours for the employee(s) with no manager.

(P) List the first name, last name, job title, and total

available hours for the employee(s) with no manager. Total

available hours is calculated as the sum of an employee’s

vacation hours and sick leave hours. (Hint: Employees

with no manager will have a NULL value for the

ManagerFK column.)

SELECT FirstName, LastName,

Employee.Title,(VacationHours +

SickLeaveHours)AS UnpaidHours

FROM Person JOIN Employee ON

PersonPK = PersonFK

WHERE ManagerFK ISNULL

16.7

4 (M) Which sales orders over $3,500 placed in 2001 were

either placed online or placed by customer #17584? For

each of these orders, list the sales order number, order

subtotal, and whether it was an online order. Sort the

results so that the highest subtotal amount is first and the

lowest subtotal amount is last.

(P) Create a report with columns for the sales order

primary key, the order subtotal and the online order flag.

List only those sales orders that have an order date in the

year 2001, and have a subtotal greater than 3500, and were

either online orders or placed by customer number 17584.

Sort the results by subtotal in descending order.

SELECT SalesOrderPK, SubTotal,

OnlineOrderFlag

FROM SalesOrderHeader

WHEREYEAR(OrderDate)= 2001

AND SubTotal > 3500 AND

(OnlineOrderFlag = 1 OR

CustomerFK = 17584)

ORDER BY SubTotal DESC

16.7

5 (M) Which sales orders were placed in July of 2003 and

contained more than 3 line items? For each of these orders,

list the sales order number, the order subtotal, and the

number of line items on the order.

(P) List the sales order primary key, the order subtotal, and

the number of line items for those sales orders with an

order date between July 1, 2003 and July 31,

2003. Include only those sales orders that had more than 3

line items. (Hint: The line items for a sales order are

stored in the Sales Order Detail table.)

SELECT SalesOrderPK,

SubTotal,COUNT(*)AS

NumberOfItems

FROM SalesOrderHeader JOIN

SalesOrderDetail ON SalesOrderPK =

SalesOrderFK

WHERE OrderDate BETWEEN

'7/01/2003' AND '7/31/2003'

GROUPBY SalesOrderPK, SubTotal

HAVING COUNT(*)> 3

20

Figure 6. Sample Query Tasks, Solutions, and Halstead Complexity Score

4.4 Procedure

We collected data over two seventy-five minute class

periods. During the first class period, students were given an

overview of the study, a demonstration of CeeKwel, and a

training exercise. The experimental session was conducted

two days later during the next class period. Participants were

given the ERD and a Data Dictionary excerpt for a sales

database (Figure 5). They studied the database design and

completed a short, data model comprehension quiz in

CeeKwel. Then they were given a series of six query

formulation tasks.

For each task, CeeKwel displayed an information

request, and the participant wrote a SELECT statement in the

editor, executed it, received feedback, and then either revised

the SELECT statement, or requested to move on to the next

task. Before the next task was displayed, the participant had

to rate his/her confidence in the accuracy of the completed

task, on a scale of 1 (not at all confident) to 5 (very

confident). At the conclusion of the session, each participant

completed a background survey (e.g., age, GPA, comfort

with ERDs, comfort with SQL).

Each participant received the same six tasks in the same

order, with easier tasks first. However, each participant saw

only one version of each task, either the pseudo-SQL or the

managerial wording. Thus, our experiment was a

combination of between-subject (for wording) and within-

subject (for task difficulty) designs, which is similar to the

design of previous query formulation studies (Allen &

March, 2006; Chan et al., 2005; Borthick et al., 2001; Rho &

March, 1997; Chan, 1999).

4.5 Dependent Variable and Covariate Measures

To examine query performance, we were primarily interested

in query quality or accuracy. We graded each participant’s

final query attempt for each task, using a grading scheme

based on the percentage of correct elements in the

participant’s query (Bowen et al., 2009; Allen & March,

2006; Borthick et al., 2001). For example, the following

figure shows the accuracy coding for one participant’s

solution to the fourth query task. A trained research assistant

performed the query assessment.

Journal of Information Systems Education, Vol. 24(3) Fall 2013

215

Clause Elements Required Elements for This Query Max.

Count

Actual

Count

SELECT Clause Select 1 1

Attributes SalesOrderPK, SubTotal,

OnlineOrderFlag

3 3

Keywords

Arithmetic

Operators

Scalar Functions

Aggregate

Functions

FROM Clause From 1 1

Tables SalesOrderHeader 1 1

Join Conditions

WHERE Clause Where 1 1

Join Conditions

Attributes OrderDate, Subtotal, OnlineOrderFlag,

CustomerFK

4 4

Logical Operators And, And, (), Or 4 1

Comparison

Operators

=, >, =, = 4 4

Arithmetic

Operators

Scalar Functions Year 1 0

Values 2001, 3500, 1, 17584 4 4

GROUP BY Clause

Attributes

HAVING Clause

Attributes

Keywords

Logical Operators

Comparison

Operators

Arithmetic

Operators

Scalar Functions

Aggregate

Functions

Values

ORDER BY Clause Order By 1 1

Attributes SubTotal 1 1

Keywords Desc 1 1

 Total = 23/27 = 85.2% 27 23

Figure 7. Accuracy Coding for Participant #8020’s solution to query task #4

Journal of Information Systems Education, Vol. 24(3) Fall 2013

216

In addition, the authors randomly selected and assessed

about one-third of the queries each. The Pearson r between

the assistant’s scores and the authors’ was 0.99, confirming

the consistency of the scoring process. In addition to query

quality, we also examined performance in terms of query

formulation time (the difference, in seconds, between the

final query’s submission and the task’s opening), the

number of query attempts (a count of query tries that were

executed), and the participant of t’s confidence level (on a

scale of 1, for “not at all confident,” to 5, for “very

confident”). Figure 8 shows summary statistics for each

dependent variable by task difficulty and wording.

Two other performance-related measures we used were

the mean probability score and the judgment bias score

(Allen & Parsons, 2010). Mean probability scores reflect

the relationship between the confidence expressed by

subjects in their queries and their actual correctness. We

followed Allen & Parsons’ (2010) procedure for computing

the probability score (Yates, 1990), which ranged from 0 to

1. A score of 0 indicates perfect prediction, i.e., high

confidence and a correct query, whereas a score of 1

indicates poor prediction, i.e., high confidence and an

incorrect query. Mean probability score for a query task is

the average of all subjects’ probability scores for that task.

The judgment bias score is the raw difference between

confidence and correctness, and provides an assessment of a

subjects’ under- or over-confidence in their query (Allen and

Parsons, 2010; Yates, 1990). Again, we followed Allen and

Parsons’ procedure for calculating this score, which ranged

from -1 to 1. Negative scores indicate under-confidence and

positive scores reflect over-confidence.

Figure 8. Descriptive Statistics for Dependent Variables by Query Difficulty and Task Wording

5. RESULTS

We tested the overall effects of task difficulty and task

wording using multivariate analysis of covariance

(MANCOVA), as shown in Figure 9. The model included

the four indicators of query performance – query quality,

total time spent on the task, number of query attempts, and

confidence in the query quality. We controlled for

differences among our study participants by introducing their

data model comprehension scores, and comfort levels with

SQL and ERDs as covariates in the model. The results

indicate that both query difficulty (F: 9.99; p < 0.000) and

request ambiguity (F: 2.39; p < 0.053) had significant effects

on query performance, which is consistent with prior

research and supports our first two hypotheses.

The univariate tests and the post-hoc pair wise

comparisons are summarized in 10. The results reveal that

query difficulty had a significant effect on all four

performance indicators, while ambiguity had a significant

effect on query quality alone (F: 5.22; p < 0.024).

 1 Covariates

Figure 9. MANCOVA Multivariate Test Results.
1

An examination of the covariates shows that SQL

comfort level had a significant effect on the four facets of

query performance, ERD comfort level was related solely to

query formulation time, and data model comprehension did

Effect Value F Sig.

Task Difficulty 0.56 9.99 0.000

Task

Ambiguity

0.05 2.39 0.053

Difficulty *

Ambiguity

0.04 0.65 0.803

Data Model

Comp.1

0.01 0.46 0.763

ERD Comfort1 0.07 3.04 0.019

SQL Comfort1 0.26 14.75 0.000

Journal of Information Systems Education, Vol. 24(3) Fall 2013

217

not have any relevant impact. Participants who were more

comfortable with SQL wrote better queries, in less time, with

fewer attempts, and were more confident in their queries.

The negative relationship between ERD comfort level and

query time can be expected since participants had to

comprehend the logical structure of the database through its

ER representation. Although lower ERD proficiency may

have increased the time to complete the query tasks, it did

not have a negative impact on other performance indicators.

A possible explanation for the lack of significant differences

by data model comprehension could be the lack of variance

in this measure. The median score on the four questions

used to assess this control variable was 3 (out of 4),

indicating that most participants had a reasonably good grasp

of the data model.

Although our data analysis supported the hypothesized

main effects, it did not provide evidence for the expected

interaction-effects between task complexity and task

wording. Allen and Parsons (2010) argue that rather than

using a query quality score which is a relative indicator of

performance, it may be more appropriate to assess query

performance in absolute terms or as a dichotomy. Following

their suggestion, we coded query performance as a binary

outcome – a final query was either correct (it produced the

correct results) or incorrect (the query either didn’t execute

or generated incorrect results). We then conducted an

analysis of covariance (ANCOVA) with this alternate query

performance measure as the dependent variable. The

ANCOVA results, shown in Figure 11, not only corroborate

the MANCOVA findings but also expose the interaction

effect between the two independent variables (F: 3.65; P <

0.014).

Source Dependent Variable Mean Square F Sig.

Corrected Model Quality 0.39 11.84 0.000

Time 404109.46 5.68 0.000

Of Tries 134.70 3.15 0.001

Confidence 15.42 9.57 0.000

Task Difficulty Quality 0.96 29.53 0.000

Time 917436.08 12.90 0.000

Of Tries 316.95 7.41 0.000

Confidence 27.65 17.17 0.000

Task Ambiguity Quality 0.17 5.22 0.024

 Time 12104.30 0.17 0.680

 # Of Tries 55.23 1.29 0.258

 Confidence 0.46 0.29 0.593

Difficulty * Ambiguity Quality 0.01 0.31 0.822

 Time 64939.83 0.91 0.436

 # Of Tries 11.19 0.26 0.853

 Confidence 0.78 0.48 0.695

Data Model Comprehension1 Quality 0.01 0.18 0.672

 Time 710.04 0.01 0.921

 # Of Tries 13.15 0.31 0.580

 Confidence 0.50 0.31 0.580

ERD Comfort1 Quality 0.00 0.13 0.909

 Time 592570.71 8.33 0.004

 # Of Tries 59.55 1.39 0.240

 Confidence 2.52 1.57 0.213

SQL Comfort1 Quality 0.82 25.30 0.000

 Time 410774.88 5.78 0.017

 # Of Tries 191.70 4.48 0.036

 Confidence 67.84 42.12 0.000
1 : Covariates

Figure 10. MANCOVA Univariate Test Results

 1: Covariates

Figure 11. ANCOVA Results for Query Correctness (measured as a dichotomous variable)

Source Mean Square F Sig.

Task Difficulty 6.03 45.56 0.000

Task Ambiguity 1.05 7.96 0.005

Difficulty * Ambiguity 0.48 3.65 0.014

Data Model Comp.1 0.03 0.23 0.635

ERD Comfort1 0.00 0.03 0.864

SQL Comfort1 2.05 15.51 0.000

Journal of Information Systems Education, Vol. 24(3) Fall 2013

218

Figure 12 shows the difference in quality for manager-

versus pseudo-SQL wording as tasks increase in difficulty.

Specifically, the effect of task wording on query correctness

was contingent on the difficulty of the task. For the easier

tasks, wording did not matter. However, as tasks became

more difficult, the pseudo-SQL wording was helpful in

formulating correct queries. This finding lends support for

our third hypothesis (H3).

It is important to understand how well users are able to

assess the correctness of their queries because it has a direct

bearing on whether their reliance on query results for

decision-making is justified (Allen and March 2006; Allen

and Parsons 2010). We conducted two final ANCOVAs to

examine the influence of task complexity and ambiguity on

mean probability score and judgement bias score,

respectively. Mean probability score reflects the accuracy of

participants’ confidence in their queries, while judgement

bias score indicates the extent to which participants are

under- or over-confident about their queries. Results from

these ANCOVAs are shown in Figures 13 and 14.

The ANCOVA results show significant differences in

mean probability score by task complexity (F: 5.73; p <

0.001), suggesting that participants’ ability to assess the

correctness of their queries diminished as the query tasks

increased in complexity, which is consistent with prior

research. The judgment bias score offers additional insight

into participants’ assessments of their query quality, by

determining whether their assessments are under- or

overconfident (Allen and Parsons, 2010). The results indicate

that judgment bias score differed by both task complexity

and task ambiguity. Specifically, our subjects tended to be

over-confident in their assessment of their queries’

correctness for more complex (F: 13.19; p < 0.000) and more

ambiguous (F: 9.16; p <0.003) tasks. In addition to the main

effects, the interaction effect between the two independent

factors was also significant (F: 3.60; p < 0.015), indicating

that the difference in judgment bias scores between the

managerial and pseudo-SQL group was contingent on task

complexity, which lends support for our third hypothesis

(H3).

Figure 12. Interaction Effect between Task Difficulty and Task Wording

Source Mean

Square

F Sig.

Task Difficulty 0.57 5.73 0.001

Task Ambiguity 0.32 3.22 0.074

Difficulty * Ambiguity 0.20 2.00 0.117

Data Model Comp.1 0.02 0.16 0.694

ERD Comfort1 0.05 0.50 0.481

SQL Comfort1 0.29 2.87 0.092
1: Covariates

Figure 13. ANCOVA Results for Mean

Probability Score

Source Mean

Square

F Sig.

Task Difficulty 2.06 13.19 0.000

Task Ambiguity 1.43 9.16 0.003

Difficulty * Ambiguity 0.56 3.60 0.015

Data Model Comp.1 0.00 0.00 0.994

ERD Comfort1 0.21 1.35 0.247

SQL Comfort1 0.39 2.51 0.115
1: Covariates

Figure 14. ANCOVA Results for

Judgement Bias Score

6. DISCUSSION, LIMITATIONS, AND FUTURE

RESEARCH

The main contribution of our study is the examination of the

interaction between task complexity and information request

ambiguity on query writing performance. For queries that

involved simple SELECT-FROM-WHERE clauses, it did

not matter whether the request was presented with high or

low ambiguity—students generally wrote correct queries and

were justified in their high levels of confidence. However,

when query difficulty increased with longer WHERE clauses

and the addition of GROUP BY and HAVING clauses,

students’ performance decreased, and decreased more when

the request was written in manager-English (high ambiguity)

than when it was written in pseudo-SQL (low ambiguity). In

addition, while students were less confident in their query

accuracy as tasks became more complex, they were still

overly-confident, and this over-confidence was more

Journal of Information Systems Education, Vol. 24(3) Fall 2013

219

pronounced with manager-English than with pseudo-SQL

wording.

The models of query formulation put forth by Reisner

(1981) and Borthick et al. (2001) provide a context for

interpreting these results and suggesting future teaching and

research directions. Query formulation involves: (1)

generating the correct query structure (i.e.,) the correct

SELECT statement template), and (2) mapping elements of

the information request into database elements (i.e., tables,

columns, values) to insert into the correct “slots” of the

query template. We refer to the latter as lexical

transformations, and pseudo-SQL requests simplify these

transformations by clarifying which columns and tables are

needed in the query (e.g., the phrase “online order flag”

corresponds to the OnlineOrderFlag column). We expect

students with manager-English requests to exert more mental

effort on lexical transformations than the students with

pseudo-SQL, but as long as the structure of the query is

simple—as with our first experimental task—the extra effort

for the manager-English requests was manageable and did

not affect query performance. Thus, for simple queries, we

recommend using manager-English wording for instructional

purposes, since this increases realism without decreasing

performance.

However, as the complexity of the query structure

increased (e.g., adding a GROUP BY clause), students

needed to exert significant mental effort on generating the

correct query template, regardless of how the query was

worded. In this situation, the additional effort needed by

students with the manager-English wording was significant

and their performance suffered more than their pseudo-SQL

counterparts. One way to help students learn to write more

difficult queries in a classroom setting may be to reduce the

lexical transformation complexity, thru the use of pseudo-

SQL task wording, and focus first on the structural

complexity. As the students build confidence and skill with

generating the correct query structure, we can introduce

more ambiguity into the wording of the tasks.

To help with the structural complexity of query

formulation, instructors might use a query template that

prompts students to think about whether and why each clause

in a SELECT statement is needed. For example, we now use

the template in Figure 15 during class discussions and

encourage students to reference it when solving homework

problems. We believe this may help them better understand

the purpose and function of each clause and how certain

clauses work together, which in turn may reduce the

problems with respect to GROUP BY and WHERE versus

HAVING clauses that we observed in our more complex

experimental tasks.

We also use this template in class to help with lexical

transformations, by analyzing the words in the information

request to determine which columns and tables from the data

model need to be included and in which clause(s). For

example, to decide what to specify in a WHERE clause, we

ask, “Which orders does the user want to see?” The students

respond that it is online orders only, and then we reference

the data model and data dictionary to determine what

columns and values will indicate online orders. Essentially,

we use the template to help students create a pseudo-SQL

plan for the query. With the plan in place, students can then

focus on writing the specific SQL syntax, and in this way,

better manage the mental effort required of complex tasks.

Task ambiguity and query complexity affected actual

task performance, as well as students’ confidence in their

task performance.

SELECT Which columns/expressions should be in

the result set?

FROM Which tables/views provide the source

data for this query? What join conditions

are needed? INNER or OUTER join?

WHERE Which rows should be included in the

result set (i.e., what criteria should be

used to filter rows)?

GROUP BY How should rows be grouped or

aggregated (often so that an aggregate

function can be applied to each group)?

HAVING Which groups (as specified in the

GROUP BY clause) should be included

in the result set (i.e., what criteria should

be used to filter groups)?

ORDER BY By which column(s) should the resulting

rows be sorted? In ascending or

descending (DESC) order?

Figure 15. Query Template

Students’ confidence decreased as task complexity increased,

but did not decrease as much as actual performance did,

meaning that students were overly-confident when their

query solutions were inaccurate. Two suggestions to help

students evaluate their own queries are: (1) to practice

interpreting common SQL error messages and modifying

query attempts in response, and (2) to teach strategies for

confirming query results (e.g., through control checks). The

former suggestion addresses queries that do not execute, and

may help students distinguish between simple syntactic

errors (e.g., a missing apostrophe or a misspelled column

name) and major logic errors (e.g., a missing clause). The

latter suggestion addresses queries that execute but return

incorrect results, and may help students validate the results

and thus bring their confidence closer to their actual

performance.

Proficiency in SQL is recognized as a critical and

marketable skill for students majoring in information

systems. But helping students learn to write complex queries

is a challenge. This study examines two factors that make

query formulation difficult and proposes teaching techniques

that may help students recognize, manage, and reduce the

difficulties. Future studies should evaluate the effectiveness

of these techniques and identify other ways to facilitate

students’ acquisition of this important skill.

7. REFERENCES

Allen, G.N. and March, S.T. (2006), “The Effects of State-

Based and Event-Based Data Representation on User

Performance in Query Formulation Tasks,” Management

Information Systems Quarterly, 30(2), pp. 269-290.

Allen, G.N. and Parsons, J. (2010), “Is Query Reuse

Potentially Harmful? Anchoring and Adjustment in

Journal of Information Systems Education, Vol. 24(3) Fall 2013

220

Adapting Existing Database Queries,”Information

Systems Research, 21(1), pp. 56-77.

Ashkanasy, N., Bowen, P.L., Rohde, F.H., and Wu, C.Y.A.

(2007) “The effects of user characteristics on query

performance in the presence of information request

ambiguity,” Journal of Information Systems, 21(1), pp.

53-82.

Borthick, A.F., Bowen, P.L., Jones, D.R., and Tse, M.H.K.

(2001) “The effects of information request ambiguity and

construct incongruence on query development,” Decision

Support Systems, 32, pp. 3-25.

Bowen, P.L., O’Farrell, R.A., and Rohde, F. (2004) “How

Does Your Model Grow? An Empirical Investigation of

the Effects of Ontological Clarity and Application

Domain Size on Query Performance,” in the

International Conference on Information Systems (ICIS)

2004 Proceedings, pp. 77-90.

Bowen, P.L., O’Farrell, R.A., and Rohde, F.H. (2006)

“Analysis of competing data structures: Does ontological

clarity produce better end user query performance,”

Journal of the AIS, 7(8), pp. 514-544.

Bowen, P.L., O’Farrell, R.A., and Rohde, F.H. (2009) “An

Empirical Investigation of End-User Query

Development: The Effects of Improved Model

Expressiveness vs. Complexity,” Information Systems

Research, 20(4), pp. 565-584.

Campbell, D.J. (1988) “Task complexity and strategy

development: A review and conceptual analysis,”

Academy of Management Review, 13, pp. 126-139.

Chan, H.C. (1999) “The relationship between user query

accuracy and line of code,” International Journal of

Human-Computer Studies, 51, pp. 851-864.

Chan, H.C., Teo, H.H., and Zeng, X.H. (2005) “An

evaluation of novice end-user computing performance:

Data modeling, query writing, and comprehension,”

Journal of the American Society for Information Science

and Technology, 56(8), pp. 843-853.

Halstead, M. H. (1977) Elements of Software Science.

Elsevier, Amsterdam.

Reisner, P. (1977) “Use of psychological experimentation as

an aid to development of a query language,” IEEE

Transactions on Software Engineering, SE-3 (3), pp.

218-229.

Reisner, P. (1981) “Human factors studies of database query

languages: A survey and assessment,” Computing

Surveys, 13(1), pp. 13-31.

Rho, S. and March, S.T. (1997) “An analysis of semantic

overload in database access systems using multi-table

query formulation,” Journal of Database Management,

8(2), pp. 3-14.

Yates, J. (1990). Judgment and Decision Making. Prentice

Hall, Englewood Cliffs, NJ.

AUTHOR BIOGRAPHIES

Gretchen Irwin Casterella is an associate professor in the

Computer Information Systems

Department at Colorado State

University. Gretchen holds a

PhD and a Masters of Science in

Information Systems from the

University of Colorado.

Gretchen’s research interests are

in systems development,

specifically in understanding

how individuals learn and

master tools, technologies, and

approaches for systems analysis and design. Gretchen’s

research has appeared in the Communications of the ACM,

the Journal of MIS, the Journal of the AIS, IEEE

Transactions on Professional Communication, and Human-

Computer Interaction.

Leo R. Vijayasarathy is Associate Professor of Computer

Information Systems in the

College of Business at Colorado

State University. He earned an

MBA from Marquette University

and his Ph.D. from Florida

International University. His

research on the development, use

and consequences of information

systems has been published in

Electronic Markets, European

Journal of Information Systems,

IEEE Transactions on Professional Communications,

Information & Management, Internet Research,

International Journal of Production Economics, and the

Journal of Management Information Systems. He serves on

the editorial advisory board of Internet Research

Journal of Information Systems Education, Vol. 24(3) Fall 2013

221

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2013 by the Education Special Interest Group (EDSIG) of the Association of Information Technology Professionals.
Permission to make digital or hard copies of all or part of this journal for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use.
Permission requests should be sent to the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

