

Communication Challenges in Requirements Definition:

A Classroom Simulation

Neil C. Ramiller

Erica L. Wagner

School of Business Administration

Portland State University

P.O. Box 751

Portland, OR 97207-0751, USA

neilr@sba.pdx.edu elwagner@pdx.edu

ABSTRACT

Systems analysis and design is a standard course offering within information systems programs and often an important lecture

topic in Information Systems core courses. Given the persistent difficulty that organizations experience in implementing

systems that meet their requirements, it is important to help students in these courses get a tangible sense of the challenges

they will face, whether as Information Systems practitioners or business professionals, in the systems analysis and design

process. This article presents a hands-on design game that focuses in particular on the structuring of opportunities for user

participation in requirements definition. The game provides a platform for raising pivotal questions about communication,

knowledge transfer, and the level and timing of user involvement during systems projects. The exercise has been used and

refined over a period of several years in core courses in information technology management at both the undergraduate and

graduate levels and in classes in systems analysis and design. The article includes theoretical grounding in user participation

issues, background information about the game, specification of the materials needed, step-by-step instructions for conducting

the game, and teaching notes to support classroom discussion. These materials are designed to be useful to Information

Systems faculty who want to supplement lecture and/or reading material on the subject of systems development.

Keywords: Systems analysis and design, System development life cycle (SDLC), User requirements, User acceptance,

Cooperative learning, Simulated environments

1. INTRODUCTION

Systems analysis and design is a standard course offering

within information systems programs and often an important

lecture topic in Information Systems core courses. Given the

persistent difficulty that organizations experience in

implementing systems that meet their requirements, it is

important to help students in these courses get a tangible

sense of the challenges they will face, whether as

Information Systems practitioners or business professionals,

in the systems analysis and design process. This article

presents a hands-on design game that focuses in particular on

the structuring of opportunities for user participation in

requirements definition. The game provides an opportunity

to raise central questions about communication, knowledge

transfer, and the level and timing of user involvement during

systems projects.

Students are organized into small groups that adopt

multiple roles over the course of a simplified “system”

development life cycle. Each group begins in the role of

users with the initial articulation of a business need or

opportunity, which they simulate by creating a model using

Lego blocks. The Lego models are then put away, and pairs

of teams exchange roles as users and analysts in

conversations focused on preparing requirements documents

that will give an account of each user team‟s model. During

the subsequent construction phase, programmer teams

attempt to use these requirements documents to recreate the

original models. Acceptance testing follows, during which

the entire class evaluates pairs of models – in each case, the

original model representing the users‟ business requirements

and the corresponding model created by the programmer

team. The final step in the exercise is a post-project review,

when the class discusses the challenges that arose during the

game, and the instructor draws parallels to problems in

system implementation practice.

This exercise has been used and refined over a period of

several years in core courses in information technology

management at both the undergraduate and graduate levels

and in classes in systems analysis and design. Students find

the exercise highly engaging, and the divergent mismatches

that always surface between “before” and “after” models are

the cause of hilarity and good-natured finger-pointing. (See

Figure 1a below with a “before” model on the left and the

Journal of Information Systems Education, Vol. 22(4)

307

mailto:neilr@sba.pdx.edu
mailto:elwagner@pdx.edu

companion “after” model on the right; the requirements

document is in Figure 1b.)

Figure 1a: Before and After Models

Figure 1b: Companion Requirements Document

The full payoff comes in the final phase, when students,

with the instructor‟s guidance, draw out parallels between

the difficulties encountered first-hand in the interpersonal

communication of the game and the problems that

commonly arise in translating business professionals‟

requirements via systems analysis for software builders.

This also provides an opportunity to explore the implications

of alternative project structures for user participation, and to

make connections more broadly to issues of IT governance

and business-side accountability.

We begin our discussion here with some theoretical

grounding in user participation issues, and we then explain

how the Design Game helps to surface problems in this

domain. After a summary overview of the game, step-by-

step instructions are offered for conducting the exercise.

Next, we provide detailed teaching notes to help guide

instructors in preparing materials, integrating the exercise

within a course plan, facilitating the related class discussion,

and making the most of the game as a metaphor for real-

world challenges in user participation. We conclude with

some observations on learning outcomes, based on our

experiences in using the game.

2. USER PARTICIPATION IN SOFTWARE

DEVELOPMENT

In the 1980s and 1990s system development methodologies

relied upon the identification of known requirements

(Valusek and Fryback, 1985) in a manner that didn't

accurately model the real world as users experienced it

(Land, 1982). This often resulted in dissatisfied users who

first experienced the information system at installation when

it was seen to be too late to make changes (Avison and

Fitzgerald, 1995). Research began to reveal how complex

the system development process often is, leading to the

questioning of some common assumptions. Such

assumptions included, notably: that users know precisely

what their information needs are and can communicate these

easily to system designers (Argyris, 1987); that information

needs are static (Land, 1982); and that relationships and

communication issues between user and designer are

straightforward (Argyris, 1987; Oliver and Langford, 1984).

Notwithstanding these early insights, continuing research has

documented the fact that companies still struggle with their

system implementations, facing user resistance and running

significantly over budget and schedule milestones (e.g.,

Wagner and Newell, 2004; Sauer et al., 2001; Scott and

Vessey, 2002).

User participation has been seen as a crucial element for

fostering system acceptance. (The Standish Group‟s annual

CHAOS reports have ranked user involvement as the 1st

(1994) and 2nd (2000) factor for successful IT project

success. See: www.standishgroup.com/.) This is the case not

simply because user participation can promote “buy-in,” but

more importantly because it can help to ensure that the

system design ultimately serves the business. Moreover,

user participation was not just a response to the “failure of

conventional design but it was also based on a belief that

users have a right to design their work environment”

(Dearnley and Mayhew, 1983: 37). The work of Enid

Mumford specifically emphasized the importance of

participative system design more generally, and this

emphasis has been widely embraced within the context of

information system development (Howcroft and Wilson,

2003). Mumford developed the ETHICS methodology

(Mumford and Weir, 1979; Mumford, 1995), where system

development is seen as inherently complex, requiring

negotiations between different stakeholder groups. From

this perspective the involvement of multiple groups in

negotiations may require more work up-front but is central to

system success, so that requirements can be determined and

Journal of Information Systems Education, Vol. 22(4)

308

accommodations made prior to implementation (Mumford,

1983a).

In a different quarter, commentators on evolutionary and

agile alternatives in software development began to shed

light on the implications of project structure for the actual

effectiveness of user engagement in system design (Austin,

2007; Cockburn, 2006; Highsmith, 2002; MacCormack,

2001). One of their central observations is that software

development is typically not very much like structural

engineering, where the requirements and constraints can be

well-understood from the beginning. Accordingly,

“structured methods” approaches that assume such idealized

engineering conditions and, as a result, sequester user

participation in a discrete “requirements determination”

stage early in a project, tend to fit the realities of software

creation poorly. The more innovative the system in question,

the more serious this shortcoming becomes. System

development processes in the context of business innovation

must instead accommodate discovery and learning, and also

openly embrace evolution in requirements. As one of the

champions of agile software development remarks, “Agile

practices are based on the belief that neither the customers

nor the developers have full knowledge in the beginning and

that the important consideration is having practices that will

allow both to learn and evolve as that knowledge is gained”

(Highsmith, 2002: 61).

3. THE DESIGN GAME AS METAPHOR

The Design Game we describe here is motivated by the

issues raised in the literature and also by on our own field

observations concerning problems of this sort. For example,

during the first author‟s investigations of a systems initiative

at a large not-for-profit organization (Ramiller, 2005), the

project leader was observed to switch from a highly

structured methodology to a more improvisational and agile

approach, precisely in order to address problems with limited

business-side engagement and users‟ incapacity for

articulating system requirements in an abstract and

reasonably complete way. The need for a learning- and

discovery-based approach in this case was less a matter of

the innovativeness of the system itself, and more a question

of the organization‟s lack of history with major systems

projects.

The second author‟s study of a big-bang ERP

implementation (Wagner, Scott and Galliers, 2006)

highlighted the challenges of gathering requirements from

users who could not envision the depth and breadth of

change that would result from the implementation and

instead told stories about current work practices and hopes

for future efficiencies. Analysts had difficulty translating

user stories into technical requirements and then

communicating those requirements to the IT professionals.

The system that was installed failed to meet the needs of

powerful users who felt betrayed by the project team. The

analysts were surprised by this reception feeling as though

they had done their best with the information that was

provided by the users.

Given observations like these, our aim was to create a

classroom exercise that could help illustrate the problems

that can arise when uncertainty shrouds the business

requirements, but where users are nevertheless asked to give

a complete and unambiguous account of those requirements

up-front. Accordingly, the game presents students with a

design challenge and then imposes a set of constraints

intended to impede knowledge transfer between students

playing the role of “users” and students ultimately

responsible for creating a “system” to satisfy those users.

Moreover, the structure of the game fosters user uncertainty

about requirements and sometimes makes communication

and consensus among the users difficult. These are all

conditions commonly observed in real systems projects.

More specifically, the game is structured so that the

construction of the model meant to satisfy the users‟

“requirements” actually takes place without the users‟

presence. Moreover, the device of depriving the users of

their own model during the “analysis” phase simulates

uncertainty about the requirements by taking advantage of

the relative complexity of the models, normal limitations in

recall, and differences in what students would remember.

Making the users‟ Lego kits in different assortments

complicates the user-analyst interaction, simulating a

“language” barrier between the two roles, since users have to

describe Lego elements that in some cases are unfamiliar to

the analysts.

The exercise gives students the opportunity to engage in

a personal way with the communication challenges that arise

in the kind of multi-role structures that commonly surround

requirements definition and system design. This active

approach to learning is, in our experience, more compelling

and effective than simply lecturing to students about these

challenges. Active learning contrasts with traditional

approaches that treat teaching as a matter of information

transfer based on abstracted facts, prescriptions, recipes, and

formulas (Brown et al. 1989; Bruffee 1993; Christensen et al.

1991; Dewey 1987; Garvin 1991; Whitehead 1929). “We

have knowledge, in other words, only as we actively

participate in its construction” (Elmore 1991: xii).

As a task-focused exercise, the Design Game contributes

to an emerging body of teaching resources addressing

differing aspects of the system implementation lifecycle (for

example, consider Tyran (2006)), while complementing

work that presents more comprehensive life-cycle cases in

systems analysis and design (e.g., Bajaj, 2006; Cohen and

Thiel, 2010; and Guidry and Totaro, 2011). It also furthers

the pedagogical application of student role-playing in the

discipline (Mitri and Cole, 2007). The idea to devise an

exercise using Legos was drawn from articles written by

Schatzberg (2002) and Freeman (2003), who reported on the

use of Legos in a systems analysis and design course for a

different pedagogical purpose.

In the follow-up discussion, students are invited to

consider how the structuring of communication activities in a

systems project can help to determine how well or poorly

users‟ needs are met in the organizational acquisition or

development of software. This positions the instructor to put

user participation in the context of alternative methodologies

that textbooks commonly discuss, such as the traditional

“waterfall” method, adaptations of the traditional approach

like RAD and spiral development, prototyping, and agile

strategies. The focus of attention in such a comparative

analysis can be on how well each approach can support the

Journal of Information Systems Education, Vol. 22(4)

309

discovery of system capabilities that are both valuable and

feasible, through the creation of a feedback process between

users and analysts, and “between analysis and design that is

used to gain as much information as possible from users”

(Dearnley and Mayhew, 1983: 40). More generally, students

gain an appreciation for the complexity of systems

development and the ever-problematic meaning of “user

participation.”

If the primary focus of the Design Game is on structure,

communication, and knowledge transfer within systems

projects, the exercise can also provide a platform for the

instructor to launch into larger issues in information-

technology management. IT governance is one such topic,

which can be entertained to particular advantage in core

courses. A useful point of departure is the observation that

any given structure for user participation is the result of

choices that have been made to conduct the project in a

certain way. But who made these choices? Senior

executives? IT management? Were business-side managers

given the opportunity to weigh in?

Organizations that adopt methodologies that limit user

participation, especially where the degree of business

innovation in a systems initiative is high, may be drawing on

inappropriate and out-of-date norms. This presents a related

opportunity to discuss how innovation champions must often

surmount the barrier of institutionalized (taken-for-granted)

thinking (Covaleski & Dirsmith, 1988). The role that

organizational politics can play in systems projects also

enters in here. Moreover, this can be a good occasion to

introduce students to a contrary phenomenon, that being the

situation where business-side managers abdicate

responsibility for participating in systems projects. This

commonly has the follow-on effect that they fail to support

their employees‟ engagement in identifying requirements.

What happens in regard to decision rights and influence

roles in systems projects is sometimes symptomatic of

governance problems across a wide range of IT management

issues (Weill & Ross, 2005). Accordingly, the Design Game

can be used as a point of transition for considering this larger

topic.

There is another way in which we have used the exercise

as a platform for exploring issues that go beyond what the

Game itself illustrates directly. This is to follow up with an

extended discussion of the nature of user participation,

variation in its substance and timing, and how it is changing

with the prevalent shift away from custom software

development toward the acquisition of packaged software

and, increasingly, the sourcing of software as an on-line

service.

A good place to start in carrying forward a more in-depth

examination of user participation is by acknowledging that it

has always been subject to varying levels of intensity

(Dearnley and Mayhew, 1983; Avison and Fitzgerald, 1995;

Mumford, 1983b) ranging from the consultative, where the

user is interviewed at some point in the project, to the mid-

range representative approach involving user spokespeople

and analysts in the design process with both groups having a

say in the decision making. The most participative approach

involves all intended user beneficiaries throughout the design

process making decisions based on a consensus model

(Mumford, 1983b). The appropriate level of participation

has always been contingent on circumstances, but students

also need to be aware that projects often lapse into a state of

„pseudo-participation‟ where user involvement is claimed

but IT professionals actually make the design decisions

(Avison and Fitzgerald, 1995; p 90). (We have observed an

amusing echo of this in the Design Game, where

programmer teams occasionally announce that they have

delivered an “improved” version of the Lego model – mainly

because they had too much trouble interpreting the

requirements document.)

Enterprise system and other package-based

implementations suffer from their own kind of pseudo-

participation, where the role of the end-user is commonly

limited (Kawalek and Wood-Harper, 2002) and lacking

influence (Howcroft and Light, 2006). The perception that

the solution has already been chosen and that the design is

essentially complete is commonly behind the fact that users

are not invited to shape the information system in any

significant way. Thus, package implementations often go

“full circle back to the early days of customized development

when users had little involvement” (Howcroft and Light,

2006: 234) and a “myth of user involvement” (p. 232) lends

lip-service to user involvement but actions don‟t actually

support it. The difficulty with this, of course, is that whereas

certain matters of design may indeed be settled by the choice

of package, the issue of requirements – that is, what the

system is supposed to do for the business – remains as

current as ever, and still cannot be settled without the

engagement of the people who actually know the business.

One question students might consider is when such

engagement becomes appropriate in the altered lifecycle of

package implementation (Markus and Tanis, 2000; Sawyer,

2001).

4. OVERVIEW OF THE GAME

The Design Game is carried out in five steps. A summary

follows. Detailed instructions for conducting the exercise

appear in the next section.

1. Each team plays the role of a group of system users.

They identify their “business requirements” by putting

together a model using assorted Legos provided to them

in a resealable plastic bag.

2. The requirements definition phase then pairs off teams,

and each team in turn attempts to describe to the other

team what their model looks like. This represents the

users‟ effort to define their requirements. The user

team does not have access to their Lego model during

this phase, which challenges students to remember their

model‟s design and often leads to disagreements among

the users about the particulars. The analyst team paired

with them prepares a requirements document that

attempts to give an account of the user team‟s

requirements. (Figure 2 shows the Requirements

Document form that we use.) Step 2 takes place in two

parts so that each team in a pair gets to play, alternately,

the role of user team and analyst team. By the end of

Step 2, a requirements document has been produced and

Journal of Information Systems Education, Vol. 22(4)

310

collected for each of the models created by a user team

in Step 1.

3. In the implementation phase, each requirements

document is given to a team not involved (as users or

analysts) in preparing the document during Step 2. That

programmer team is also given a plastic bag containing

an identical assortment of Lego blocks that the user

team in question had at its disposal during Step 1. The

programmer team then attempts to recreate the original

Lego model based on the written requirements. The

identical Lego assortment ensures that it is possible in

theory – however unlikely it may be in practice – for the

programmer team to reproduce exactly the users‟

original object.

REQUIREMENTS DOCUMENT

Written for User Team: _____

Written by Analyst Team: _____

Write the users’ requirements in this space:

Lego model built on the basis of these requirements by

„Programmer‟ Team: _____

Figure 2: Requirements Document

4. During the acceptance testing phase, each programmer

team‟s model is compared to the original model on

which it is based, in full class discussion. Deviations

are noted by the class, and the user team is invited to

accept or reject the resulting design outright, or to

suggest a reasonable change order that might correct the

problems.

5. During the post-project review, in full class discussion

students identify the challenges raised by the

development methodology.

5. HOW TO CONDUCT THE GAME

The following discussion represents an elaborated version of

the lecture notes that we use in running the Design Game.

The Teaching Notes in Section 6 provide additional

information about preparing the materials, scheduling the

game, conducting the game, and leading the follow-up

discussion.

5.1 Preliminary Step

1. Assign students to teams. Teams of three or four are

generally ideal. Teams of five are generally too large.

Because teams will be paired off in Step 2, there

must be an even number of teams. Give each team a

unique letter designation (A, B, C, etc.).

5.2 Step 1: Users Identify a Business Need (7 minutes)

2. Give each team a set of Lego pieces in a plastic bag,

plus a plastic box with the team‟s letter designation

on it.

3. Instruction to students: “Create an object using the

following number of Lego pieces. For teams A, C, E

(etc.), create an object containing 16 pieces, plus or

minus 2 pieces. For teams B, D, F (etc.), create an

object containing 22 pieces, plus or minus 2 pieces.”

(Clarification: A complete wheel, including rim and

tire, counts for one piece.)

4. “Give your object a name, reflecting its intended

function or purpose.”

5. “When you are finished building your model, or I call

time, put your Lego object in its box. Put the unused

Lego pieces back in the plastic bag, seal the bag, and

place that in the box, too. Put the lid back on the

box.”

 “At no time during this phase should you examine

other teams‟ objects. Also, do not write down

anything about your model, draw pictures of any part

of it, or take a picture of it.”

5.3 Step 2: Requirements Definition

Pair Team A with Team B, Team C with Team D, etc.

Paired teams should rearrange themselves so that they are

facing one another.

Part 1 (14 minutes)

6. “Teams A, C, E, etc. will continue as user teams.

Teams B, D, F, etc. will now be analyst teams.”

7. “User teams: You now have one minute to re-

examine your Lego model. Leave your model in the

box and do not show it to the team opposite you.”

 “Analyst teams: I will now give you a form for use

in preparing a requirements document.”

8. Call time and collect the boxes from the users.

Journal of Information Systems Education, Vol. 22(4)

311

9. “User teams: You must now explain to the analyst

team opposite you what your Lego object looks like.

You may do this only by speaking (you can also use

your hands); you may not write anything down or

draw any pictures.”

 “Analyst teams: Using the requirements form,

prepare a written document that will provide enough

information so that a third party will be able to

recreate the original object. You may provide written

instructions, graphical figures, or both. However,

you must not let the users review your requirements

document for correctness or, in fact, see it at all.”

10. Call time and collect the forms.

Part 2 (14 minutes)

11. At this point, the users from Part 1 become the

analysts, and the analysts once again become the

users. Then repeat steps 7 through 10.

5.4 Step 3: Implementation (10 minutes)

12. Assign each team a requirements document and the

unused bag of Legos that matches the kit originally

used by the pertinent user team. Given the pairings

in Step 2, possible assignments for different total

numbers of teams include these:

For a 6-team configuration:

 A to E, E to A

 C to F, F to C

 B to D, D to B

For an 8-team configuration:

 A to E, E to A

 C to G, G to C

 B to F, F to B

 D to H, H to D

For a 10-team configuration:

 A to G, G to A

 B to F, F to B

 C to H, H to C

 D to I, I to D

 E to J, J to E

13. “Each team will now play the role of programmers.

Based on the requirements document, you will

attempt to create an object that matches the original

Lego model for which the requirements were written.

Do not seek assistance from either the user team or

the analyst team who were involved in creating those

requirements.”

 “When you finish or time is called, turn in your Lego

object to me, along with the requirements document

and the unused Lego pieces. (Please seal the unused

pieces in the plastic bag.)”

14. Collect the models and materials.

5.5 Step 4: Acceptance Testing (Full Class Discussion)

15. Compare each programmer team‟s object to the

original users‟ model and lead an evaluation and

discussion of how closely the two objects relate.

Invite the user team to “accept” or “reject” the model

that was built for them, based on how closely it

satisfies their requirements.

5.6 Step 5: Post-project Review (Full Class Discussion)

16. Engage the entire class in a discussion about the

challenges they faced in performing the user, analyst,

and programmer roles. Draw parallels between

difficulties that students identify in the Game and

problems that commonly occur in connection with

user participation (and non-participation) in systems

development projects. Suggestions for such a

discussion are included in the teaching notes for this

case. Themes that typically surface include the

difficulties of developing a shared language across

roles; challenges in creating an effective mode of

representation; problems in reaching user consensus;

the lack of interaction between users and builders;

and alternative project structures that could make for

more effective communication.

6. TEACHING NOTES

6.1 Materials

Preparing the materials needed for the game is a relatively

straightforward matter. We first acquired a large supply of

Lego pieces, in considerable variety, and then created

discrete Lego kits in identical pairs. These same kits have

continued to serve over several years and many uses. Every

kit contains approximately 35 pieces, several more than is

required in the students‟ model. As remarked, the kits differ

across pairs, in order to add further challenge to the user-

analyst conversation. Each kit is contained in a re-sealable

plastic bag. At the beginning of a game, one kit belonging to

each identical pair is placed into an opaque box, and the

matching kit is set aside for the programmers‟ use in Step 4.

(As the instructions note, the box is used to hide away the

users‟ model, once it is completed.) Finally, we prepare in

advance copies of the simple User Requirements Document

form show in Figure 2.

6.2 When to Schedule the Game

The Design Game has been successfully deployed as a start-

of-term ice-breaker in core information-systems courses.

Although this certainly has value in getting a class off to an

engaging start, we have concluded that where students lack

personal experience with the complexity and difficulty of

systems initiatives, they will at this point in the term also

lack the context needed for understanding the issues which

the exercise illustrates. Accordingly, we now generally

conduct the exercise relatively late in the term, in both core

courses and systems-development courses, after students

have had some exposure to design and implementation issues

and the concept of the system lifecycle.

In core courses we have also positioned the Design

Game as a bridge between the topics of user participation

and information-technology governance. As noted, in

Journal of Information Systems Education, Vol. 22(4)

312

discussing the results of the exercise we raise the point that

meaningful user participation is a function of both project

structure and management support. Hence, users can be

“structured out” of a project; alternatively, they can get left

out when their own managers‟ abdicate business-side

responsibility. Other matters of organizational concern in

the management of information technology, such as IT

project prioritization and selection, are also subject to the

same kinds of dysfunctional behavior.

6.3 Students’ Advanced Preparation

There is no up-front preparation for the students to complete

before the simulation. It can be helpful to have students read

ahead of time about alternative systems-development

methodologies. On the other hand, we have found the Game

to be a compelling introduction to the topic of user and

business-side involvement in systems initiatives, with

relevant reading then to follow. Homework can also be

assigned after the fact, and may be especially appropriate if

classroom time for discussion during Step 5 is limited. (It

can be based on some variation of the discussion questions

we note below.)

6.4 Group Size

As noted, the exercise is based on small groups that shift

between user, analyst, and programmer roles during the

course of the game. Groups of three are probably ideal,

although groups of four can also work well. Pairs of

students will typically not produce sufficient within-team

variety and complexity in the communication, and teams of

five or larger inevitably leave certain students sitting on the

sidelines.

6.5 Duration of the Game

The exercise is designed to be completed in a single class

session of at least 90 minutes, although an additional 20

minutes will sustain a richer and more extensive discussion

in Step 5. A break after Step 2 of some 10 minutes is a good

idea, not only to give the students a chance to refresh, but

also to allow the instructor to set up the materials (matching

Lego kit bags and requirements documents) for the

“programming” phase of the Game. The exercise has also

been conducted over the course of two shorter class sessions

of 50 minutes each. This requires the instructor to keep the

original “user” models intact, in their boxes, for comparison

with the later models created in the second class.

Alternatively, digital photos of the “before” and “after”

models can be taken at the appropriate time and then

displayed via projector at the next class period.

6.6 Lessons Learned in Running the Game

The exercise is logistically rather involved, so the instructor

must be sure to have the students‟ undivided attention prior

to discussing each phase. When students are given the

Legos, they tend to get excited and don‟t always follow what

they are supposed to be doing. The strictures to the user

teams in Step 1 about not creating documentation for their

own models and not examining other teams‟ models during

this phase require particular emphasis, if the game is to

produce interesting mismatches in the end. It is also helpful

to emphasize that the written requirements form is the only

source of information during the “programming” step. The

time limits we recommend for each step do not only serve to

impose schedule pressure – a realistic factor seen in actual

systems projects – but also minimize students‟ ability to get

into the kind of mischief that can undermine the game‟s

effectiveness. On the other hand, it is important to allow

sufficient time for students to compare the before and after

versions of the models. It is possible to get the class to rank

pairs of models in terms of the satisfaction of user

requirements. As there is plenty of “blame” to go around in

the less successful cases – an important practical observation

in its own right – there is generally little possibility for

feelings to be hurt, although sensitivity in this regard is in

order. Finally, it is a good idea to set aside enough time for

an expansive discussion in Step 5 (see the following section).

As we have noted, where this is not possible follow-up

homework can be assigned.

6.7 Leading the “Post-Project Review” (Step 5)

We normally structure the closing, full-class discussion (Step

5, the “Post-project Review”) with a short sequence of

questions that begins by getting the students to reflect

personally on the challenges they encountered during the

exercise. Along the way the instructor will draw parallels

between the contrived barriers introduced in the Game and

real barriers that participants encounter in actual system

projects. The discussion culminates in a consideration of the

Game‟s implications for alternative structures for user

participation in systems initiatives.

We introduce the Post-project Review by remarking that

this is something managers set out to do on practically every

software project, with the best of intentions, but then often

never do in the end. A post-project review takes

considerable time and energy, and when projects run over

schedule and budget (which they still commonly do),

managers are reluctant to invest in it. Moreover, when

project outcomes are problematic (which they still often are),

participants can be anxious to get on to the next thing, or

perhaps to clear out altogether, before the inevitable fallout.

“Nevertheless,” we announce, “we will undertake a post-

project review in the present case,” because it is a vital

organizational learning opportunity. It‟s a chance to reflect

on the process everybody went through, to decide what was

good and bad about it, and to figure out how things might be

done differently the next time.

Questions 1a and 1b: What difficulties arose for the

analyst teams in attempting to prepare the written

requirements document based on the users’ verbal

description of what they wanted? What frustrations did the

users experience in trying to communicate with the analysts?

In exploring these questions, students often point to

difficulties in coming up with a common language for

describing the Lego pieces. This trouble can arise within the

teams as well as between users and analysts. The instructor

can note how the interaction at this point in the game

simulates the project situation where users and analysts can‟t

engage around a common object (like a prototype) that

represents what the users want. Instead, the parties are

trying to move from the users‟ vision toward some

representation that takes an entirely different form. In

software development, that representation is often a

Journal of Information Systems Education, Vol. 22(4)

313

graphical or textual abstraction like a process model that the

users will not understand. Conversely, analysts can have

trouble understanding the business-domain language of the

users.

Denying the users the option of writing and/or drawing

and denying the analysts the opportunity to review their

written document with the users are both contrivances, but

they are not done simply to make the task difficult. Both of

these conditions help to simulate the fact that users in

software projects are typically not in charge of written

specifications and, moreover, almost never understand the

design formalisms that analysts use.

Students also sometimes note problems with the user

team remembering what the model looked like and agreeing

on its details. Although this result is produced artificially

within the exercise by denying the users access to their

model, it reflects the very real difficulties that user

representatives sometimes have both in reaching consensus

and in developing a completely clear vision of their

requirements up-front.

We also sometimes observe, and remark on, variations in

user team behavior during the analysis step. Specifically, we

have noted three styles, broadly speaking, of user

representation. In collaborative teams the students largely

share a common vision and all students participate in

articulating it in a well-orchestrated fashion for the analyst

team. In collective teams, all students participate in the user-

analyst conversation, but they tend to disagree with one

another about details of their model. Commonly, this

situation leads to fragmented conversations between

individual users and individual analysts and, ultimately, a

disjointed requirements document. In lead-user teams one

student dominates the interaction on the user side, with the

other user students deferring to that student‟s “expertise” or,

perhaps more likely, dominant personality. The “after”

model in such a case is not typically a superior match to the

original. We make the point, then, that when lead users

dominate requirements specification in real projects, the

resulting system doesn‟t necessarily fit the business better,

since lead users may be unrepresentative of, or less

knowledgeable than, other users.

It is also fruitful to ask students whether the second user-

analyst conversation (in Part 2 of Step 2) was easier. Most

students agree with this. The instructor can then point out

that the models that are the subject of the second

conversations are on average more complex, since they are

larger. (See the specifications for model sizes described in

the main article.) The correlation between size and

complexity is not perfect, of course, but students intuitively

grasp that the two will be associated. What accounts, then,

for the second part of Step 2 tending to be easier? The

instructor has an opportunity, here, to point to process

learning between the two parts of Step 2, an effect that is

notable as real projects progress, provided that there is not a

lot of turnover in personnel.

We have sometimes asked students if having more time

for the user-analyst conversation would have made a

difference. (We have also asked this question in connection

with the programmers‟ task. See below.) Time pressures, of

course, are an ever-present factor in real projects. Students‟

responses to this question are mixed. Some students will

insist that they could have used more time. Other students

will argue that extra time would have made little or no

difference. Problems in user recall or finding a common

language to use with analysts can make extra time moot. We

have likened this to trying to have a conversation on a cell

phone with a really bad connection: No amount of

additional time on the line will make the conversation any

more sensible. Just about everyone can relate to this,

because just about everyone has hung up on a call under

these conditions.

Questions 2a and 2b: What difficulties arose for the

programmer teams in trying to create an object based on the

written requirements document? What factors may have

played a role in determining how close the programmers got

in reproducing the users’ original object? Students‟

reactions to these questions typically focus on problems in

the documents themselves. Lack of clarity about the

identities of pieces and their interrelationships (the language

problem, again), incompleteness in the specification, and

contradictions are all commonly noted. When the instructor

asks whether students think pictures or words work better to

communicate the users‟ requirements, the most common

response is that both together seem helpful, but only to the

extent that each is executed skillfully. Where the

programmers‟ model is quite different from the users‟

original model, the user and analyst teams involved readily

revisit the issues associated with Question 1 (see above), and

the good-natured finger-pointing that ensues can give the

instructor an opportunity to discuss the distributed nature of

accountability in such situations. It also provides an opening

to observe that the structuring of the work can be as much to

blame as any of the actors.

It is during consideration of the programmers‟ challenge

that students also most commonly begin to reflect on the

comparative design of the different models. User models

that have relatively clean and symmetrical forms

uncomplicated by ornamentation are usually reproduced by

the programmers with higher fidelity. The instructor can

note that simplicity is not per se a virtue in itself, but where

complexity may in fact be appropriate in a design; it

increases the challenge of knowledge transfer.

To further elevate the critique above the level where

students nit-pick the documents, the instructor can call

attention to the central fact that all the programmers have to

consider is the document. Even in circumstances where a

standardized methodology prescribes a consistent form for

such documents – which is far from the case in the Game

where the students, acting in their role as analysts, must

improvise the documentation approach – they offer a narrow

vehicle for the representation of requirements. This is

especially true where users are experiencing significant

uncertainty to begin with, or where there are difficulties in

users and analysts communicating.

Noting how the requirements, in such problematic form,

had been “thrown over the wall” to the programmers

provides the segue to the next discussion question. Instead

of putting the programmers utterly at the mercy of a

document, how might their work have been better supported?

Question 3: How might things have been done differently,

so as to make the task easier and/or more successful? We

ask the students to assume that the initial conditions remain

Journal of Information Systems Education, Vol. 22(4)

314

the same, specifically, that users do not get to document their

own models or to look again at their creations after Step 1.

Students will sometimes then propose that things would have

gone better if the instructor had provided them with a

standardized format for organizing the requirements

document and perhaps a visual listing of the possible Lego

components. Such a proposal constitutes, more or less, a

“structured methods” approach to improving the process. It

is good to observe at this point that the result is likely to be a

more consistently readable requirements document, but that

this will not help much with uncertainty the users may have

about the requirements themselves. The class discussion will

then move rather quickly to a proposal to merge the roles of

analyst and programmer, and to blend the work of analysis

and programming so that the user team can converse with the

analyst/programmer team as the latter attempt to recreate the

users‟ original model. The model, as it emerges, would

become the medium for this undertaking, and the

requirements document would be dispensed with. This

corresponds to a prototyping or agile approach to

development, and moves the process from discrete stages to

an evolutionary trajectory.

Question 4: While the Design Game is most directly a

metaphor for software development, does it hold any larger

implications for IT management? This question is less a

lead-in to student discussion and more a way to frame some

general instructor remarks about responsibilities and

accountability in the IT domain. This is a good way to wrap

up the Post-Project Review. In regard to project

methodologies that structure-out effective user participation,

we have found it both amusing and helpful to present

students a version of the famous tree swing cartoon.

(Googling “tree swing cartoon” will produce several versions

of this.) This cartoon shows a succession of increasingly

impractical and ridiculous designs, as the tree-swing project

gets handed off from project sponsor, to analyst, to

programmer, and the like. The punch line shows that the

user wanted a tire swing, which doesn‟t remotely resemble

what everyone else was working on.

We also point out, however, that although sometimes the

project structure will accommodate effective user

participation, the business side may abdicate responsibility.

Hence, effective user participation is a two-way street. To

support this point, a specific Dilbert cartoon provides an

entertaining summation. It offers the following dialog

between analyst and user (Adams, 2006: 86):

Analyst: I’ll need to know your requirements before I

start to design the software. First of all, what are you

trying to accomplish?

User: I’m trying to make you design my software.

Analyst: I mean what are you trying to accomplish

with the software?

User: I won’t know what I can accomplish until you

tell me what the software can do.

Analyst: Try to get this concept through your thick

skull: The software can do whatever I design it to do!

[pause…]

User: Can you design it to tell you my requirements?

In a course that significantly explores the topic of

information-technology governance, as many core classes do,

this pairing of the tree-swing and Dilbert cartoons provides a

nice segue‟ into broader questions of IT management

responsibility that reach beyond the domain of system

implementation.

7. CONCLUSIONS

The Design Game enhances information systems education

by giving students the opportunity to engage, in a personal

way, in a task central to the application of information

technology: the communication of design requirements.

Through rotating role assignments the exercise also helps

students to see this task from diverse perspectives, and to

appreciate the challenges that arise in connection with the

different jobs that people do in systems development. A

representational student quote shows evidence of learning:

“One take-away that I learned from this assignment

would be realizing how a vision of an object can be

translated and skewed as it gets passed along through

the analysis process from user to analyst to

programmer.”

The abstract discussions of methodologies and user

involvement that typically appear in systems textbooks tend

to fall short, when it comes to convincing students that good

design indeed depends on effective management and

personal commitment to the often hard work of

communication. For example:

“The biggest thing I will take away from the [game] is

how difficult it can be to communicate with a client. I

believe that both sides wanted to have a perfect

transfer of information but in the end we fell short. It

was a little shocking to see how difficult it is to explain

how to build something so small that is comprised of

so few pieces…Keeping this in mind I will make sure to

take the time to formulate thoughtful questions and do

my best to involve the client in order to better ensure

that I receive the best possible information”.

And another student reflects:

“This assignment has merit - it is very close to real life

situations that analysts deal with on a daily basis

 The Design Game makes these crucial insights tangible

in a way that is both entertaining and compelling.

8. ACKNOWLEDGEMENTS

The authors would like to thank their students over the years

for their enthusiastic engagement with the design game.

Journal of Information Systems Education, Vol. 22(4)

315

9. REFERENCES

Adams, S. (2006), Try Rebooting Yourself: A Dilbert

Collection. Riverside, NJ: Andrews McMeel.

Argyris, C. (1987), “Some inner contradictions in

Management Information Systems”, in H Lucas, et al.,

(eds.), The Information Systems Environment,

Amsterdam: North Holland; reprinted in R Galliers (ed),

Information Analysis: Selected Readings, Wokingham:

Addison-Wesley, op cit. pp. 99-111.

Austin, R.D. (2007), “CMM versus Agile: Methodology

wars in software development,” Boston, MA: Harvard

Business School, Case #9-607-084.

Avison, D., and Fitzgerald, G. (1995), Information Systems

Development: Methodologies, Techniques and Tools, 2nd

edition, London: McGraw-Hill.

Bajaj, A. (2006), “Large scale requirements modeling: An

industry analysis, a model and a teaching case,” Journal of

Information Systems Education, 17(3), pp. 327-339.

Brown, J.S., Collins, A., and Duguid, P. (1989), "Situated

cognition and the culture of learning," Educational

Researcher, 18, pp. 32-42.

Bruffee, K.A. (1993), Collaborative Learning: Higher

Education, Interdependence, and the Authority of

Knowledge, Baltimore: Johns Hopkins University Press.

Christensen, C.R., Garvin, D.A., and Sweet, A. (eds.) (1991),

Education for Judgment, Boston, MA: Harvard Business

School Press.

Cockburn, A. (2006), Agile Software Development: The

Cooperative Game, 2nd edition, Reading, MA: Addison-

Wesley Professional.

Cohen, J.F., and Thiel, F.H. (2010), “The Rescue911

Emergency Response System (ERIS): A systems

development project case,” Journal of Information Systems

Education, 21(2), pp. 149-157.

Covaleski, M.A., and Dirsmith, M.W. (1988), “An

institutional perspective on the rise, social transformation,

and fall of a university budget category.” Administrative

Science Quarterly, 33(4), pp. 562-587.

Dearnley, P.A., and Mayhew, P. J. (1983) “In favor of

system prototypes and their integration into the system

development life cycle,” Computer Journal, 26(1).

Dewey, J. (1987), Experience and Education, reprint edition,

Scribners; original publication: New York: Macmillan,

New York, 1938.

Elmore, R.F. (1991), "Foreword," in C.R. Christensen, D.A.

Garvin, and A. Sweet (eds.), Education for Judgment,

Boston, MA: Harvard Business School Press, pp. ix-xix.

Freeman, L.A. (2003) "Simulation and Role Playing with

LEGO Blocks," Journal of Information Systems Education

14(2), pp. 137-144.

Garvin, D.A. (1991), "Barriers and gateways to learning," in

C.R. Christensen, C.R., D.A. Garvin,, and A. Sweet (eds.),

Education for Judgment, Boston, MA: Harvard Business

School Press, pp. 3-13.

Guidry, B.N., and Totaro, M.W. (2011), “Convention Center

Management: A systems analysis & design course

project,” Journal of Information Systems Education, 22(1),

pp. 15-17.

Highsmith, J. (2002), Agile Software Development

Ecosystems. Reading, MA: Addison-Wesley Professional.

Howcroft D., and Light, B. (2006), “Reflections on issues of

power in packaged software selection,” Information

Systems Journal, 16(3), pp. 215-236.

Howcroft, D., and Wilson, M. (2003), “Participation:

„Bounded freedom‟ or hidden constraints on

user involvement,” New Technology, Work and

Employment, 18(1), pp 2-19.

Kawalek P., and Wood-Harper, A.T. (2002), “The finding Of

thorns: User participation in enterprise system

implementation.” ACM SIGMIS DataBase, 33(1), pp. 13-

22.

Land, F. (1982), “Adapting to changing user requirements,”

Information & Management, 5(2), 1982, pp. 59-75.

Reprinted in Galliers (ed.) 1987 op cit.: pp. 203-29.

MacCormack, A. (2001), “How Internet companies build

software,” MIT Sloan Management Review, Winter 2001,

pp. 75-84.

Markus, ML & Tanis, C (2000), “The Enterprise Systems

Experience - From Adoption to Success”, in Framing the

Domains of IT Management: Projecting the Future through

the Past, ed. RW Zmud, Pinnaflex Publishing, Cincinnati,

OH, pp. 173-207.

Mitri, M., and Cole, C. (2007), “A systems analysis role play

case: We Sell Stuff, Inc.,” Journal of Information Systems

Education, 18(2), pp. 163-168.

Mumford. E., and Weir, D. (1979), Computer Systems in

Work Design – the ETHICS method. New York: Wiley.

Mumford, E. (1983a), Designing Human Systems.

Manchester, UK: Manchester Business School.

Mumford, E. (1983b), Designing Participatively. Manchester,

UK: Manchester Business School.

Mumford, E. (1995), Effective Systems Design And

Requirements Analysis. Basingstoke: MacMillan.

Oliver, I., and Langford, H. (1984) “Myths of demons and

users: Evidence and analysis of negative perceptions of

users,” Proceedings: Australian Computer Conference,

Sydney, NSW, November 4-9, Australian Computer

Society, 1984, pp. 453-463; reprinted in Galliers (ed.) 1987

op cit.: 113-23.

Ramiller, N.C. (2005), “Applying the sociology of

translation to a system implementation in a lagging

enterprise,” Journal of Information Technology Theory &

Applications, 7(1), pp. 51-76.

Sauer, C., Liu, L. and Johnston, K. (2001), “Where project

managers are kings,” Project Management Journal, 32(4),

pp. 39-49.

Sawyer, S. (2001), “A market-based perspective on

information systems development,” Communications of

the ACM, 44(11), pp. 97-102

Schatzberg, L., (2002), “Applying Bloom‟s and Kolb‟s

theories to teaching systems analysis & design,"

Proceedings of ISECON, the Information Systems

Educator Conference, 2002.

Scott, J. and Vessey, I. (2002), “Managing risks in enterprise

systems implementations,” Communications of the ACM,

45(4), pp. 74-81.

Tyran, C.K. (2006), “A software inspection exercise for the

systems analysis and design course,” Journal of

Information Systems Education, 17(3), pp. 341-351.

Valusek, J. R., and Fryback, D. G. (1985), “Information

requirements determination: Obstacles within, among, and

Journal of Information Systems Education, Vol. 22(4)

316

support Natural between participants”, Proceedings: End-

User Computing Conference, Minnesota, ACM Inc., 1985,

Reprinted in Galliers (ed.) 1987 op cit.: pp. 139-51.

Wagner, E., Scott, S., and Galliers, R. D. (2006), “The

creation of „best practice‟ software: Myth, reality and

ethics,” Information and Organization, 16(3), pp. 251-275.

Wagner, E. and Newell, S. (2004), “'Best' for whom?: The

tension between best practice ERP packages and the

epistemic cultures of an Ivy League university,” Journal of

Strategic Information Systems, 13(4), pp. 305-328.

Weill, P., and Ross, J. (2005), “A matrixed approach to

designing IT governance,” MIT Sloan Management

Review, 46(2), pp. 26-34.

Whitehead, A.N. (1929), The Aims of Education and Other

Essays, New York: Free Press.

AUTHOR BIOGRAPHIES

Neil Ramiller is a professor in the Management area at

Portland State University‟s

School of Business

Administration. His

primary research activities

address the management of

information-technology

innovations, with a

particular focus on the role

that discourse plays in

shaping innovation

processes within

organizations and across

inter-organizational communities. He is also interested in

the social construction of information technology scholarship.

He has presented his work at a variety of national and

international conferences, and his articles have appeared in a

number of journals, including Journal of the Association for

Information Systems, MIS Quarterly, Information &

Organization, Information Technology & People,

Organization Science, Journal of Management Information

Systems, Communications of the AIS, and Information

Systems Research. He is a member of the editorial boards of

JAIS, Information, Technology & People, and Information &

Organization, and a past associate editor for MIS Quarterly.

Dr. Ramiller‟s Ph.D. is from the Anderson School at UCLA.

Erica Wagner is an associate professor in the Management

area at Portland State

University‟s School of

Business Administration. She

earned her Ph.D. from the

London School of Economics

and has an undergraduate

degree in accounting. She has

previously taught at

CornellUniversity and The

London School of Economics.

Her research interests focus

on the ways software is 'made

to work' within different organizational contexts, with

particular emphasis on how work practices are designed into

artifacts, standard processes, and methods of accounting. Her

research has been published in a variety of outlets including

The Journal of the Association for Information Systems,

Information and Organization, Communications of the ACM,

and the Journal of Strategic Information Systems. Dr.

Wagner‟s paper entitled “The creation of „best practice‟

software: Myth, reality and ethics”, was awarded “Best

Research Paper 2006” by leading scholars in her field. In

addition, she was one of four faculty members across Cornell

University to receive a 3-year grant from the National

Science Foundation‟s (NSF) Digital Government project

(2005) toLanguage Processing Support for eRulemaking.

Journal of Information Systems Education, Vol. 22(4)

317

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2011 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

