Challenging Students: Reflections on the Development and Delivery of ...
McRobb, Steve

Journal of Information Systems Education; Fall 2006; 17, 3; Research Library

pg. 303

Journal of Information Systems Education, Vol. 17(3)

Challenging Students: Reflections on the Development and
Delivery of an Undergraduate Module That Introduces the
Full Systems Development Life Cycle

Steve McRobb
Faculty of Computing Sciences and Engineering
De Montfort University
Leicester LE1 9BH United Kingdom
smcrobb@dmu.ac.uk

ABSTRACT

This paper reflects on the experience of developing and teaching an innovative, experimental undergraduate module in
Information Systems Development. The module aims to give first year students a rounded experience of systems development
from feasibility to evaluation. Students produce a series of analysis and design products that lead, finally, to the
implementation of a distributed 3-tier web-based prototype system. Many staff regard this as overambitious, since most of the
students are completely new to systems analysis and design and are concurrently learning the rudiments of programming and
web development in other modules. The paper discusses the institutional and educational pressures that led to the conception
and development of such a demanding module. It describes the process of negotiation and compromise through which the
module came into being. And it explains the support mechanisms that have been developed to make it possible for students to
succeed. Results are presented that indicate the module succeeds in several ways. It lays a useful practical foundation for later
studies and work. It gives scope and encouragement for abler students to excel. And its support mechanisms help weaker
students to exceed their own expectations by acquiring skills and understanding that they think at first are beyond their reach.
The paper closes by summarizing the key lessons learned by the author, which include insights into the use of scaffolding and

formative assessment to motivate students, and a greater willingness to experiment.

Keywords: Project, Methodology, Systems Analysis and Design, Systems Development

1. INTRODUCTION

This paper describes the commissioning, development and
delivery of a module called INFO1401 ‘Information Systems
Development’ — a first year undergraduate module delivered
as a core part of several degree courses at De Montfort
University, UK. (De Montfort, or DMU, is a large institution
geographically at the centre of England, and also near the
middle of the UK University league tables). The history of
this module illustrates many of the pressures and constraints
that affect the teaching of systems development today. It is
also innovative and experimental in a number of ways.

The paper has some of the character of a research report, and
includes some elements of empirical research. But what
follows was not planned as research and followed no proper
methodology. Some statistical analysis is presented, but this
is really intended only to support some general points about
pass rates and grade profiles.

The pedagogic approach of the module can be rooted in the
constructivist literature. For example, the teaching and

assessment rationale has a clear basis in Vygostsky,
especially the “scaffolding” of learning (Vygostsky, 1978).
The module’s assessment strategy also has strong links with
Kolb’s learning cycle (Kolb, 1984) as it encourages students
to move from practical experience and experimentation to
reflection and conceptualization. However, the discussion
that follows will make no further explicit reference to theory.
Most of the work was simply undertaken as a normal part of
the author’s daily duties as a lecturer, course leader and
module developer, and the paper has been written as a
reflective report on practice, not a theoretical discussion.
Regardless of its classification, it is hoped that readers will
gain useful insights from the story.

INFO1401 seeks to convey a rounded experience of
information systems analysis, design, implementation and
evaluation, using an extended case study and practical lab
work as the basis for a series of group coursework
deliverables that reflect typical lifecycle phase products.
Alongside this, a traditional series of lectures and tutorials
explains the context and the techniques of systems

303

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

development, and gives students the chance to practice and
get feedback on their work.

Much of the delivery is conventional, especially the early
coverage of information systems, project lifecycles, project
management, analysis and design techniques and so on. But
two aspects are quite experimental, and these are the main
focus of the paper. First, there is the distributed web
architecture of the software prototype that students design
and build. Second, there is the assessment process. Key
points to emphasize are that the module challenges students
by setting them tasks that some consider far too ambitious
for first year students, and that it makes creative use of
assessment to support students through the most challenging
of these tasks.

INFO1401 is a key module, whose role is to integrate a
student’s experience of his or her course. It tries to fit
techniques acquired on other modules into a coherent
approach to systems development. Teaching systems
analysis and design is anyway a difficult task. There are
complex interdependencies between the various elements,
and where more than one person is involved, a coherent and
reasonably consistent approach must be found that reflects
the skills and interests of the participants. This paper
documents how a small team negotiated their way past
obstacles and through the many compromises encountered in
an attempt to find a new way of doing this. Two key themes
stand out from the experience, each a dialectic of opposing
tensions.

One of these is risk versus caution. Students rise to a
challenge, but need appropriate support and safety-nets if
they are to overcome the difficulties. Teachers also need
support mechanisms, although we usually have the privilege
of designing our own. Our success, too, depends on
balancing risk against caution. The second is technical depth
versus holistic thinking. While these are sometimes rallying
points for two distinct worldviews, and can even seem to be
mutually exclusive, both are necessary in systems analysis
and design.

For INFO1401 to succeed, it was necessary to resolve, even
to transcend, both of these dialectics.

The paper is structured as follows. First, it briefly describes
some of the institutional background. This is relevant as the
module explicitly seeks to address at a small scale some
problems that led to a university-wide review of the
undergraduate curriculum. At the macro level there were
both pedagogic and political factors that affected the shaping
of INFO1401. Next, the paper discusses the early definition
of the module (part of its ‘template’ — an outline statement of
aims and content — is included as Appendix 1). Here, some
local (i.e. departmental) political factors came into play,
while pedagogical issues were examined in closer detail. The
paper then covers the implementation of the module,
followed by the experience of running it through two
successive deliveries. Here, the pedagogic focus zooms in to
the specific mechanisms by which the module’s aims are
fulfilled in practice, and the political focus shifts to a more
pragmatic, personal level. Student and staff emails and

discussion postings are used to illustrate some issues (the
available material is too thin for this to be really
representative, but the comments are illuminating
nevertheless). Finally, the experience is reviewed, some
conclusions drawn and some recommendations made for
future practice and for further investigation.

2. SMALL BOAT IN A STORM: LIFE AT A HIGHER
EDUCATION INSTITUTION

The story began very early in 2002 when central
management announced a radical, institution-wide process of
change. Like many UK universities, DMU moved in the
early 1990s to a two-semester delivery pattern combined
with a flexible modular degree scheme. During the next
decade dissatisfactions mounted, and it was now proposed to
switch all undergraduate teaching back to year-long modules
‘owned’ by their courses, rather than completely independent
of them, as had become the norm.

Modularity was widely blamed for causing students’
conception of their studies to become fragmented, and the
new framework was intended to change this for the better.
The proposed change was expected to mean more than just a
structural change to the delivery pattern. Every module must
be reviewed, even if this was only to see how it could be best
delivered in a longer mode. But the temptation to review and
update the entire curriculum would be hard to resist. As a
result, the change process soon became known - rather
misleadingly - as ‘Curriculum 2004,

The extension of modules to a 24-week delivery pattern was
expected to enable students to develop their skills and
understanding in a more measured way, and to give more
time for reflection and recapitulation. Also, since courses
would have more or less exclusive ownership of their
constituent modules, it would be easier to maintain subject
integrity and coherence.

A report to Academic Board explained the benefits thus:
“...the curriculum re-write would provide an ideal
opportunity for course teams to thoroughly overhaul the
curriculum. The use of year long modules provide [sic]
scope for imaginative and creative approaches to course
design in terms of flexibility within modules, greater
use of formative assessment, study in depth and an
overall increase in course cohesion which it was felt
should aid student retention and enhance student
satisfaction.” (DMU, 2002)

All of this has very direct relevance to the particular aims
that would eventually be expressed as INFO1401, the
module under discussion. Staff in the School of Computing
generally welcomed the opportunity for a comprehensive
review of their subject material. New technologies, new
programming languages, new analysis and design
methodologies and notations had emerged, and some
modules had not kept pace. Changing employment patterns
were also a factor. From placement visits, from anecdotal
evidence that circulated around the School, and from a
variety of other sources, it was understood that the role of the
systems developer had changed. The construction of isolated

304

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

single systems was (and is still) being supplanted by an
emphasis on systems integration, the assembly of software
components and the web-enablement of existing legacy
systems.

Curriculum 2004 was seen as providing both the opportunity
and the political momentum needed to correct the drift
towards irrelevance. Over the following year, a group of
subject and course leaders produced new course designs and

5 143 J3
.3§ 223 a_=§'
g8 gg‘s !!sg i
;g; BEl3 1
g53 éi% ’i;g
a2 3% 3%
§§§ HE
8; a

outline specifications for new modules. As course leader for
the Business Information Systems (BIS) degree course, the
author was a member of this team. Module outlines were
then handed to module leaders for detailed design,
production of materials, and in due course for teaching and
assessing the students. By this point, the author was also
module leader for INFO1401, and thus had a uniquely
privileged view of the whole process. Figure 1 shows the
key stages.

282 3
HRUII
33 agas E'l,_i_
2ip 4l iy
Lt
S

200102 200203 200304 200405 2005068 200607

Figure 1: Timeline for the commissioning, development and delivery of INFO1401.

The links between modules — both horizontal and vertical —
had become seriously eroded during the University’s decade
of modularity. This was compounded by the loss from most
courses of ‘integrative activities’ (group projects typically
run outside the normal timetable and aimed at integrating the
knowledge and skills of several modules). But there was
some disagreement, partly cultural in origin, about exactly
what problems our new curriculum should be addressing.

The School of Computing has historically been split into two
loose staff groupings, which cleave roughly along the
boundary between the former departments of Computer
Science and Information Systems. Neither department exists
any longer, but this polarization of views can still be
discerned.

We will call the groups Technicos and Informaticos and for
simplicity, and at the risk of some over-simplifcation, we
will characterise them as follows (most readers will
recognise some of the cultural and political composition of
their own faculties).

Technicos generally emphasise technical skills and precision,
and might define the key aims of a computing degree course
as: to equip students to formulate a clear and unambiguous
statement of a problem, to specify a technological solution to
that problem, and to use the most appropriate technology
available to implement that solution in an effective way.
DMU’s Technicos saw our key academic problem as a
decline in students’ technical ability, especially their
programming and networking skills. The solution was a
return to intellectual, especially mathematical, foundations;

for example, more emphasis on programming, algorithms
and data structures, and a partial restoration of structured
approaches to analysis and design.

Informaticos agree up to a point on the need for intellectual
and technical rigor. But they also take a wider view of the
nature of systems, and thus of systems development. Success
is seen as critically dependant on a deep understanding of the
needs of users, clients and other stakeholders of a system,
both those that are given explicitly and those that are implicit
in the context. Where this understanding is missing,
inappropriate systems will be developed regardless of the
developer’s technical skills. Students need to integrate their
knowledge and diverse skills within an overall framework.
This ties in with some skills and knowledge that employers
value in all graduates, irrespective of discipline: project
management, understanding of project lifecycles, project
deliverables, group working, communication and research
skills, and systems analysis and design approaches.

Viewing the curriculum design problem from this
perspective, a meeting of the Information Systems subject
team noted that:
“Certain problems with the current curriculum were
identified; these tend to manifest themselves in the final
year (and via placement employer feedback), for
example final year students across all Computing
courses who:
e “are unable to make a coherent link between the
different parts of the systems lifecycle;

305

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

e “are unable to construct documents such as a
Feasibility Study, Requirements Specification,
Design Document;

“know nothing about research skills;
“and who are therefore insufficiently equipped to
approach their final year project, never mind
professional practice!” (Prior, 2002)

The strategy proposed to address this was a new first year

module called “Systems Development”:
“Covering the whole lifecycle from project initiation,
through analysis, design, to implementation. Students to
acquire an overview of the entire lifecycle, to
understand key deliverables such as Feasibility Study,
Requirements Specification, Design Specification and
learn an approach to project management. A generic
approach to be taken.

“[The new module was to be] Core for all
undergraduate [computing] courses” (ibid.)

By September 2002, the BIS course team had begun work on
the proposal. The following were agreed as key learning
outcomes for the first year of the redesigned course:
e “Strong grasp of systems analysis and design
method and techniques.
“Basic skills of practical systems development
“Fundamentals of understanding businesses and
organizations” (McRobb, 2002)
[]
INFO1401 would play a role in meeting all three aims, but
with primary responsibility for the first. Other modules
would focus on programming and business topics such as
accounting and marketing, but INFO1401 would integrate
the student’s understanding of the course as a whole.

At the same time, it was expected to fulfill a similar role on
several other courses including Computer Science, Software
Engineering and Computing Joint degrees. A report to the
Subject Authority Board described the module as follows:
“The module INFO1401, Information Systems
Development, will present an integrated view of the
various stages and techniques of the systems
development lifecycle, and will also develop an
understanding of the application of modern information
systems within organizations.” (McRobb, 2003)

From an Informatico perspective, these were central aims for
the entire School. But the use of this module within other
courses was to profoundly complicate matters. Curriculum
2004 was understood to offer a simple relationship — that a
course would ‘own’ its modules — but INFO1401 seemed
unlikely to benefit from this simplicity. Next, we will
examine how the grand scheme was translated into practical
content, delivery and assessment.

3. TAKING ON A LIFE OF ITS OWN: HOW THE
DESIGN EVOLVED

Detailed design and development of INFO1401 occurred
mainly in the summer of 2004. This was quite late, given that
the first run was due to begin in September, but it was also

unavoidable as the module team was only established at the
start of the summer. This team consisted of two Technicos
led by the author (an Informatico, in case the reader has not
already guessed). The module learning outcomes were now
defined as:
“1. Explain key concepts in the Information Systems
domain, and discuss the impact of IS on individuals,
organizations and society.
“2. Explain the role, significance and typical activities
of project selection, project management, systems
analysis and design.
“3. Apply appropriate techniques to produce a
requirements specification and design for a constrained
case study, based on supplied information about user
requirements.
“4. Apply practical systems development skills to
implement a prototype system in an environment such
as MS Access.
“5. Evaluate the extent to which the implemented
system satisfies user requirements.” (DMU, 2003)

In addition, the module template stated that:
“...a key emphasis throughout will be on the provision
of practical examples and the opportunity for students
to undertake practical project initiation, systems
analysis, design and implementation tasks” (ibid.)

The module content of the various degree courses had now
mostly stabilized, which meant that most constraints and
requirements seemed reasonably clear. Almost all students
on INFO1401 were expected to cover the foundations of HCI
in another module. All were expected to take a programming
module. Later, all would study object-oriented analysis and
design, entity-relationship modeling and SQL. INFO1401
was to adopt a structured lifecycle, with a toolkit of dataflow
diagrams, entity relationship models and structured English.
Thus, by graduation, all students would have some
familiarity with structured, object-oriented and data-centered
approaches to analysis and design.

MS Access was initially assumed to be the vehicle to
introduce database concepts and SQL, and it had a number of
clear advantages. Students could develop practical skills
useful to placement employers, an important point as most
were expected to spend a year on work placement. Even
weak students should be able to achieve some satisfactory
results, an important point since many students undertaking
this module would be new to computing and concurrently
learning programming for the first time.

However, this logic shifted as horizontal links with other
new modules began to exert strain. In the early stages of
curriculum redesign, courses and modules co-evolved in an
iterative manner. But as module content grew more detailed,
there was no time for further iterations. Conflicts that
emerged at this stage could not always be resolved through
mutual interaction between modules, nor could gaps be so
easily filled. Sometimes one module just had to adapt to the
changes in another.

It emerged that the HCI module to be taken by most students
had shifted focus to web page design and implementation.

306

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

INFO1401 must either work with this or fit some HCI into
an already crowded syllabus. While the former option was
more attractive for the schedule, it also slightly weakened the
argument in favor of Access.

Another issue was the parallel evolution of the Software
Engineering course. No other module on this course now
covered E-R modeling and SQL. The course leader sought
assurance that INFO1401 would teach his students to design
and create a database and to query it using SQL. The ease of
use of Access, previously seen as an advantage, began to
seem a positive disadvantage. Built-in wizards, query-by-
example and so on were attractive when the aim was for
students to implement their designs without too much fuss.
As SQL assumed more importance, it became less desirable
to use a package that would allow students to implement and
query their database without writing or even understanding a
single SQL statement.

Programming was another complication. Access uses VBA,
which is essentially a subset of Visual Basic. Some students
(those on BIS and Computing Joint courses) would learn
VB.NET, but others (those on Computer Science and
Software Engineering) would only know C. This caused a
dilemma. The need for coding could be minimized, but the
prototype might then become too trivial. Some class
coverage of VBA could be added, but the schedule was
already tight. Students could locate their prototype
functionality in separate programs that used the Access
database only for data storage, but this would increase the
overall complexity and would also required extra class
content. All solutions led to further complications.

The final argument against Access was its specificity to
Windows. An industrial strength RDBMS such as Oracle or
MySQL would have more relevance to placement and
graduate employment. As it happens, both are installed on
Unix servers, and some exposure to Unix or Linux would
also help to provide practical experience relevant to future
employment.

At this point, one of the module team (a Technico, needless
to say) proposed that we base the students’ prototypes on
distributed, three-tiered web architecture. We could then
employ a web interface and either MySQL or Oracle
RDBMS as the database layer. The lack of a common
programming language remained a difficulty, but our
Technico was also a CGI expert and argued this could
readily be adapted to use either C or VB as its host language.
First year students would certainly face significant
difficulties in undertaking such a complex implementation
on their own. But this could be overcome by the release of
template code for the harder parts of the task. For example,
CGI code could be issued to achieve integration with the
database layer. The students would be expected to
understand this code and to adapt it for their own use, but not
to write it from scratch.

There was no consensus within the team. The other Technico
disagreed, partly due to his lack of experience with CGI, but
also because he believed a distributed web architecture
would be too difficult for the students to master. The

winning argument for the author was the strong relevance to
future employment. We could offer our students an exciting
and truly groundbreaking experience. Not only would they
cover the entire lifecycle, but also their products would
include original software development and the configuration
and integration of software components. In the course of this,
they would gain experience of a range of technologies not
usually introduced until the second year, or more usually the
final year, of undergraduate study.

The risks were equally obvious. Few students would already
have the programming skills, and it was both inappropriate
and infeasible to consider teaching these within the module.
There must be a great deal of support to ensure a reasonable
chance of success. Code templates would be needed for any
aspect of the middle layer likely to be too difficult for novice
programmers. Nor could the students be expected to design,
never mind implement, a robust, functional database without
significant assistance. There would be gaps in their HTML
skills, too. The prototype architecture would critically
depend on forms for data input, and again the choice was
either to teach the skills or to provide templates of some sort.

The dissenting tutor was out-voted, and the decision taken to
proceed with the web architecture. The ethos of the module
team changed perceptibly with this decision. Early meetings
had concentrated on subject content and the teaching plan.
Now the focus on group coursework intensified. Preparation
of lecture and tutorial materials continued, but became a
background activity. Meetings emphasized technical details
of the implementation, and the support mechanisms that the
students would need.

Oracle was selected as the database, partly for its familiarity
and partly because for the simple web interface to its
interactive SQL module, allowing us to hide the rest of
Oracle’s complexity. The C programmers would use
compiled C/CGI programs running on a CGI server for their
middle layer, while the VB group would use an ASP server
to execute VBscript embedded in HTML pages. The user
interface layer would be written in HTML, with forms as a
means of data input and tables to control page layout and to
format data output.

The team approached the planning in an atmosphere of
excitement and enthusiasm that probably contributed to our
biggest problems, although this would not be apparent until
some months later. It is always risky to set a challenge for
students that you do not know you could meet yourself.
When the distributed architecture was first proposed, our
skeptical tutor urged the construction of a working prototype
to prove the concept. This was noted as an urgent priority at
a team meeting three weeks before start of term, but it was
not completed until after the students had begun work on
their own prototypes. One reason was lack of time and
pressure of other work. But more importantly, neither the
CGI nor the ASP server, on which the whole architecture
would depend, was yet operational. Our sceptic now urged
that we fall back to a safer development path, and rewrite the
coursework for MS Access. But pressure of time (again), the
amount of extra work involved in making the change and the

307

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

confident assurances of our CGI expert all argued against it.
As module leader, the author decided to proceed as planned.

4. FIRST STEPS: THE 2004/2005 DELIVERY

The group coursework required students to submit a
feasibility report, a requirements specification, a design
specification and finally to implement a software prototype.
Students would require different types of support at each
stage, and for varying reasons.

Clearly, students must be able to get back on board if they
missed a phase for any reason. We had also to ensure that
students’ misunderstanding of earlier tasks did not handicap
them in their approach to later ones. Indicative solutions
were to be released at the end of each interim phase via a
password-protected website, limiting access to groups who
had already submitted their own version. Each solution
would be a reliable foundation for work on the next phase.
To manage the level of difficulty for the students in the
coding phase, undoubtedly the hardest part of the project, a
range of aids were eventually provided.

e Sample web pages illustrated how forms can link to a
CGI program.

e Code samples in C/CGl and VBscript illustrated,
separately for each language group, how to read data
from a form, how to insert variables into SQL queries,
how to send the query to the RDBMS, and how to
format the output into a new web page.

¢ A thoroughly tested data model, and an SQL script to
create the corresponding tables and to populate them
with sample data.

e Example SQL statements that executed similar
functions on a different data model of comparable
complexity.

Further code samples were also released on the module
Blackboard site, and students were encouraged to adapt all
supplied code to their own designs. Much of this was also
taught in lab classes, so that all students were expected to be
able to contribute to their group’s work.

However, our incomplete summer preparations soon began
to have a direct impact. First, there were serious delays in
getting the CGI server operational. Technical and teaching
staff put in many extra hours to get the server running, but
classes that explained what to do during the implementation
phase had to be delayed up to two weeks. This was a
frustrating time for students. One group registered their
concerns in an email to their course leader:
“We are currently doing part of the unit which requires
us to code and understand cgi and sql yet most people
feel that we aren’t actually being taut this and just being
told to do it...
“Not sure what you can do about these problems but
I’m guessing you have already said something as
today’s lecture started to explain how cgi and sql work™
(“INFO 1401” — email to course leader, 2005).

In his response to the students’ difficulties, our skeptic
commented:

“I'm quite sure that a lot of my students are having the
same sorts of problems with CGI etc... However I think
SQL is fine at least for the students who've done the
work. But coping with the mix of environments is still a
problem, and the students probably think that they're not
getting enough in lectures to really understand stuff
they need to use. I think this problem is inherent in...
the aim of getting students to create running systems
with a three layer architecture” (“Course Problems” —
email to the author, 2005).

Others posted their views on the Blackboard feedback forum.
One wrote:
“I followed instructions and turned up to the lab to find
not only was the cgi link down but the server not
functioning properly Still!!” (“This module is
Ridiculous!!” — email to Blackboard feedback forum,
2005).

Installing and using the C/CGI utilities and the Oracle CGI
pre-compiler also proved more difficult than anticipated. As
a result, the supplied code material went through a series of
revisions. This was a further source of frustration:
“We were given things to aid us in completing our
database prototype but they have been wrought [sic)
with problems and have had to be revised... there’s a
‘Makefile’ which compiles the pro*c and this has been
revised three time, up to last week. As this file is
essential to doing anything to our database it has been
rather difficult” (“Concerning INFO1401” — email to
Blackboard feedback forum, 2005).

Coding and implementation was much more difficult for the
C/CGI group than for their ASP/VBscript colleagues, and
only strong programmers in the former group produced
really successful prototypes. But by the time these problems
were apparent, we were too far down this road to change. A
wholesale switch to ASP was considered at one point, but
this would have meant writing off the time already spent
explaining the C/CGI approach, and it also risked confusing
many students even further.

Instead, our CGI expert gave a lot of extra, unscheduled
support in the labs. An announcement was posted to let the
students know that the marking would take into account their
difficulties; credit would be given for what was attempted,
even if not fully successful. In any case, for some weeks
before the final deadline laboratory classes were devoted to
supporting the groups as they worked on their prototypes.
Email support was almost around the clock in the closing
stages, and a lot of tutor effort was expended on debugging
student code.

In the end, the pass rate and average marks for both C/CGlI
and ASP students were broadly comparable to other
modules. But this was largely because the prototype
deliverable represented only 10% of the final mark. An
analysis of the final results for this run shows that the
average exam mark was just 2% lower than the average
overall coursework mark. This difference in marks is not
untypical for a module in this general subject area. But a
comparison of the coursework component marks is more

308

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

ﬁ,f g” @fa,f 7 f,f ﬁ,,a’ 7 éj

A S A S S

with other

lype mark as L

group’

Figure 2: Comparison of prototype mark
with combined mark for other group
work (2004/2005 cohort).

revealing. The average student scored 8% less for their
prototype than for their feasibility study, analysis
specification and design specification combined. Two thirds
of all students performed worse on the prototype, with only
one third performing better on this task. The variations
between marks for the prototype and marks for the rest of the
coursework are illustrated in Figure 2.

This was certainly not enough to restore goodwill among
these students. It also brought a political defeat that in tum
undermined a key purpose for which the module was
originally proposed. During this difficult period, the course
leader for the C programmers, a leading Technico, responded
to their complaints by getting approval to drop the module
from their courses for the following year, before its first run
was even complete. Originally designed to ensure that
technical and contextual subjects were integrated right across
the curriculum, the module had lost this role on two of the
School’s main technical courses.

S. MAKING STRIDES: THE 2005/2006 DELIVERY

For the second run of the module, several changes were
made. The teaching schedule was adjusted to reduce the time
spent on theory in the early weeks, and to permit an earlier
start on the practical tasks that had caused the greatest
difficulty in the first run. Since no C programmers would
now be taking the module, only ASP need be used for the
prototype middle layer and CGI was dropped. Perhaps more
significantly, the assessment was changed to a blend of
formative and summative strategies that has proved popular
with students. This was prompted, and most of the details
worked out, at a summer staff development workshop
(Mortiboys, 2005).

All group deliverables except the final software prototype —
feasibility report, analysis specification and design
specification — are now submitted first in draft form. At the
end of each phase, groups attend a review meeting with the
tutor. An indicative mark is given together with feedback on
how the work could be improved. If a group wishes to
improve their mark, they can so up to the final deadline

when a portfolio is submitted with final versions of all
interim products and also the software prototype.

This procedure does not exactly mimic the real world, since
a real team would not be permitted to continue to the next
phase if the products of the current phase were
unsatisfactory. But the opportunity to revisit and revise
earlier work is appropriate for an educational context and
helps to teach students how lifecycle products are related.
Submission of draft work is mandatory. If any group does
not submit a draft, they forfeit the corresponding mark in the
final portfolio. Students are rewarded (by feedback, and also
by maintaining the chance of a better mark later) for
submitting something for review, no matter how poor its
quality. If no submission is made, they are punished by the
irretrievable loss of marks. Students who lose early marks
through non-submission of draft work are also reminded of
the greater need to meet later deadlines, since they must now
compensate for the lost mark.

At the time of writing, the marking for this cohort is not yet
complete, so it is too early to make a comprehensive
assessment. But it is already clear that many groups have
made strategic decisions to improve early work for which
they received poor feedback. This has encouraged them to
maintain their efforts through what is often a low point in the
academic year, as everyone’s energy began to flag during the
run-up to the Easter vacation. The author has also observed
several students — and some whole groups — spurred into
action by the realization that they will soon lose marks if
they do not make a submission. The review meeting then
provides an opportunity to discuss difficulties and
misunderstandings that might not otherwise have been

Oracle on hoimes

Browser on any PC

Browser
displays
pages + forms
URLs, HTML
form data pages

Stores all data,
Executes SQL

).

query results

ASP on aspen
Fxecutes VB
Apache on shepherd HTML seript coinmands:
- Text L pages Adds form data to SOL
- Xhtmn! tags + sends o Oracle.
- VB scripts - ’ Inserts Oracle output into
{and SQI) XHTML + sends back 10
- Form data V’? web server.
script
N ——

Figure 3: The prototype architecture.

picked up by the tutor until it was too late to recover.
A further piece of individual coursework has been added to
the mix. After all the group work is complete, students are
asked to write a reflective report. The assignment
specification asks students:
“...to reflect critically on one aspect of the group
coursework. This should be something that is (or was at
the time) important to you. It could be positive or
something negative. Maybe you achieved something
that makes you feel proud. Or maybe a problem

309

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

occurred and you think it could have been handled
better. The important thing is that you propose a topic
that you want to write about.” (DMU, 2005)

Many of the resulting reports give insight into student
attitudes and some selections are quoted in the following
sections of the paper.

6. THE WEAK GO TO THE WALL, BUT THE BRAVE
ARE CHALLENGED

In an echo of the way that weak or infirm worshippers in
mediaeval British churches (which lacked seating) were
encouraged to “go to the wall” for support, INFO1401 has
“walls” built in to support students who need them. These
are necessary because the coursework is both demanding and
protracted. It is demanding because it relies on the
application of many skills, most of which have been covered
only briefly in class. It is protracted because it involves a
series of deliverables, phased through the greater part of the
academic year, with each to some extent a direct
development from, or derivative of, its predecessor. It was
anticipated that some students would need a great deal of
support if any significant learning were to be achieved. The
assessment strategy contributed to this, and differing
approaches have been tried in successive years, as described
earlier.

It would be misleading to think that students now found
either the module or its coursework easy as a result of all the
support. Results and informal feedback (mainly oral
feedback in class, and unfortunately thus not formally
documented in any way) confirm that it is still regarded as a
difficult task. The support mechanisms helped most students
to achieve a reasonable result under difficult conditions. But
a small minority of groups still completely failed to build a
functional prototype, despite all the help on offer. Many said
that they found the module as a whole difficult in
comparison with their other first year modules. Following
the second run, one student commented on Blackboard that
the module:
“covered many aspects of information systems that i did
not expect in the first year... [but] the overall module
content was good [and] had good depth” (“Module
Content”, email to Blackboard feedback forum, 2006).

The difficulty was more pronounced during the first run,
when the module was still in its own learning phase. But
even during the second run the final (software development)
phase of the group work remained a serious challenge.
Several students asked the author to confirm that it really
was a level one module. This echoes the open disbelief of
some staff when they hear what the module asks its students
to do.

In general, the feasibility, analysis and design stages were
completed with no more than the usual difficulty. But many
frustrating pitfalls lay in wait during the coding phase. One
of the trials for novice programmers is the realization that
apparently insignificant errors can cause a function to fail
completely. There are many places where such errors can

occur. Figure 3 shows the main components in the
architecture.

Most students had little or no experience in debugging, and it
took time to learn this, particularly in such a complex
environment. It was common for the author to be asked why
they had to use HTML, ASP and Oracle instead of Access.
His litany in reply — that this experience would ultimately be
extremely useful for future employment, seemed to sink in.
One student — from a group whose final prototype showed no
working functionality — wrote that:
“The skills I have developed during this coursework can
be very useful for any person involved in an
information technology related job in the future. Many
people can easily create a database in Microsoft Excel
or Access however having the ability to create a system
using the Oracle database would be very beneficial”
(Assessed Critical Report, 2006).

7. DIAMONDS IN THE MUD

Final prototypes fell along a wide spectrum of achievement.
At one end, a handful consisted only of one or two web
pages, with weak understanding of the basic requirements,
very poor design, no functionality and little evidence in the
source code of any real grasp of the technical aspects of the
project. At the other extreme, some elegant, sophisticated
prototypes showed excellent design skills combined with a
clear understanding of the requirements, and also signs that
the feedback given on earlier deliverables had been taken
into account. The majority of groups achieved a great deal,
despite the many difficulties they had to overcome.

The aim was to foster confidence across the full range of
achievement, and there is some evidence that this occurred.
During the first run, some very limited research was carried
out using a questionnaire instrument administered to a small
sample of students, chosen to represent a wide range of
ability. Four of five respondents stated that their confidence
increased as a result of the module; two of five indicated that
it had increased a lot. One wrote that the module as a whole
was:

“a positive experience which has made me aware of the

issues involved in the process of Systems

Development” (Survey response, 2005).

Critical reports completed by all students during the second
run give further confirmation. One student, who was
suspected by the author of being a rather passive member of
a successful group, reported that his experience:
“helped me to develop my communication skills and
put my ideas across. It also helped me to adapt to
criticism and improve on failed attempts of the work...
I have become more determined to improve areas of my
work that need to be improved and gain satisfaction out
of this” (Assessed Critical Report, 2006).

Another wrote that he was:
“especially pleased with our final prototype that we
created, this was very much a team effort, it was a
challenging task yet through many hours of persistence
and supporting each other we managed to create a

310

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

working basic model that left us with a sense of
achievement” (Assessed Critical Report, 2006).

Some prototypes exceeded the stated requirements in
completely unexpected and imaginative ways. For example,
one group used real ISBNs for books in their database (the
first case study was a University library) and linked these to
images on Amazon.com. Their application was thus able to
display the correct cover image for each book. Another
group found an ingenious way to generate a primary key for
a new book copy. Their script retrieved current copies from
the database, counted the number of rows in the result table,
incremented this and then inserted it into the new primary
key. In Access this is a built-in function and would be quite
trivial, but in this environment, and for students with such
limited programming experience, it showed real initiative
and problem-solving ability.

Several groups implemented a log-on process, although this
was not a stated requirement. For it to work, the database
definition (supplied as an SQL script) had to be modified to
add the new table needed for user data. The log-on process
itself is quite complex in comparison to other functions,
since there are several exception conditions along with the
successful log-on scenario. One group even managed to
implement session keys, which they used to track the users
who were logged on at a given time.

These are exceptions, and not the norm for the module. But
they are closely trailed by many lesser achievements that are
still significant in their own right. Other groups were
narrowly defeated, often just by lack of time, in their
attempts to implement more complex functions such as
muiti-table queries (table joins were barely mentioned in the
brief lecture coverage of SQL).

One group declared, at the start of the implementation phase,
that they had no confidence that they would ever manage to
make all the layers work together. Yet, just a few weeks
later, they couldn’t stop grinning as they demonstrated the
results, which far surpassed their own expectations. This
group’s prototype was functional in all the required ways;
they had also discovered an elegant way of using a single
page as both input and output screen (by including the code
for the input page within the script file, which then
recursively called itself again with each new input). Another
student reported that:
“the most encouraging part was getting the feedback
from the project, as it then made us all realise that the
hard work that we had put in, was worth every single
minute of it” (Assessed Critical Report, 2006).

8. DISCUSSION

INFO1401 arose from a combination of circumstances. At
the very beginning, there was a perceived need to address a
problem in current operations and a climate in the
organization that was amenable to change. There was also
disagreement among colleagues about the nature of the
problem and the best solution. The eventual composition of
the module team had a profound influence on the
implementation of the module. Without a radical Technico

input, the author would almost certainly have followed a
much safer path. Without the strong Informatico influence
exerted by the author, above all in the explicit links and
frequent signposting, both forwards and backwards, between
different phases, tasks and products, the students might only
have learned a little each of a lot of different technologies.
For some, at least, the module worked as it was meant to do.
One student summarized his experience as follows:
“I learned the techniques and understand [sic] of how
systems life cycle develops from one stage to another
and all the investigation and analysis that is required to
lead up to a successful system” (Survey response,
2005).

This is not a bad paraphrase of the original module aim
quoted earlier in the paper. It can be argued that the success
of the module is due to a synthesis of holistic thinking with
real technical challenge. On a similar note, one of the small
bands of Joint degree students (technically speaking, the
least prepared of all) wrote:
“I think it is important to have a module like this on the
first year as it shows the full picture of Systems
Development from the beginning of the degree”
(“INFO1401 questionnaire” — personal email, 2005).

There was another dialectic at work, between risk and
caution. This is visible in the polarization of staff views over
the distributed architecture proposal. But the same theme
recurs throughout the module; it is there in the balance that
was sought between challenging students and supporting
them. Environmental factors, and especially developments in
the employment market, added their weight to the argument
for risk. Educational factors, and a general background of
concern about falling achievements, argued for prudence.
Here, too, the success of the module can be seen as
depending on a synthesis of contrasting elements.

In simple quantitative terms, the module is certainly
successful. In its first run, 185 students from three single-
subject degree courses and a variety of joint degrees were
enrolled. In background and in inclination, the BIS students
were among the least technical of those who took the module
that year, and many saw it as very demanding and very
technical in nature. Yet the first attempt pass rate for this
group was 74% - equal highest among their computing
modules.

The results for all cohorts together indicate a healthy
module, with an overall pass rate of 81% and a top mark of
89.4%. The marks follow a slightly skewed normal
distribution, centered roughly in the lower C grade, as shown
in Figure 4.

The most striking risk was the decision to adopt untried
technology and some students were definitely alienated by
what they saw as the unreasonable demands that were made
on them as a result. But overall student performance was not
adversely affected, and perhaps the module would not have
achieved its other successes had staff not been willing to take
this risk.

The module’s greatest failure — being dropped from two
leading technical courses — arose directly from this same

311

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

decision. Yet still, albeit for a narrower range of students,
INFO1401 does help students to understand how information
systems can be produced that are related to the needs of its
users and their context of use. The module achieves
relevance to real world systems development by focusing on
systems integration rather than development de novo. And
student participation is clearly enhanced by the
encouragement to rework interim products (only one team
out of 20 did not take up this opportunity). One student
whose group submitted almost nothing for the earlier phases,
then worked hard to catch up before the final deadline,
reported that:
“once we actually worked together as a group and
managed to concentrate on the coursework we realised
that the work was not as hard as first thought and could
have been completed for the sectional deadlines”
(Assessed Critical Report, 2006).

9. CONCLUSIONS

This paper has presented a necessarily incomplete history of
the development and first two deliveries of an innovative
module that seeks to introduce first year undergraduates to
the full life cycle of contemporary information systems
development. Its assessment relies partly on students
producing a series of deliverables that are chosen to reflect
the process of developing a real system. Feedback is given
on interim products, and students can then improve their
work before final submission. While none of these
assessment ingredients are original in themselves (although
the resubmission of formative work is relatively unusual), it
is likely that this particular mix is unique.

The nature of the tasks the students are asked to undertake is
more clearly innovative. Some modules at DMU and other
Universities superficially resemble INFO1401 in their
content. But these generally focus on technologies rather
than on the life cycle itself and are studied in the second or
final year rather than the first year. INFO1401 is, as far as
the author is aware, unique in using a complex software
environment as a vehicle to teach the overall framework of
systems development to students who are just beginning
their degrees.

Final grade for module as a whole

Figure 4: Overall module results
(2004 /2005 cohort).

The point is to convey a holistic understanding, not to
achieve any particular level of technical skill, although
certainly many useful practical skills are acquired along the
way. It is likely, due to the changing role of IS professionals
and also the continuing evolution of software technologies at
work, that such approaches will become commonplace. In
reflecting on the experience so far, some general conclusions
can be drawn.

. Students are strongly motivated by the opportunity
to rework interim products following tutor feedback,
although this needs to be offered within clearly defined
parameters.

. Students who are given appropriate support can
meet challenges that they, and many of their tutors,
believe at first to be beyond their reach.

. Student perceptions of the difficulty of a module
are not necessarily reflected in their levels of
achievement.

. It is possible to integrate technical challenge with a
holistic understanding of the framework within which
the technologies are embedded.

The learning curve has at times been steep, both for students
and for their tutors. One of the greatest costs has been the
sheer amount of staff input required, and the level of active
intervention by staff that was needed, particularly during the
prototype development phase, was not properly anticipated
for the first delivery. As a result, the teaching schedule for
the second delivery was adjusted to increase the amount of
time available for this phase, both in terms of calendar time
and staff contact, particularly in laboratory classes.

As the module is reviewed for its third delivery, one aim is to
reduce the demand on his the author’s own time, provided
that this can be done without sacrificing the quality of
learning. This may be achieved through further
experimentation with the nature and timing of the assessment
tasks.

A number of aspects of the module merit further research. In
particular, it is planned that during the next delivery, all
students will be surveyed at certain key points to investigate
whether, and how, their understanding and confidence
change during the year. It is the author’s hypothesis, not as
yet formally tested, that the module’s balance of risk and
security is effective at enhancing its students’ independence
and self-confidence. (Such a survey was in fact planned for
the second delivery, but due to other pressures it was not
possible to implement it in time).

Perhaps the most important lesson is that a tutor should not
be scared to take her students to places she has not yet
thoroughly explored herself. A tutor’s role is to help students
learn from their experiences, and this does not require
complete control over every aspect of the situation at the
outset. Related to this is the well-established point that useful
learning occurs when students are actively engaged,
preferably in a self-directed task, rather than being ‘taught’
something by a tutor. This module offers one way of
achieving this desirable state of affairs. However, while the
students’ work for INFO1401 is largely self-directed, there is
a heavy demand on staff time at certain stages, and the tutor

312

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 17(3)

must be willing to respond. It is also essential for a module
to have a clearly thought-out plan that links back to the
strategic aims of the course — in exactly the way that a
requirements specification defines what a system should do
without tying the developers down in specific details of how
it will be implemented. Where such a framework exists, it is
easier to be flexible regarding the detailed implementation
and the day-to-day running of the module.

10. ACKNOWLEDGEMENTS

The author wishes to express his gratitude to the many
colleagues who advised on and helped with the development,
teaching and review of INFO1401. In particular, Jordan
Dimitrov, Mike Leigh, Mary Prior and Martin Stacey all
deserve special mention. Grateful acknowledgement is also
made to Ralph Birkenhead and Bernd Carsten Stahl, without
whose encouragement this paper would not have been
written. Finally, the encouraging comments of the paper’s
anonymous reviewers are greatly appreciated, and their
suggestions have been accommodated wherever possible.

11. REFERENCES

DMU (2002), “Joint Meeting to discuss the implementation
of the Academic Calendar Proposal: Summary Of
Recommendations To Academic Board”, DMU internal
document, 29 January 2002.

DMU (2003), “INFO1401 Module Template”, DMU internal
document, 2 April 2003.

DMU (2005), “INFO1401 Critical Report Coursework
Specification”, DMU internal document, 27 January 2006.

Gifford, B.R. and Enyedy, N.D. (1999) “Activity Centred
Design: Towards a Theoretical Framework for CSCL”,
Proc CSCL 1999, Stanford University, Palo Alto, CA,
Hoadley, C. and Roschelle, J. (Eds), Lawrence Erlbaum
Associates, Mahwah, NJ.

Kolb, D. (1984), “Experiential Learning: Experience as the
source of learning and development”, Prentice Hall,
Englewood Cliffs, NJ.

McRobb, S. R. (2002) “Draft BIS course structure and
learning outcomes by level”, DMU internal document, 20
September 2002.

McRobb, S. R. (2003) “BIS Course Report to Subject
Authority Board”, DMU internal document, 31 October
2003.

McRobb, S. R. (2004) “Notes of INFO1401 team meeting”,
DMU internal document, 8 September, 2004,

Mortiboys, A. (2005), “Effective and Efficient Assessment
in Large Groups”, staff development workshop, DMU
APDU, 7 September 2005.

Prior, M. (2002) “Notes of Information Systems subject team
meeting”, DMU internal document, 12 April 2002.

Vygotsky, L. S. (1978) “Mind in Society: The Development
of Higher Psychological Processes”, Harvard University
Press, Cambridge, MA.

AUTHOR BIOGRAPHY

Steve McRobb is a Senior Lecturer in Information Systems
at De Montfort University, UK. He is
co-author of a successful textbook on
Object-Oriented Systems Analysis and
Design and an associate researcher
with the Centre for Computing and
Social Responsibility. His research
interests are in privacy online and the
effect of ICT on power and trust.
Steve was formerly Principal
Administrative Officer at the
Yorkshire Dales National Park. For
more information, see http://www.cse.dmu.ac.uk/~smcrobb.

313

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISCCp Eosic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2006 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

