
Journal of Information Systems Education, Vol. 14(4)

Teaching Tip

A Simpler Approach to Set Comparison Queries in SQL

Mohammad Dadashzadeh
Decision and Information Sciences

Oakland University
Rochester, MI 48309, USA

dadashza@oakland.edu

ABSTRACT

The current specification of the SQL standard fails to support users adequately in formulating complex queries involving set
comparison that tend to arise in on-line analytical processing (OLAP) situations. Such queries must be formulated using
correlated subqueries and the NOT EXISTS function which present an overwhelming challenge to both casual as well as
everyday SQL users. This paper presents a simpler approach for teaching users how to formulate in SQL complex set
comparison queries encountered in ad-hoc decision making scenarios.

Keywords: Database Management Systems, On-Line Analytical Processing, SQL, Set Comparison, Relational Algebra,
Division Operator, Generalized Division, Human Factors

1. INTRODUCTION

One of the most important promises of the relational data
model has been that it frees the decision maker, the
manager, from the necessity of resorting to an
intermediary, the programmer, in retrieving information
from the organization's database in response to
unanticipated needs. That promise is founded on the
availability of very high-level relational query languages
such as SQL. Unfortunately, the current specification of
the SQL standard fails to support users adequately in
formulating complex queries involving set comparison that
tend to arise in on-line analytical processing (OLAP)
situations.

Consider the following relational database about suppliers,
parts, and jobs. (The primary key of each relation is
underlined.)
SUPPLIER(S#, Supplier-Name, Supplier-City)
PART(P#, Part-Name, Part-Color)
JOB(J#, Job-Description, Job-City)
SHIPMENT(S#, J#, P#, QTY)
SUPPLY(S#, P#)

The relation SHIPMENT records information on what
parts are currently shipped by each supplier to each job,
while the relation SUPPLY indicates what parts can be
supplied, in the future, by each supplier.

Now, consider the following queries:
Q1: Which suppliers are shipping at least one red part?
Q2: Which suppliers are shipping every red part?

Q3: Which suppliers are shipping only red parts?
Q4: Which suppliers will be able to supply all the parts

that they are currently shipping?
Q5: Which suppliers are shipping exactly the same parts as

supplier S1?

Of the queries listed, Q2-Q5 are considered set
comparison queries since their result sets (i.e., the desired
supplier numbers) can only be determined by comparing
two sets (e.g., the set of part numbers shipped by each
supplier against the set of part numbers for red parts). In
contrast, the result set for Q1 can be obtained by merely
matching (i.e., joining) the part number from a
SHIPMENT row with that of a "red" PART row as shown
below:
Q1: Which suppliers are shipping at least one red part?
SELECT DISTINCT S#
FROM SHIPMENT, PART
WHERE (SHIPMENT.P# = PART.P#) AND

(Part-Color = 'RED');

Despite their simple appearances, queries involving set
comparison are very difficult to formulate in relational
query languages (Blanning 1993; Dadashzadeh 1992;
Dadashzadeh 2001; Matos 2002; Rao 1996). In SQL, such
queries must be specified using the complex and error-
prone EXISTS function. In relational algebra, the algebraic
operation of division used for this purpose is difficult for
most users to comprehend and work with, and is incapable
of expressing queries (such as Q4) that demand the
comparison of sets of values associated with matching

 345

mailto:dadashza@oakland.edu

Journal of Information Systems Education, Vol. 14(4)

groups of rows in two tables. To fix ideas, consider the
following formulation for Q2:

Q2: Which suppliers are shipping every red part?
SELECT DISTINCT S#
FROM SHIPMENT X
WHERE NOT EXISTS
 (SELECT*
 FROM PART
 WHERE Part-Color = 'RED'
 AND
 P# NOT IN
 (SELECT P#
 FROM SHIPMENT
 WHERE S# = X.S#));

The use of double negation (NOT EXISTS and NOT IN)
combined with a correlated subquery proves to be
especially troublesome in teaching students how to
formulate set comparison queries in SQL. Matos and
Grasser (2002) have presented an alternative solution that
is more intuitive and easier to deliver in the classroom.
Their solution addresses only set comparison queries such
as Q2 that can be expressed in relational algebra using the
division operator. In this paper, we extend their approach
to set comparison queries such as Q3-Q5 that must be
expressed in relational algebra using the Generalized
Division operator (Dadashzadeh 1989).

2. A GENERALIZED APPROACH TO SET
COMPARISON QUERIES IN SQL

A general set comparison query can be modeled in the
following intermediate SQL-like representation:
SELECT desired-columns
FROM desired-table(s)
WHERE (desired-non-set-comparisons)
GROUP BY desired-columns
HAVING SET(desired source set of values)
 set-comparison-operator
 (target set of values subquery);
where, (target set of values subquery) may or may not be
correlated.

For example, consider the following intermediate
representation:
SELECT S#, Supplier-Name
FROM Supplier X, SHIPMENT
WHERE (Supplier-City = 'LONDON') AND

(X.S# = SHIPMENT.S#)
GROUP BY S#, Supplier-Name
HAVING SET(P#)
 CONTAINS
 (SELECT P#
 FROM PART
 WHERE Part-Color =

'RED')
This query is intended to list S# and Supplier-Name for
those suppliers located in London whose set of part
shipments contains every red part. Here, the following

correspondence with the general template can be
established:
desired-columns:

S#, Supplier-Name
Desired-table(s):
 Supplier X, SHIPMENT
(desired-non-set-comparisons):
 (Supplier-City = 'LONDON')
(desired source set of values):
 SET(P#)
Set-comparison-operator:
 CONTAINS
(target set of values subquery) non-correlated subquery:
 (SELECT P#

FROM PART
WHERE Part-Color = 'RED')

Converting the above intermediate SQL-like
representation to standard SQL is guided by the following
theorem:

Theorem 1. Set A CONTAINS set B if | A ∩ B | = | B |.

In other words, set A CONTAINS set B if after restricting
set A to elements that are also in set B, the number of
elements (i.e., cardinality) in the restricted set A is
identical to the number of elements in set B. Applying this
observation to the above intermediate representation, we
obtain the following standard SQL formulation for the
query:
SELECT S#, Supplier-Name
FROM Supplier X, SHIPMENT
WHERE (Supplier-City = 'LONDON') AND

(X.S# = SHIPMENT.S#) AND
 (P# IN

 (SELECTP#
 FROM PART
 WHERE Part-Color =

'RED'))
GROUP BY S#, Supplier-Name
HAVING COUNT(DISTINCT P#)
 =
 (SELECTCOUNT(DISTINCT P#)
 FROM PART
 WHERE Part-Color = 'RED');

The following theorems help establish a similar approach
for translating set comparison queries in the intermediate
SQL-like representation to standard SQL when the set
comparison operator is IN and is EQUAL TO:

Theorem 2. Set A IS IN set B if | A | = | B ∩ A |.

Theorem 3. Set A IS EQUAL TO set B if | A ∩ B | = | B | as
well as | A | = | B ∩ A |.

For example, using the above generalized approach, Q3 is
first represented in the intermediate representation by:

 346

Journal of Information Systems Education, Vol. 14(4)

Q3 Intermediate Representation: Which suppliers are
shipping only red parts?

SELECT DISTINCT S#
FROM SHIPMENT
GROUP BY S#
HAVING SET(P#)
 IS IN
 (SELECT P#
 FROM PART
 WHERE Part-Color =

'RED')

And, using the transformation implied by Theorem 2, it
can then be converted to standard SQL as:

Q3 Standard SQL: Which suppliers are shipping only red
parts?

SELECT DISTINCT S#
FROM SHIPMENT X
GROUP BY S#
HAVING COUNT(DISTINCT P#)
 =
 (SELECTCOUNT(DISTINCT P#)
 FROM PART
 WHERE (Part-Color = 'RED') AND
 (P# IN

 (SELECTP#
 FROM SHIPMENT
 WHERE S# = X.S#));

3. CONCLUDING REMARKS

SQL does not provide direct support for comparing two
sets. In fact, standard SQL does not provide operators to
perform set intersection or set difference operations where
it is required to compare two union-compatible tables for
rows that are common to both or that are in one and not in
the other. In order to formulate set intersection or set
difference operations, the SQL user is expected to
construct a query using two of the more difficult concepts
in SQL: correlated subquery and the EXISTS function.

The complexity in formulating set difference and set
intersection operations in SQL becomes much more
pronounced when dealing with queries such as Q4 which
involve set comparison for matching groups of rows in
tables, rather than entire tables, and especially when
considering set comparison operations such as equality or
containment. As the SQL standard continues to become
more widely used, and as end-users begin to rely on SQL
for ad hoc database access, the difficulty in formulating set
comparison queries in SQL is apt to become a common
end-user complaint.

The undue complexity in formulating queries involving set
comparison was avoided, to a large extent, in SEQUEL2
(Chamberlin 1976), the forerunner of SQL. In SEQUEL2,
the EXISTS function is non-existent. Instead, SEQUEL2

provides explicit support for set comparison in two ways.
First, SEQUEL2 provides direct support for set
intersection and set difference operations in terms of
INTERSECT and MINUS operations. Second, the built-in
function SET in SEQUEL2 can be used in conjunction
with the GROUP BY and HAVING operators to compare
a set of values associated with a group of rows with the set
of values derived from another table. The set comparison
operators supported consist of: IS EQUAL TO; IS NOT
EQUAL TO; CONTAINS; DOES NOT CONTAIN; IS IN;
and IS NOT IN. In an unfortunate affront to human factor
engineering, the current SQL standard expects the user to
re-invent these set comparison operators using the complex
and error-prone EXISTS function.

In this paper, we have presented a simpler approach to
formulating set comparison queries in SQL that avoids the
EXIST function. The approach is based on emulating
SEQUEL2's built-in SET function and set comparison
operators using the much more limited COUNT function.
Matos and Grasser (2002) report positive results from
human factor studies on such an approach that re-affirm
earlier studies (Dadashzadeh 1993) indicating student
preference for SEQUEL2's approach to set comparison
queries. Nevertheless, the COUNT function is hardly a
match for set comparison operators such as CONTAINS
especially when one considers that a popular DBMS such
as Microsoft Access dos not even support COUNT
DISTINCT. As educators, our most appropriate response is
to train users on when to use EXISTS and when not to use
EXISTS. As IT professionals, however, our most
appropriate recourse should be to press for re-examining
the SQL standard for the possibility of introducing
SEQUEL2's more user-friendly approach to set
comparisons queries into SQL.

4. REFERENCES

Blanning, R. W. [1993]. "Relational Division in

Information Management," Decision Support
Systems, 9(4), pp. 313-324.

Chamberlin, D.D., et al. [1976]. "SEQUEL2: A Unified
Approach to Data Definition, Manipulation, and
Control," IBM Journal of Research & Development,
20(6), pp. 560-575.

Dadashzadeh, Mohammad [1989]. "An Improved Division
Operator for Relational Algebra," Information
Systems, 14(5), pp. 431-437.

Dadashzadeh, Mohammad [1992], "A Proposed Change to
the SQL Standard." In Handbook of Systems
Management: Development and Support, Edited by
Paul C. Tinnirello, pp. 465-472. Auerbach
Publications, Boston, MA.

Dadashzadeh, Mohammad [1993], "A Human Factor Study
of Set Comparison Constructs in SQL.," TIMS/ORSA
Joint National Meeting, May 16-19, 1993.

Dadashzadeh, Mohammad [2001], "Set Comparison
Queries in SQL." In Developing Quality Complex
Database Systems: Practices, Techniques, and

 347

Journal of Information Systems Education, Vol. 14(4)

Technologies, Edited by Shirley Becker, pp. 303-316.
Idea Group Publishing, Harrisburg, PA.

Matos, Victor M. and Rebecca Grasser [2002], "A Simpler
(and Better) SQL Approach to Relational Division,"
Journal of Information Systems Education, 13(2), pp.
85-87.

Rao, S. G., A. Badia, and D. Van Gucht [1996], "Providing
Better Support for a Class of Decision Support
Queries." In Proceedings of the 1996 SIGMOD
International Conference on Management of Data, pp.
217-227. Association for Computing Machinery, New
York, NY.

 AUTHOR BIOGRAPHY

Mohammad Dadashzadeh holds a bachelor in electrical

engineering, a master in
computer science, both from
MIT, an MBA, and a Ph.D. in
computer and information
science from University of
Massachusetts. He has been
affiliated with University of
Detroit (1984-1989) and
Wichita State University

(1989-2003) where he served as the W. Frank Barton
Endowed Chair in MIS. He is now serving as Professor of
MIS and Director of the Applied Technology in Business
(ATiB) Program at Oakland University. Dadashzadeh has
authored 4 books and more than 40 articles on information
systems and has served as the editor-in-chief of Journal of
Database Management.

 348

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2003 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

