
Journal of Information Systems Education, Vol. 14(3)

The Dag-Brücken ASRS Case Study

Tony Jewels
Centre for Information Technology Innovation

Queensland University of Technology
t.jewels@qut.edu.au

ABSTRACT

In 1996 an agreement was made between a well-known beverage manufacturer, Super-Cola Taiwan, (SCT) and a small
Australian electrical engineering company, Dag-Brücken ASRS Pty Ltd, (DB), to provide an automated storage and retrieval
system (ASRS) facility as part of SCT’s production facilities in Asia. Recognising the potential of their innovative and
technically advanced design, DB was awarded a State Premiers Export Award and was a finalist in that year’s National
Export Awards. The case tracks the development and subsequent implementation of the SCT ASRS project, setting out to
highlight how the lack of appropriate IT development processes contributed to the ultimate failure of the project and the
subsequent winding up of DB only one year after being honoured with these prestigious awards. The case provides
compelling evidence of the types of project management incompetency that, from the literature, appears to contribute to the
high failure rate in IT projects. For confidentiality reasons, the names of the principal parties are changed, but the case
covers actual events documented by one of the project team members as part of his postgraduate studies, providing an
example of the special mode of evidence collection that Yin (1994) calls ‘participant-observation’.

Keywords: IT Project Management, Software Development, Organisational Design, ASRS, Materials Handling

1. INTRODUCTION

1.1 Scope of Case Study
For a comprehensive assessment of the DB failure it would
be necessary to discuss all the business functionality of DB
including marketing, administration (finance) and human
resource management. It is intended to discuss these issues
only where it can be seen to impact on information systems
development. This case study will concentrate specifically
on the IT component and is therefore not intended to
provide definitive answers as to the reasons for the
ultimate demise of DB. It concentrates on examining how
the DB IT development processes, and the environment in
which the processes were conducted, might have
contributed to the ultimate failure of the project and to the
eventual failure of the organization.

1.2 Logistics Overview
Australian warehouse storage and retrieval of product is
still predominantly a manual or semi-automatic process
employing a variety of materials handling equipment such
as conveyors, elevators and fork lift trucks.

The relatively low cost of land in Australia, compared to
high density population centres in Asia, generally limits
that country’s use of high rise storage facilities to special
situations that might include hazardous storage conditions
or where desired throughout cannot be maintained with a
manual system.
DB believed that a market could be developed in Asia
providing high rise automated warehouse solutions at more
competitive prices than that demanded by the major

suppliers, using a variation to the normally used ASRS
configuration that involved automated ASRS robots
(cranes) that were able to drive around corners.

Globally, most high rise warehouses use ASRS cranes that
are only capable of travelling in a straight line (referred to
as straight-aisle cranes). The limitation of a straight aisle
crane is that one crane is required to service each storage
aisle in a warehouse. As cranes are a major part of the cost
of this type of warehouse solution, by reducing the
numbers of cranes there are significant savings. It is
theoretically possible for a single aisle-changing crane to
service a whole multi-aisled warehouse.

1.3 DB ASRS Background
DB had a history of providing electrical control systems
using programmable logic controllers (PLCs) for a number
of process control applications. The entrepreneurial DB
managing director (MD) was an electrical engineer who
had developed knowledge of PLC software and believed
that the development of PC control software to be used
with this new type of ASRS held few technical challenges.

By 1996, the MD had secured a number of orders for their
innovative and competitively priced aisle changing ASRS
system. In addition to SCT in Taiwan the contracts
included a milk supplier in Thailand, and a beverage
manufacturer and two archival warehouse facilities in
Singapore. Contracts had specified that the completion
dates were to be within 12 months.

 247

mailto:t.jewels@qut.edu.au
mailto:t.jewels@qut.edu.au

Journal of Information Systems Education, Vol. 14(3)

1.4 DB Project Scope
In order to successfully market the innovative DB aisle
changing cranes it was believed necessary to offer a
complete warehouse management solution to clients. The
various components included all materials handling
equipment, storage racking, crane control software and a
PC based control system.

The SCT ASRS was designed to automatically move
pallets of beverages from the end of multiple production
lines for storage into a high rise warehouse; and when
required for sale, to automatically move them to locations
where they could be accessed for manual distribution. In
what was a profound and accurate interpretation of the
system it was philosophically described by one individual
as “Emptying full holes that need to be empty and filling
empty holes that need to be full”, (Kedge 1996)

1.5 DB Project Rationale
For SCT a high-rise ASRS solution was selected because
in order to minimise stock outs the amount of inventory
required could not be stored in a traditional warehouse
configuration with the amount of surface area available for
that purpose. Although expensive off-site storage was
being used as a temporary measure this had resulted in an
unacceptably high level of ‘out-of-date’ stock by not
adequately allowing a first in first out (FIFO) stock usage
policy. With no personnel actually working inside the
storage facility itself, the storage and retrieval system was
designed to identify all pallets being stored, to optimise
their storage locations and to retrieve the pallets in a FIFO
pattern.

1.6 Equipment Used
The ASRS used two, twin fork, double sided, double reach
cranes in a 5 aisle, 16 row warehouse configuration. The
warehouse layout consisted of long aisles of up to 40
horizontal pallet locations and short aisles of up to 12
horizontal positions all of up to 10 pallets high (Figure 1).

With their multiple reach configuration each crane was
capable in any long aisle, of reaching up to 8 pallet
locations at any one static position i.e. each set of forks to
the right, single deep and double deep, and to the left,
single deep and double deep, (Figure 2). The vertical range
of 10 pallets high effectively allowed any crane to access
80 pallet positions from any static horizontal location. The
principal advantage of the DB system was of course that
the cranes could travel around corners and could access
any pallet position of any aisle.

1.7 IT Components
Because the system was automatic, all ‘jobs’ which, in
their simplest form were merely movements from a
specific pallet pick up point to a specific pallet delivery
point, were required to be scheduled without manual
intervention of any type. To operate fully ‘automatically’
it was necessary to embed a great deal of functionality
within a number of the control software modules. At an
early stage in the software design process the following

functional modules were identified as being required for
the system to run successfully:

 Figure 1: ASRS Racking Layout

Figure 2: Multiple reach positions of each ASRS crane

321 4

 6 7 85

• A graphical user interface (GUI) displaying the status

of the cranes and storage status.
• A database to store information of storage and

transactions.
• A “product mover” (PM) application to determine

optimum storage and movements.
• A “traffic controller” (TC) application used to select

routes, job priorities and crane separation.
• A communication package transferring data between

PLC and PC.
• PLC programming of each crane.
Requirements for each functional module are covered in
more detail in the IT specifications section.

1.8 Operational Requirements
The SCT ASRS was at the end of multiple production
lines, that manufactured an assortment of beverages in
P.E.T. bottles, tetrapak containers and aluminium cans and
in-feed into the ASRS warehouse from the production lines
took place on three levels.

Level 1 used a palletiser to feed an automatic guided
vehicle (AGV), (referred to as the shuttle car), filling 9
double gravity roller locations, used exclusively for P.E.T.
bottles. Level 2 used 2 third party supplied robots to
palletise stock that were then fed by another AGV into 7
double conveyor infeed locations used exclusively for
tetrapak containers. Level 3 used a single robot palletising
for a single, double deep conveyor in-feed location used
exclusively for canned products. Empty pallets were
required at each palletiser for product to be packed onto.
Outfeed production was dependent on external demands
for stock and requirements for these movements more
difficult to estimate. An hourly rate figure equivalent to the

 248

Journal of Information Systems Education, Vol. 14(3)

number of pallets entering the ASRS was considered
appropriate, i.e 50 in and 50 out. Outfeed locations were
via 75 triple deep gravity roller locations situated in one of
the long aisles. When any of the outfeed locations was
emptied, sensors fitted to each crane were able to detect it
and a job created to fill this empty hole that needed to be
filled. The crane was required to perform an aisle scan
every 30 minutes.

Normal production line speeds demanded that to avoid
hold ups the ASRS had to be capable of consistently
performing all the tasks detailed in Table 1.

Table 1: Performance Requirements for pallet
movements

Start

End

Rack

Job Type
Pallets
per
Hour

Pallet cycle
time
(minutes)

Clear Level 1 prodn. 30 2 min
Clear Level 2 prodn. 8 7.5 min
Clear Level 3 prodn 12 5 min
To Outfeed locations 50 1.2 min
Scanning Outfeed aisle 2 30 min
Empty pallet stacks (10) 5 12 min
TOTAL PALLET
MOVEMENTS 107 0.56 min

2. THE PEOPLE

The MD and principal owner of DB was the
entrepreneurial force behind the organisation and
responsible for the basic design of the mechanical and
electrical components as well as the software design
overview and the overall project concept. He was
described by one qualified graduate electrical engineer
working on the project as a ‘truly brilliant electrical
engineering designer’, although he was never able to
confirm whether the MD had ever actually graduated from
his university studies. The MD had excellent PLC
programming skills, and had ‘dabbled’ with some Visual
Basic code for which he had produced his own simple GUI
presentation unlinked to a database which he had used as a
sales aid.

The General Manager (GM) with an extensive background
in civil engineering project management had no IT project
management experience. A further two project managers
were employed for eventual on-site commissioning. One
was a qualified mechanical engineer with extensive
experience with mobile cranes who acted as the
mechanical engineering manager in the production stage.
The other had no formal management qualifications but
was experienced in contract management and had an
understanding of small projects. Somewhat surprisingly,
nobody on the management team had any experience of the
type of IT development that was being attempted.

There was at the commencement of the development a
tactical decision taken to segregate the required software
components into an IT based area, subsequently referred to

as the ‘PC’ team and an electrical engineering based area
that developed the ‘PLC’ software. The PC team was
responsible for developing software components which
included the GUI, database, communications package,
traffic controller and product mover, and the PLC group
provided code to operate the functions of the material
handling equipment through electrical motors and sensors.
To reinforce the distinctiveness of the two groups they
were physically located in separate offices 40 metres apart,
within the industrial complex that was being leased by DB.

Prior to appointing anyone in the PC team, a management
decision had been taken to use a Windows NT based
operating system with a Visual FoxPro development
package for the GUI and database and C++ for integration
with the PLC code via the ‘traffic control’ module.

The PC team was initially staffed with only two systems
analyst/programmers (SA/P), who were appointed at the
same time. Only one SA/P had any commercial
development experience having successfully operated his
privately owned IT inventory management business for 10
years, although his development experience had been in a
UNIX environment with character based Foxbase+
application. Although his extensive background in
inventory and warehouse management systems and formal
qualifications in business management provided a business
perspective for the project he had no experience of
integrating technically advanced hardware communication
features into software applications. His primary role was to
design a GUI, PM and database that could be used with the
DB ASRS system.

Figure 3: Crane Performance Contract Requirements

The other SA/P had recently completed an undergraduate
software engineering degree and had experience in
hardware communication systems with a
telecommunications provider. His primary role was to
design and write a communication system between the
PLC and the PC and to design and write the TC module.

The PLC software design was to be carried out by the MD
himself, two recently graduated electrical engineers and a
more senior PLC electrical engineering programmer. These
then, were the people that were initially involved in the

 249

Journal of Information Systems Education, Vol. 14(3)

early stages of the actual development (as distinct from the
pre-planning) stage.

3. THE CONTRACT

The contracts established between DB and its four ASRS
clients prior to the commencement of development all
contained provisions for staged payments throughout the
project life cycle. Payments were to be made at
confirmation of completion of milestones, with the actual
payment amounts roughly equivalent to DB’s proportional
outlay for that stage. One of the stage payments for SCT
was to be made at completion of the design and
development of the control software that was to be used
with the system.

Other than the occasional reference to a ‘PC controlled
GUI’ and some arbitrary PC performance specifications
there was no contractual obligation to design and develop
the software in any particular way. The open nature of the
PC software contract specifications reflected the fact that
neither contract party clearly understood what a critical
role the software component would ultimately play. Clients
had entered into these contracts without involving their
own IT/IS departments in any negotiation and it was not
until after all contracts were signed that the SA/Ps first met
with clients to produce the initial software specification.
These meetings were also the first instances of client IT/IS
personnel having direct contact with DB, although they
had already been briefed by their own management.

The contracts contained required performance levels for
the completed systems in terms of crane movements per
hour and how these performance levels were to be
measured, but the formula used was one used for
measuring the cycle times of a straight aisle crane. Aisle
changing performance, constituting the principal difference
of the DB system was not included in the contract
requirements. Though the system involved the use of two
cranes designed to carry two pallets at once, contract
specifications only included performance figures for the
time to deliver a single pallet on a single crane to locations
in the same aisle (Figure 3).

DB were offering a system that had yet to be completely
designed, other than in broad conceptual terms, yet clients
had entered into contracts that had guaranteed almost 80%
of the total price before DB were required to deliver any
working system. Stage payments were all at verifiable
stages of the design/production process yet actual
performance requirements were restricted to performances
of the crane that could only be measured in the final stages
of the project. Performance requirements for the ‘working
system’ were based on single crane, single pallet, single
aisle measurement formulae and did not take into account
SCTs production line demands detailed in table 1. At an
operational level there was evidence of ‘implied’
performance levels, with SCT erecting a prominent sign
suggesting performance figures of 384 pallets/hour. The
contract certainly did not offer this fictitious figure, yet this

figure could have been calculated by extrapolating dual
crane/fork figures from a single fork performance in a test
environment. Yet, as poorly worded and constructed as it
was, the contract still remained the principal source of
reference for system design and performance matters.

Strict adherence to the letter of the contract by DB
provided little real opportunities for clients to amend their
contract terms and conditions, clearly biased towards the
vendor, without accepting large price variations. Compared
to other types of ASRS the original contract price was very
competitive, yet any variation, (however small), from the
terms of the original contract was either rejected outright,
or was priced at an exorbitant rate by DB.

An example of a subsequent contract dispute related to the
GUI produced by DB. Implicitly, SCT had assumed
because the plant was in Taiwan, and the warehouse staff
spoke and read Mandarin, that the GUI labels would be
supplied in Mandarin. It was not until the system was
being tested on-site that SCT realised that the GUI had
been produced only in English, with the contract simply
not covering this issue. Although the non-Mandarin
speaking system designer had in fact developed a method
of producing multiple language versions of the GUI this
multiple language version was ultimately not adopted
because no agreement could be reached on who was
responsible for the additional costs involved in rectifying
this contract oversight.

The absence of any operational performance requirements
throughout the project life cycle resulted in not only the
client being unable to evaluate progress but DB themselves
having no real performance goals to work towards.
Although a mature, experienced company may have been
more successful in using a contract with this level of
vagueness, by supplementing the contract terms with their
own internal quality control procedures, DB had neither
formal, nor informal quality control procedures in place.
DB’s processes were typical of the Software Engineering
Institutes (SEI), capability maturity model for software
(CMM), ‘initial’ or ‘ad-hoc’ stage of development, (Paulk,
Curtis, Chrissis and Weber 1993). There may have been a
number of reasons why DB did not have a formal QA
policy, but high on that list might have been that their
clients did not demand it. As Oskarsson and Glass (1996)
suggest, “ISO 9000 is a tool for customers buying software
more than for developers building it”, (pxxi).

4. THE IS/IT COMPONENTS

Although DB was, as principal contractor, responsible for
delivery of a complete working system, which included
storage racking (supplied by a third party contractor) and
the mechanical and electrical components of the system,
this case study will confine itself to the various IS/IT
components contained within the system.
4.1 IT Environment
The system operated through a Microsoft NT Server
operating system using an IBM PC as the main server.
Fitted to the cranes were PLCs that were controlled by

 250

Journal of Information Systems Education, Vol. 14(3)

sensors and encoders, providing signals to electrical
motors (eg hoist and horizontal travel motors). The PLCs
also had two-way communication with the IBM Server,
accepting commands from it (eg new job details), and
providing confirmatory evidence of what it was actually
doing (eg position of the crane or job completion).
Communication between the static PC (through its COM1
and COM2 ports) and the mobile PLC was conducted
using power modems that worked through the main power
supply feeds to the cranes.

4.2 Software Modules:
A graphical user interface (GUI) - A screen generated
representation of the physical layout of the warehouse in
both plan and elevation views showed the real-time
positions of the cranes and their statuses and the storage
status of each pallet location. Created in an application
development system (VB4), the GUI also provided two
way communications with the cranes, display and resetting
of error states and an emergency stop feature. Within the
GUI there were also stock maintenance features,
transaction reporting features and visual displays of the
locations of product types. Its real-time storage location
display was achieved by linking with an on-line database.

A product mover module (PM) - Embedded within the
GUI were algorithms that created jobs for the cranes. In
what was referred to as the ‘job hunter’ a continuous loop
of database queries looked for full pallet positions that
needed to be emptied, and empty pallet positions that
needed to be filled. A job was initiated by the database
query locating either a pick up point or a delivery point and
the PM would, based on the attributes of either point,
determine the other point to create a job. Various priorities
were included within the algorithms that included:

• First in first out recall (FIFO)
• Last in first out recall (LIFO)
• Part Pallet priority
• Returned stock/mixed lot number priority
• Production lot number priority
• Fast moving stock priority and/or special storage
• Optimum storage selections eg front/back matching

and height preferences.
• Quarantine status of stock

Communication code, between the PC and PLCs -
The communications module passed information between
the traffic controller and the PLC on each crane but did not
process any of the information. The TC and the
communication module used a common DLL to pass
information. The communication module would assemble
the required messages for the PLC, which would be
transmitted to the crane using a power line modem,
connected to a single phase of the three-phase power to the
crane as a dedicated communications line.
A traffic control module - The traffic control (TC)
module was written as a dynamic link libraries (DLL)
function in C++, and activated through the GUI code. Its
principal purpose was to optimize the jobs that had been

scheduled from the ‘job-hunter’, while selecting the most
appropriate forks (of either crane) to transport the pallet
and to select the most appropriate route for the crane to
take. The choices that it needed to make in real time were:

• A priority sequence for jobs
• Which crane should be used for each job
• Which set of forks should be used for each job
• The most appropriate route to take from pallet pick up

point to delivery point.

Crane use needed to be optimized by selecting jobs that
would use both forks whenever possible, minimising
situations where cranes were travelling with unallocated
forks. An important additional function of the TC module
was to retain separation of the cranes to avoid collisions.
This function required the input of minimum safe distances
between cranes varying according to which aisle the cranes
were operating in.
Materials handling control system (PLC code) -The
purpose of the PLC code was to accept a series of
instructions to move pallets, and to report the crane’s
current status and alarms. The crane would accept a list of
up to 10 movement instructions, a single instruction could
be to pick up a pallet at a given coordinate, or to deliver a
pallet at a given coordinate, or to move to a specified
position. It was up to the crane to verify the coordinates,
and to know how to move to them. If the destination was
more than one aisle change away, the traffic controller had
to include instructions for the intermediate path (so the
path was not ambiguous).

The PLC code was written in a version of BASIC, with
enhancements for running multiple threads. Each motor on
the crane ran in a dedicated thread - the long travel motors,
the hoist and the forks. Other functions on the crane also
ran in their own thread, including the module for decoding
the messages from the traffic controller, and encoder
accumulation.

An On-line Database - A Microsoft Access relational
database was used to store real-time storage location
details and a transaction history of movements.

5. THE SOFTWARE DEVELOPMENT PROCESS

5.1 Designing in House
Although Thomsett (1989, p.24) suggests that “Project
Planning is a team-driven process; all team members
should be active in planning their project”, certain strategic
directions and tactical decisions had already been taken by
DB management prior to employing any specialist IT
personnel. The choice of a Windows NT environment on
PC servers and workstations together with Visual C++ and
Visual FoxPro application development systems had been
already included in each client contract. The ability of IT
developers to redefine the application environment and its
component parts was therefore somewhat restricted.

 251

Journal of Information Systems Education, Vol. 14(3)

5.2 GUI/Database
Client requirements for the GUI/database had been
provided to both SA/Ps on a visit to Taiwan shortly after
they had joined DB. These requirements together with DB
management general overview briefings, was the full
extent of the formal specifications for the design.

After approximately six weeks of initial design work using
the Visual FoxPro application system, it was obvious to the
SA/P working exclusively on it, that there were some
serious technical limitations in using this combination of
FoxPro combined database and front end with Visual C++.
Although his background had been with FoxBase+/FoxPro
and he had no professional experience with Visual Basic,
the SA/P still advised management that they should
reconsider the use of FoxPro in favour of VB with a
separate database of either Microsoft Access or SQL. It
was agreed to change the application development tool to
VB and after further analysis, management decided to
adopt MS Access as the database back end in preference to
SQL.

Fortunately the original design of the GUI/database
provided a high level of ‘portability’, described by Meyer
(1997, p11) as, “… the ease of transferring software
products to various hardware and software environments”
and the change of application tool was carried out with
relative ease. Although a formal inspection process did not
exist, the SA/P demonstrated each milestone he reached to
anyone in the organisation he thought might be interested.
It was however becoming increasingly obvious to the SA/P
that, without the communication module, his own work
was essentially only of cosmetic value.

5.3 Communication Module
It was clearly evident after three months that development
of the communication module and initial design of the
traffic control module was proving to be more difficult
than originally anticipated. The SA/P developing these
modules had failed to deliver even an initial prototype for
the communication module. As nobody at DB, (including
his fellow SA/P), understood what he was doing the SA/P
was unable to get internal help and unlike his fellow SA/P
had not developed his own informal network of experts
that he could call on for assistance. The SA/P being
extremely introverted did not communicate readily with his
colleagues, keeping to himself while working feverishly
producing copious lines of code, the value of which only
he understood.

Because there was no formal inspection process in place
and no way of interpreting what had been achieved, this
stand alone type development relied on an ‘all or nothing’
tracking approach, commonly referred to as the ‘one
hundred-zero’ approach. Either a finished product emerges
at the end or it doesn’t. When ultimately a development
ends up with 0% rather than 100% it is convenient to
allocate blame on developers, yet a fundamental of modern
quality assurance systems recognises managements
ultimate responsibility for quality, (PMI 2000, p.97).

Unable to assist his fellow SA/P technically, the GUI SA/P
was also unable to convince management that the total
absence of any deliverable should be urgently addressed.
His warnings were misconstrued by management as being
simply a ‘clash of personalities’ between an extraverted
developer and his introverted colleague, so management
decided to bring in a third to oversee interaction between
the SA/Ps.

5.4 The External Consultant
Management decided to engage the services of a part time
external consultant to oversee the work being carried out
by the two developers. When it was obvious to everyone
that the development was not proceeding normally, the
reality of software engineering as being more than just
programming, (Ho-Stuart, Moraji and Thomas, 2000), was
still not clear to DB management. This misunderstanding
led DB management to select a university lecturer in
electrical engineering with little commercial IT
development experience, rather than an IT professional, to
oversee the project.

His first task was to perform a walk-through of the two
developers' code and his first report to management
indicated that there was indeed a serious problem. The
problem that he identified was however not in the
communication module at all, but in the GUI/database
module. Although also not understanding what the
communication module code was attempting to do, his
remarks on how well the communication module code
looked e.g. indented correctly, well documented with
proper naming conventions, contrasted with his scathing
attack to DB management on how the coding appeared in
the GUI/database module.

His advice was that the communication module was
proceeding normally but that the GUI/database needed to
be totally rewritten using proper naming conventions, code
indenting and more documentation. He also became
directly involved in redesigning the GUI, requiring
features that had neither been discussed nor requested by
clients, but which he felt would enhance the GUI’s ‘look
and feel’.

The GUI SA/P complied with the consultant’s instructions,
as the explicitly stated alternative was his dismissal.
However by focussing on what might be construed as
‘cosmetic’ items or internal quality factors, Meyer (1997),
it deflected interest away from the practical consideration
of non-delivery of any part of a communication module.

5.5 The Test Rig/PLC
In the early stages of the project DB had constructed at
considerable cost a scaled down ASRS test site complete
with racking and a single crane. The rationale for
constructing this test facility was for both testing
components and to show clients a prototype of the
equipment that they had contracted for, because as yet, no
such operational system existed.

 252

Journal of Information Systems Education, Vol. 14(3)

It was used predominantly to test mechanical, electrical
and PLC software features associated with the cranes. DB
management appeared more at ease with the type of testing
where something physical could be seen to be happening,
e.g. cranes moved, forks extended and retracted, cradles
lifted and importantly the crane drove around corners,
rather other types of testing more commonly associated
with software developments.

Because there was ever only one crane on the test rig the
functionality of the TC module was limited to selections of
route rather than its ability to cope with multiple cranes,
maintaining separation or selecting the most appropriate
crane for a particular job. Therefore most of the traffic
control module features could never be physically tested
on the test rig. Although this was a limitation of the test
facility it did offer the opportunity to produce prototypes of
all the other software modules.

A GUI was constructed representing the test rig racking
layout, linking each storage location to a database in the
same manner in which the operational version at SCT was
designed to operate. Yet, the PLC testing was however
almost exclusively conducted directly from the PLC code
itself and not from the GUI via the communication
module. Each module was essentially being produced
separately by different groups of developers representing a
development methodology that could best be described as
a series of stand alone waterfall approaches, (Sommerville
1995).

This type of ‘bottom-up’ approach requires each of the
components to be at an advanced level of completion
before any serious attempt at integrating individual
components can take place. If any of the development
teams are unable to complete their individual components,
use of such a monolithic approach, not only prevents
integration testing from occurring, but those teams that
have completed their own individual tasks are held up from
further testing their own work. When for example the
GUI/database (as a stand alone component) was in an
advanced state of completion, the communication module
had not progressed beyond an initial development stage. It
was impossible therefore to pass messages from the GUI
interface on the PC to the cranes PLC. The effectiveness
of the test rig was therefore severely limited by the absence
of one small but nevertheless critical component.

5.6 Integration
The initial decision to segregate the PC and PLC teams
was an indication that DB management believed the
functionality of each role was totally different, whereas in
reality both groups were developing software components.
The separation was overtly reinforced by segregating the
teams in different offices and covertly reinforced by
naming the PLC team as the ‘A-Team’. Although this
naming was done to motivate the team that the MD himself
had decided to lead, it failed to acknowledge the

demotivating effect on members who weren’t part of his
‘A-Team’.

It was eventually realised that all these individual parts
were not automatically integrable and that in fact some
major functionality was missing altogether. The absence of
any integrated development plan, which might have
resulted in an understanding of the need for a more
appropriate software development methodology, such as
evolutionary prototyping, limited the development options
to more monolithic models such as the waterfall approach.
Reliance on the completion of substantial portions of
individual modules before any integration could begin,
presented both significant technical and strategic risks,
(Australian Computer Society Inc 2000). However, as no
formal risk assessment was ever undertaken these risks
were never explicitly acknowledged nor addressed by
management.

Even when it was clear to DB management that the
development was not proceeding normally, it still believed
belief that software development was little more than
programming, and that by increasing the amount of
programming effort, solutions would eventuate. Its obvious
next step was simply to employ additional programmers,
which they did, in the form of more inexperienced
graduate programmers. It is unclear, when subsequently
faced with further evidence that the strategy of “throwing
more programmers at the problem” was still not achieving
results, why alternative development strategies were still
not considered.

The ASRS building in Taiwan had been after some months
delay, (not caused by DB), completed and the cranes
themselves had been assembled within the storage racking.
At this stage the client expected the software components
to be added to the system so that operational testing of the
cranes could begin. Although there was at yet no effective
communication module, and only a rudimentary traffic
control module it was believed that on-site commissioning
must commence to comply with the terms of the contract.

5.7 Project management
The project manager chosen was the contract management
specialist who had already been on-site for some months,
supervising the construction of the building and erection of
the cranes. In correspondence with the developers in
Australia it was evident that he understood little of the
nature and importance of the software components and he
was unaware just how little of the software had actually
been completed. His project plan indicated that using two
PLC developers and one SA/P, commissioning
(commencing in August 1997) would be completed in
three weeks. However, after five weeks of frantic
development only a simple screen display of the position
of one of the cranes was achieved, indicating that a basic
communication link had finally been established. At this
point there was no operational TC module, which meant
that multiple cranes could not safely operate together. On
site development work in Taiwan was in fact to continue

 253

Journal of Information Systems Education, Vol. 14(3)

with a team of up to six people up to the official plant
opening on April 1st 1998 and beyond.

Although it appeared superficially that there was a
separation of responsibility between managerial and
technical control in the project, (Thomsett 1989), the
reality was that nobody was adequately performing either
function in the development process.
• Managerial, as the organisation had undergone a rapid

expansion process with little infrastructure to support
the expansion. The absence of a detailed risk assessment
together with unrealistic scheduling, and a failure to
prioritise indicated a deficiency in management control
of the development process.

• Technically, as the projects were prototypes that
demanded a high degree of research and development
style work. The absence of functional specifications,
data models, design charts, module specifications and
test plans indicated a deficiency in the technical control
of the development process.

5.8 Testing
On-site commissioning was supposed to represent only the
installation, testing, tuning and user training phases
appropriate to the software development yet the
commissioning phase became merely an extension of the
research and development that was still being undertaken
in Australia.

While one SA/P remained in Australia working on the
communication and TC modules the other SA/P was on-
site, installing and testing those parts of the GUI that did
not require any communication link and populating the
database with the warehouses specific storage data. The
PLC engineers could not properly test their code as the
crane’s electrical hardware had yet to be completed.

No formal test plans were designed throughout the
development project although individual developers, when
time permitted, did attempt to test their own work. There
was little static testing by any third party source and hence
reviews, walk-throughs and inspections were either self
generated by the developers themselves or not carried out.
The academic appointed to oversee the software
development part of the project undertook some initial
static testing but appeared to make all seven of the
common problems associated with software reviews that
Weigers (1998) refers to:

1. Participants don’t understand the review process.
2. Reviewers critique the producer, not the product.
3. Reviews are not planned.
4. Review meetings drift into problem solving.
5. Reviewers aren’t prepared.
6. The wrong people participate.
7. Reviewers focus on style, not substance.

The level of test plan employed by DB could be best
indicated by relating the example of the original on-site
project manager being requested by the MD one evening to

construct a test plan for the engineers to carry out.
Awaiting the engineers the following morning was their
test plan, a hand written document that said, in bold
letters… “TEST CRANE 1 then TEST CRANE 2.” No
further test plans were ever requested from that project
manager.

The nature of the development process prevented most
integration testing until the latter stages of the project.
Even when DB’s testing uncovered considerable faults and
in some cases completely missing functionality, little
attempt was made to modify the development plan and
little immediate formal action taken to correct software
related deficiencies. It was generally left up to the
developers themselves to modify their code and to add
additional features when necessary. This led to situations
where on-site developers were working up to 108 hours per
week and regular 16 hours per day for weeks at a time.
When one crane was operational and was being controlled
by the GUI it was possible to finally perform a simple
stopwatch test in the manner that was detailed in the
contract terms. It appeared that the crane could meet the
contract specifications for required straight aisle
performance. However, the opportunity was taken to also
test the performance of the crane in a more realistic
operational test, picking up double pallets from one aisle
and delivering them both to another aisle. The required
pallet movements (table 1) for each fork was therefore (2 x
2 x 33.6 seconds) or approximately 2 mins 14 seconds per
crane with 100% efficiency of two crane utilisation. The
average recorded time for a single crane pick up and
delivery of two pallets was 2 minutes and 12 seconds.
This indicated that only with close to 100% crane
utilisation efficiency, would the cranes be capable of
reaching SCT’s operational requirements.

Because on site developers were working such
extraordinary long hours there was little time left for static
product analysis involving the regular analysis of source
code that they had written. The GUI had included 38
different PLC crane errors such as:

• Front Fork Encoder
• Long Travel Vector Drive
• Failed Delivery Location Full
• General PLC Run

When the cranes were operating, capturing and recording
these crane errors provided an opportunity to undertake
dynamic product analysis by automatically collecting
information about the systems own performance, with no
additional user effort. By plotting the daily log of
summaries of errors it provided DB with a guide to how
long the system would take to stabilise while also
identifying problems as they occurred and provided a
method of prioritising remedial action.

This dynamic testing had been undertaken by the on-site
SA/P for his own analysis purposes. When the client
became aware of this method of testing they too were
keenly interested in the results and what they represented.

 254

Journal of Information Systems Education, Vol. 14(3)

An example of the, by that time, strained relationship
between the management of DB and SCT and the degree
of trust exhibited by the parties, manifested itself in DB’s
refusal to provide this data to the client without a formally
documented request, which ultimately took another three
weeks.

When one crane went into any error state both cranes
immediately stopped operating, the rationale being that if
one crane was for some reason unable to operate, the other
crane might not know where it was and a collision might
occur. The GUI would display what fault had occurred
and it was then necessary to reset all errors from the GUI
before either crane would restart. Some (critical) faults also
needed to be investigated and rectified by physical entry
into the warehouse. The average time for resetting faults
was 3 minutes.

Over a one month period of pre-production testing the
level of overall critical and non-critical errors did not
significantly drop, with the total amount of errors
averaging over 200 per day, roughly equivalent to 6 hours
of ‘downtime’ per production day. An algorithmic model
predicting when the system would stabilise was unable to
compute a date. DB’s immediate reaction was to stop
producing the daily report.

5.9 Development Performance
The relative simplicity of the GUI/database components
and the ease at which the product mover had been
integrated into the code might have confirmed DB’s
misconception of the level of complexity of the other
software components

The language used in the PLC coding was itself not that
sophisticated or difficult to work with. The individual
functions likewise were not that difficult, but the
combination of all of the individual components made this
software component very awkward to develop. The lack of
overall functional specifications, design documents, test
plans or formal documentation forced developers to adopt
an ad-hoc approach in which there was a reliance on
reactive rather than pro-active responses for fixing
problems, as they occurred. The combination of the use of
the selected types of PLC and motors presented problems
that were special to this environment and made the nature
of the development more R & D rather than process
oriented. The graduate developers working in this area had
never worked with this simple type of software, having
studied more sophisticated application systems such as
C++ and Java at university.

The communication module was the key component in
integrating the most basic commands between PC and
PLC. Throughout the project the communication module,
as a result of the design of the physical communication
layout, continued to produce ‘noise’ which sometimes
resulted in phantom calls to and from the PLC.

Although the communication module could be considered
a key component for basic operations, the TC module was
critical for performance purposes. Development of the TC
was key to the success of this type of ASRS where
multiple cranes can operate in the same physical space.
None of the developers ever admitted the complexity of the
tasks that they were being asked to perform or their
inability to deliver what was required. Subsequent
investigation of the complexity involved in the
requirements for the TC module was undertaken by
separately asking the opinion of two senior software
engineers, both with PhDs in Computer Science and one
with a specialisation in robotics. Although both believed it
‘might be possible, given enough time’ they agreed that a
fully optimised version would almost certainly be outside
the capabilities of undergraduates or graduates with limited
experience.

The versions that were being provided for use at SCT were
however far from being optimised. Early versions of the
DLL were considered successful if they didn’t crash the
system yet permitted both cranes to operate concurrently.
But at the time of the official plant opening the TC version
in use was such that a single crane operating alone could
deliver more jobs than both cranes operating together.
Attempting to use both cranes in the same general area
would result in both cranes spending more time getting out
of each others way rather than picking up and delivering
pallets. Operators realised this and would send one crane to
a remote part of the warehouse, disable it and allow the
remaining crane to work on its own.

5.10 Negotiation
The obvious vagueness in the contract terms created a
plethora of potential conflicts needing resolution
throughout the project yet the absence of formal processes
for enabling specification changes and handling conflict
resolutions made the tasks of individuals working on site
arduous to say the least.

The generally held Western belief that a contract was
legally binding contrasted sharply with the more usual
Asian interpretation that contracts were more of a ‘starting
point for negotiation’. The intransigence of DB on some
issues thus appeared to SCT simply as uncooperative and
recalcitrant behaviour.

This interpretation was reinforced by the original project
manager adopting, what was described by client
representatives and sub contractors alike as “a dictatorial
attitude exhibiting an abrupt and uncompromising
communication and negotiating style”. His relationships in
the various construction phases had predominantly been
with local manual labourers and tradesmen; the autocratic
style he had adopted he believed to be most appropriate for
that situation. Yet when he was joined on-site by
professionally qualified, self motivated and technically
aware DB staff he failed to modify his leadership style.
His almost total lack of understanding of the technical
aspects of the IT development, ignorance of IT project

 255

Journal of Information Systems Education, Vol. 14(3)

management methodologies coupled with an already
fragile client relationship, limited his contribution to the
post construction phase of the project. It was not altogether
surprising when another project manager was appointed to
complete the more technical final phase of the project.

5.11 Leadership
Understanding both his weakness as a team member/leader
and his poor overall management skills, the MD had
appointed a general manager who had both excellent
project management skills and general management
abilities, to take a hands-on role managing the business.
Yet, even though the MD was not even physically located
in the same complex his influence over the rest of the
organisation was still pervasive. The MD was an ‘ideas
man’ who could develop concepts in his own mind but had
difficulty in passing these ideas on to others. He had little
need himself, for formal processes or methodologies as his
own work was both innovative and multifarious. The MD
also appeared to have had difficulty in coming to terms
with the concept of ‘separation of responsibility’ and his
role as ‘business owner’ often clashed with his role as
‘technical director’. Whereas it is of course possible to
have the same individual perform more than one role this
duality was misunderstood by many staff, suppliers and
clients alike and importantly misinterpreted by the MD
himself.

5.12 Organizational Structure & Design
The layout of the work environment at DB’s head office
was itself worthy of mention. The workshop area was
separated into offices housing teams working on their
various functional tasks. Informal discussions, in work
breaks, among employees working in different functional
areas, effectively ceased when the groups were required to
take separate breaks.

The appointment of the part time academic in a contract
role initiated a DB policy change away from employing
most staff on a full time basis. The hiring of part time
contractors, working with full time employees but earning
significantly higher hourly rates was undertaken
principally because these contractors had other
commitments that prevented them from working full time.
Any negative effect from the disproportionate
remunerations from this arrangement did not become
apparent until the part time contractors were working and
claiming the equivalent of full time hours, and
subsequently greater than normal full time hours.
Although full time staff were unable to claim overtime for
any work performed in excess of their ‘normal’ 40 hour
week, on-site they frequently worked well in excess of
these hours. Their motivation for working such extended
hours was obviously not financial, yet the presence of staff
claiming large overtime payments was particularly
frustrating to them. The development team(s) that had
never worked together as a unified and synergistic unit had
yet another reason to work heterogeneously.

5.13 The Contractors
The motivations of the ‘contractors’; as they were then
described by the full time employees, was being
questioned. It is still difficult to determine why full time
staff under such extraordinary pressure, retained their
motivation, perseverance and dedication to their tasks, yet
even though everyone was failing, the contractor’s
inability to succeed was given special derision. In what
appeared to be a case of a self-fulfilling prophecy,
(Rosenthal and Jacobson 1968), the perceived ‘lack of
loyalty’ by the contractors ultimately manifested in a
covert act that was to have severe implications for DB.
Two DB contractors working together on another DB
contract in Singapore were approached by that client to
‘consult’ for a day, prior to returning to Australia. The
contractors, as ‘independent’ consultants, and paid
handsomely by the client for only an extra days work,
provided the client with inside information about the
project that possibly contributed to that client terminating
their contract with DB a few days later. This clandestine
meeting in early 1998 and the precise nature of the details
in it was never made known to DB management, but the
contract cancellation impacted on DB’s overall cash flow,
credibility and possibly stakeholder confidence in
successful completion of its other projects.

5.14 The End is Nigh (Epilogue)
Less than one week after DB had been awarded its export
award it announced that ‘for administrative reasons’ it was
to be placed in the hands of administrators. Approximately
12 months after this took effect the company was wound
up and its assets liquidated. The effect of this liquidation
resulted in DB being unable to provide further assistance to
SCT, as the result of which:

• The SCT-ASRS was unable to perform at anywhere

near the required operational speed.
• The system was unreliable both mechanically and

electrically.
• The software components still required substantial

modification, debugging and tuning and did not have
the expected functionality.

SCT eventually replaced the whole system with a more
conventional straight aisle ASRS model. Although many
ASRS systems have been successfully completed since,
none have ever used the same technology as attempted by
DB. As well as all DB employees losing their jobs, a
number of client executives that were involved with the
various ASRS projects were also dismissed. The
administrators were ultimately only able to award DB
creditors a few cents in the dollar, and legal action was
undertaken against the administrators themselves.

6. CONCLUSIONS

 256

Journal of Information Systems Education, Vol. 14(3)

The case study failure has hopefully provided some
important lessons, and it is hoped that its messages might
help prevent similar occurrences in other projects.

This case study attempts to illustrate why modern IT
project managers require a range of multi-disciplinary
skill-sets in order to increase the likelihood of project
success. It also illustrates how the absence of any one of
those skill-sets might contribute towards project failure.
Generic project management skills, acquired within one
discipline, regardless of the general competence of the
individual, may be neither sufficient nor appropriate for
application within an alternative discipline.

ACRONYMS

ADS Application Development System
AGV Automatic Guided Vehicle

ASRS Automated Storage and Retrieval
System

CMM Capability Maturity Model
DB Dag Brücken Pty Ltd
DLL Dynamic Link Libraries
GM General Manager
GUI Graphical User Interface
MD Managing Director
MIS Management Information Systems
PIR Post Implementation Review
PLC Programmable Logic Controller
PM Product Mover
SA/P Systems Analyst/Programmer
SCT Super Cola Taiwan
TC Traffic Controller
VB Visual Basic

7. ACKNOWLEDGEMENTS

Advice, information and support in preparing this case, is
gratefully acknowledged. Particular thanks go to Richard
Pope, Moira Wilson, Horng-Ming Su, Luke Chieu and
those individuals who wished to remain anonymous.

8. REFERENCES

Australian Computer Society Inc (2000) Project
Management 2 Study Guide Version 2, ACS
Professional Development Distance Education
Programs, Melbourne, Australia.

Gido, J. and Clements, J. P. (2003) Successful Project
Management 2nd edition, Thomson Learning, USA.

Ho-Stuart, C., Moraji, H. and Thomas, R. (2000) Software
Engineering and Quality Assurance Work Book,
Faculty of Information Technology, Queensland
University of Technology, Brisbane.

Kedge, P. (1996) A casual conversation over lunch with
Dag-Brücken Systems Analyst, Taoyuan City,
Republic of China, 8th August

Kerzner, H. (1987) In Search of Excellence in Project
Management, Journal of Systems Management,
(February), pp.30-39.

Meyer, B. (1997) Object-Oriented Software Construction,
2nd edition, Prentice-Hall PTR, Upper Saddle River,
New Jersey.

Oskarsson, O. and Glass, R. L. (1996) An ISO 9000
Approach to Building Quality Software, Prentice Hall,
New Jersey.

Paulk, M., Curtis, B., Chrissis, M. and Weber, C. (1993)
The Capability Maturity Model for Software version
1.1, Technical Report Software Engineering Institute,
Pittsburgh, 26 pages

PMI (2000) A Guide to the Project Management Body of
Knowledge, Project Management Institute Inc, White
Plains.

Rosenthal, R. and Jacobson, L. (1968) Pygmalion in the
Classroom: Teacher Expectation and Pupils'
Intellectual Development, Holt, Rinehart & Winston,
New York NY.

Schwalbe, K. (2002) Information Technology Project
Management 2nd edition, Course Technology,
Canada.

Sommerville, I. (1995) Software Engineering 5th edition,
Addison-Wesley, USA.

Thomsett, R. (1989) Third Wave Project Management,
Prentice Hall, Upper Saddle River, NJ.

Weigers, K. (1998) The Seven Deadly Sins of Software
Reviews in Software Development Magazine August
pp

Yin, R. K. (1994) Case Study Research: Design and
Methods 2nd ed., Sage Publications, USA.

AUTHOR BIOGRAPHY

Tony Jewels has been an IT practitioner for over 30 years,
in an extensive number and types of roles including
programmer, systems analyst, hardware engineer, system
architect and IT Project Manager operating in Europe,

Australia and Asia. He holds an
undergraduate degree in business
management, a Masters degree
in IT and is currently completing
his PhD with a topic of
increasing IT project success
applying knowledge
management principles.
Currently he lectures and
coordinates the IT project
management units at graduate

and postgraduate levels at the Queensland University of
Technology, Australia.

 257

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2003 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

