
 79

Teaching Tip

Form Responders: Enhancing Student Learning in
Beginning and Advanced Web Development Classes

William L. Lomerson

Information Technology & Operations Management
Walker College of Business

Appalachian State University
Boone, NC 28608

lomersonwl@appstate.edu

ABSTRACT

Throughout the higher education community there is an increasing presence of courses that strive to introduce students
to the technology of the e-commerce environment at a variety of instructional levels. The content of these courses
ranges from augmenting an introductory course on computer productivity tools with a segment on auto web formatted
documents to senior and graduate level courses that address the full three-tier model of an e-commerce system. This
paper examines the benefits and shortcomings of the common methods used to demonstrate web site interactivity using
HTML forms. The paper also presents a simple and effective instructional tool that enhances the student’s
understanding and development of interactive web sites using HTML forms. The tool consists of a simple server side
ASP program, which can be easily implemented by the instructor, that responds directly and immediately to a form
action request submitted by a web user.

Keywords: web teaching tool, Internet development, HTML forms, e-commerce teaching

1. INTRODUCTION

With the proliferation of e-commerce and the utilization
of Internet technologies within public and private
organizations, higher education faces a growing need to
prepare students to work with these evolving technolo-
gies. Colleges and universities have responded by
offering a variety of courses at various levels throughout
the curriculum. The content of these courses ranges
from augmenting an introductory course on computer
productivity tools with an automatically generated web
formatted document to senior and graduate level courses
that address the full three-tier model of an e-commerce
system. At each of these levels instructors attempt to
develop a robust learning environment that includes
enabling students to experience web site interactivity.

This paper examines the most common methods of
teaching HTML form functionality, which is used
extensively in e-commerce applications to provide web-

site interactivity. It also identifies the shortcomings of
the common methods for demonstrating this interactive
functionality. Following this analysis, a more effective
operational solution to demonstrate this functionality is
presented. This discussion assumes that the reader has a
working knowledge of Hypertext Markup Language
(HTML) in general and the FORM tag specifically.

For beginning HTML students, the tool outlined enables
them to immediately see the results of the data
acquisition and submission features of a correctly built
form, just as it would be implemented in a real
interactive web environment. For advanced web
students, the tool enables them to determine that their
form is submitting data as intended in the designed
name-value pairs without having their server side
processing (database, etc.) completely operational.
Determining the data values provided by a form can be a
very difficult problem to isolate during the development
of advanced client server interactions.

 80

2. BACKGROUND

One of the key benefits of the web environment is the
ability to support interactive content. Because of this
benefit, any course dealing with the development of a
web site quickly advances to the stage of creating an
interactive web environment. The first stage of web site
interaction occurs when the web client sends a request
for a new web page or a different URL to the web
server. This action is very simple and achieved using
the hyperlink anchor tag, <a>.

The second stage of web site interaction occurs when
the web user needs to send specific information to a
program on the web server. The HTML form tag,
<form></form>, is the primary element that handles the
interactive transfer of user information from the client to
the server. While most HTML tags can be adequately
demonstrated using only the browser on the client
computer, the FORM tag requires an interaction with
the Internet environment in order to fully demonstrate
its functionality.

The FORM tag has two distinct operating phases: the
presentation/data collection phase and the
submission/processing phase. The first phase is handled
entirely by the browser and its results are displayed in
the browser window. The second phase, which is the
reason for including forms in the web page, provides for
collecting information from the user and submitting it to
a non-HTML application for processing. These
applications are normally stored on a server that is
external to the client (e.g., an Active Server Page (ASP)
database maintenance program).

3. COMMON METHODS

Introductory HTML courses and textbooks handle this
second phase processing in a variety of ways. Some
skirt this issue by stipulating that the processing is being
handled by another organizational department and thus
can be ignored by the developer/student. This approach
is not very satisfactory for most instructional approaches
since it does not provide the student with a complete
understanding or appreciation of a form’s purpose
within a web site.

A more widely used approached is to use the “mailto”
feature in the action attribute of the form. When the
user submits a form with a mailto action, an email
message is prepared and sent from the user to the
designated email recipient. While this approach has
some limited applicability in the “real world,” and can
therefore be marginally justified pedagogically, it has
several significant operational deficiencies.

The most significant deficiency arises from an
operational requirement of the “maito” action.
Specifically, the web client machine must have a default
email program that has been pre-configured for the
specific user submitting the form. A large number, if
not most, of the computers accessible to the general
student population in open or dedicated labs have
operating policies that purposely discourage
personalized local email programs. The second
deficiency of this approach arises from the time delay,
often substantial, that occurs between the submission of
the form and the availability of the delivered message
for retrieval. The third deficiency results from the
FORM tag requirement that the user provide an
additional attribute, enctype=”plain/text”, in order to
create a message with readable content. A simple
example of a form that uses the mailto action is shown
in Figures 1, 2 and 3.

4. ADVANCED METHODS

A better approach for demonstrating form interactivity
is to create a server side program that will actually
process the form submission and respond directly to the
submitter. Some textbooks suggest that the instructor
write or acquire such a program or have someone on
their technical support staff write one (e.g., Groves, et
al. 2000, p. 127-8; Morrison 2001, p. 102-3; Neou,
1999, p. 252-5). Unfortunately, many of the instructors
teaching introductory client side scripting do not have
the necessary knowledge to write or implement a
program of this type and/or the technical staff is often
unavailable to develop and support such a program.
Figure 4 provides an example of a CGI/Perl script for
such a program. However, while this program can run
on both Unix and Windows based computers, it usually
must be installed and maintained on the web server by
the technical support staff.

5. ALTERNATIVE METHOD

Perhaps the best approach for demonstrating web site
interactivity is the alternative offered by this paper.
This approach uses a simple server side ASP program
that responds directly and immediately to the form
action request submitted by a web user/student. While
this program may not be quite as universal as a CGI/Perl
script, it will run on any Windows NT4 or 2000 server
running the IIS web server and ASP 2.0 or higher. This
configuration is widely used and available on most
campuses. Further, this form responder script can be
installed and maintained by the instructor using normal
access to their web space. The single technical support
input required for this program to work is that the web
directory, where this ASP program is located, must be
enabled to permit script execution. This script is then

 81

accessed by assigning the URL for the form responder
script to the form action attribute. (Make sure the form
responder script file is saved with an “asp” extension.)
Figure 5 presents the basic processing script along with
code that displays the results in a readable format.

This program reads and displays the names of the form
fields exactly as they are encoded in the form. It then
displays the associated value of each field that is
submitted by the form for processing. There are no
restrictions on the input names or input types (except
that “file” input types may not be used) or on the
number of inputs that may be submitted to the program.
 An example of the Form Responder output for the
earlier example in Figure 1 is shown in Figure 6. This
output was produced by changing the form action in that
earlier script to point to the URL containing the
FormResponder program (e.g., <form method=”post”
action=”http://mywebserver.edu/FormResponder.asp”>.

This response to this action is immediate and, in fact,
mimics the actual processing of a web server
application. The student receives timely feedback to use
in correcting any errors as well as gaining the
experience of developing a workable interactive web
page.

This program also proves useful in advanced web
development classes as an aid to debugging sever side
programs. In many of these classes students investigate
more complex form techniques. These techniques
include learning to manipulate the name of the form
input tags dynamically and using hidden fields to submit
the data for server side processing. Since the results of
these manipulations may never present themselves
explicitly, it can be very difficult for the student to
determine the source of associated processing errors.
With this program, the actual names generated by the
client side processing, as well as the value associated
with the name, are echoed back to the client exactly as
they have been created. Actual values can then be
compared to the expected values and necessary
modifications made in the code. This enables the
student to get the client side script working as intended.
 Once the student is assured that the client side variables
are being transmitted as expected, the associated server
side script can be developed and debugged with much
more confidence and success.

A simple example of a more advanced form created by
an ASP script is shown in Figure 7. The data submitted
by this form cannot be determined by an examination of
the native script. In most cases the information on a
form like this is submitted to another ASP script for
additional processing. It is generally not echoed back to
the calling script. The FormResponder provides a very
simple and convenient method by which the

programmer can determine exactly what data is being
sent to the processing script. The browser screen
generated by this script is shown in Figure 8. Finally,
the browser screen generated by submitting this form to
the FormResponder is shown in Figure 9.

6. CONCLUSION

This paper has reviewed several common methods for
teaching form processing in both beginning and
advanced web design classes. It has presented the
benefits, shortcomings and examples of each method.
Finally, it has proposed a simple method that is easily
created by the instructor as well as easily utilized by
students.

Actual classroom experience with this program has
shown it to be easily incorporated into the most
elementary level of HTML coding activities. Students
gain immediate appreciation of the instant interactivity
that can be provided by a web site. For advanced
students, the time savings gained in the debugging
process of complex client-server interactions are greatly
appreciated.

7. REFERENCES

Groves, D., J. Finnegan and J. Griffin [2000], The Web

Page Workbook, 2ed. Franklin, Beedle &
Associates, Inc., Wilsonville, OR.

Negrino, Tom and Dori Smith [2001], JavaScript for the
World Wide Web. Peachpit Press, Berkeley, CA.

Neou, Vivian [1999], HTML 4.0 CD with JavaScript.
Prentice Hall PTR, Upper Saddle River, NJ.

8. RECOMMENDED READING

Mitchell, Scott and James Atkinson [2000], SAMS

Teach Yourself Active Server Pages 3.0 in 21
Days. SAMS, Indianapolis, IN.

Morrison, Michael [2001], HTML & XML for
beginners. Microsoft Press, Redmond, WA

AUTHOR BIOGRAPHY

William L. Lomerson is an Assistant Professor of

Information Technology at
Appalachian State University.
 He holds a Ph.D. from the
University of North Texas
and an MBA from the
University of Texas. He
currently teaches several
different e-commerce/ web
development courses. His
research interests are directed
at performance assessment of

 82

IT systems and e-commerce/web development peda-
gogical issues. Dr. Lomerson is Past President and
current Executive Board member of the Southern
Association of Information Systems, a regional affiliate
of AIS. Prior to his academic career, Dr. Lomerson held
a variety of systems development positions in industry.

Figure 1 – Simple HTML form script with mailto action
<html>
<head>
<title>Email Form Processing</title>
</head>
<body>
<h2>Email Form Processing</h2>
<form method="post" action="mailto:jjones41@myschool.edu?subject=Test email
form" enctype="text/plain">
Full Name: <input type="text" name="FullName">

Favorite Animal:

 <input type="checkbox" name="Animal" value="Dog"> Dog

 <input type="checkbox" name="Animal" value="Cat"> Cat

 <input type="checkbox" name="Animal" value="Gerbil"> Gerbil

 <input type="submit">
<form>
</body>
</html>

Figure 2 – Browser presentation of simple HTML form script

Figure 3 – Email response to form submitted with a mailto form action
From: "Jim Jones" <jjones41@myschool.edu>
To: <jjones41@myschool.edu>
Sent: Thursday, November 15, 2001 1:39 PM
Subject: Test email form

 FullName=John Jones
 Animal=Dog
 Animal=Gerbil

Journal of Information Systems Education, Vol. 13(2)

 83

Figure 4 – CGI/Perl script for a form responder
print “Content-type: text/html\”\n”;
print <HTML><HEAD><TITLE>Sample script response</TITLE>
 </HEAD><BODY”\n”;
print “<H1>Response from sample form</h1”\n”;

if ($E’V{‘REQUEST_METHOD’} “q “POST) {
 $form = <STDIN>; # get form data
 $form =~ s/\s//g; # remove white space
$form =~ s/%([0-9a-f]{1,2})/pack(C,hex($1))/eig;
 # convert escaped characters
 $form =~ s/\+/ /g; # convert ‘+’ characters to spaces

 @entries = split(/&/, $form);
 # form fields are separated ‘y’ ‘&’ characters
 #create an array of the field/value pairs

foreach $entry (@entries) {
 # print out the field/value pairs
 ($item, $value = split(/=/, $entry);
 print “
The value of $item<?B> is $value</B”\n;
 }
}
else {
 print “<P>sorry, this script only supports the
 the POST method\n”;
print “</BODY><HTML”\n”;
Source: Groves, D., Finnegan, J., and Griffin, J. The Web Page Workbook, 2ed., p. 127-8.

Figure 5 – ASP code for form responder program
<html>
<head>
<title>Form Responder</title>
</head>
<body>
<table align="center">
<tr><td colspan="3"><h3>Echo of Submitted Form Information</h3></td></tr>
<%
‘--The actual form responder code
 count = Request.Form.Count
 for k = 1 to count
 Response.write("<tr><td align='right'>" & Request.Form.Key(k) & ":</td>")
 Response.write("<td width='5'></td><td>" & Request.Form(k) &
"</td></tr>")
 next
%>
</table>
</body>
</html>

Figure 6 – Browser output from FormResponder.asp action

Journal of Information Systems Education, Vol. 13(2)

 84

Figure 7 - ASP Script for an advanced form
<html><head>
 <title>Advanced Form</title>
<body>
<h2>Request for Additonal Information</h2>
(CTRL-click to select multiple categories)

<% set oRS = Server.createobject("ADODB.recordset")
 oRS.open "SELECT * FROM Categories", "DSN=Nwind" %>
<form action="http://mywebserver.edu/formresponder.asp" method="post">
 <input type="hidden" name="RequestorIP" value="<%=
request.servervariables("REMOTE_ADDR") %>">
 <input type="hidden" name="Requested" value="<%= now %>">
 <select name="Categories" multiple size="8">
<% while (not oRS.EOF)%>
 <option value="<%= oRS("CategoryID") %>"><%= oRS("CategoryName")
%></option>

<% oRS.movenext
 wend %>
 </select>
 <input type="submit" value="Submit Request">
</form>
<% oRS.close %>
</body></html>

Figure 8 – Browser presentation of advanced ASP form script

Figure 9 – Browser output by FormResponder.asp for advanced form

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2002 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

