

Journal of
Information
Systems
Education

Volume 31

Issue 2
Spring 2020

Teaching Tip

Teaching Introductory Programming from A to Z:
Twenty-Six Tips from the Trenches

Xihui Zhang, John D. Crabtree, Mark G. Terwilliger,

and Janet T. Jenkins

Recommended Citation: Zhang, X., Crabtree, J. D., Terwilliger, M. G., & Jenkins, J. T. (2020).
Teaching Tip: Teaching Introductory Programming from A to Z: Twenty-Six Tips from the
Trenches. Journal of Information Systems Education, 31(2), 106-118.

Article Link: http://jise.org/Volume31/n2/JISEv31n2p106.html

Initial Submission: 3 May 2019
Accepted: 22 October 2019
Abstract Posted Online: 3 March 2020
Published: 4 June 2020

Full terms and conditions of access and use, archived papers, submission instructions, a search tool,

and much more can be found on the JISE website: http://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

http://jise.org/Volume31/n2/JISEv31n2p106.html
http://jise.org/

Teaching Tip
Teaching Introductory Programming from A to Z:

Twenty-Six Tips from the Trenches

Xihui “Paul” Zhang
John D. Crabtree

Mark G. Terwilliger
Janet T. Jenkins

Department of Computer Science & Information Systems
College of Business

University of North Alabama
Florence, AL 35632, USA

xzhang6@una.edu, jcrabtree@una.edu, mterwilliger@una.edu, jltruitt@una.edu

ABSTRACT

A solid foundation in computer programming is critical for students to succeed in advanced computing courses, but teaching such
an introductory course is challenging. Therefore, it is important to develop better approaches in order to improve teaching
effectiveness and enhance student learning. In this paper, we present 26 tips for teaching introductory programming drawn from
the experiences of four well-qualified college professors. It is our hope that our peers can pick up some tips from this paper,
apply them in their own classroom, improve their teaching effectiveness, and ultimately enhance student learning.

Keywords: Teaching tip, Introductory programming, Teaching effectiveness, Student learning

1. INTRODUCTION

An introductory programming course is usually a requirement
for lower-level college students who are majoring in
Computer Science or Information Systems. Because content
taught at this level is so fundamental, students who struggle
with it will inevitably struggle in advanced computing courses.
In a sense, the introductory programming course serves as a
gateway course. Teaching the introductory programming
course is also complicated by the variety of backgrounds that
the students present: some come into the class with substantial
experience, while others have little to none. Consequently, it is
important to develop approaches that will improve teaching
effectiveness, which in turn will enhance student learning.

Millions of dollars have been spent from the grant and
award funding agencies such as the National Science
Foundation and by universities on different strategies such as
computer labs, supplemental instruction, and tutors in an effort
to find better ways to teach introductory programming.
Realistically, however, this is not an easy task. It is akin to
asking someone who has never built a house, and who does
not speak French, to build a house in France using plans that
were written in French. Programming requires a number of
mental skills, and the required skills are similar to those used
in advanced mathematical reasoning. The Common Core State

Standards for Mathematical Practice
(http://www.corestandards.org/Math/Practice/) are:

• Make sense of problems and persevere in solving them.
• Reason abstractly and quantitatively.
• Construct viable arguments and critique the reasoning

of others.
• Model with mathematics.
• Use appropriate tools strategically.
• Attend to precision.
• Look for and make use of structure.
• Look for and express regularity in repeated reasoning.

Anyone who has ever attempted to teach introductory
programming to students will recognize that the majority of
skills on this list apply to programming as well. To help
students achieve these learning outcomes, we must present the
curriculum in a manner that gives the students opportunities to
build these skills. In addition, we need to provide a supportive
learning environment in and out of the classroom. A multi-
faceted approach is required to successfully lead a group of
students through an introductory programming course.

In this paper, we developed a list of 26 tips. We believe
these tips could be adopted by others to improve their teaching
effectiveness and attain improved student learning outcomes.

Journal of Information Systems Education, Vol. 31(2) Spring 2020

106

mailto:xzhang6@una.edu
mailto:jcrabtree@una.edu
mailto:mterwilliger@una.edu
mailto:jltruitt@una.edu
http://www.corestandards.org/Math/Practice/

2. METHODS

To compose these tips for teaching introductory programming,
we assembled a team of four faculty members who have
taught or are actively engaged in teaching such courses. Each
faculty member has had not only extensive experience in
teaching introductory programming, but also extensive
industry work experience in programming or software
development. The background of the team members and the
process of developing the teaching tips are detailed as follows.

2.1 Team of Four
All four faculty members are presently professors of computer
science or computer information systems at a university
located in the mid-south region of the United States. At the
current school, we have a total of 51 years of teaching
experience. We offer two similar introductory programming
courses, one for Computer Information Systems (CIS) majors
and another for Computer Science (CS) majors. Two of the
co-authors teach sections of the CIS introductory
programming course, while the other two teach sections of the
CS introductory programming course. Additionally, the four
faculty members taught programming and computing-related
courses for a combined 36 years at six other institutions.
Furthermore, the four faculty members have 27 combined
years of industry experience in programming-related careers
or in the field of software development.

2.2 The Three-Step Process
We followed a three-step process when developing the final
list of our teaching tips. Each member of the team
independently created a set of teaching tips. For each tip, we
made an effort to ensure that the tip was both clear and
concise, but included sufficient details and examples for
illustrative purposes. These tips were then compiled into a
single list, with overlapping tips consolidated. Finally, we
focused on determining how best to present the final list.

Independently, we came up with a total of 32 teaching tips;
after consolidation, we reduced this list to 26. We then labeled
each tip with a distinct verb and chose to list the resulting tips
in alphabetical order.

3. TWENTY-SIX TEACHING TIPS

3.1 Assign Homework on Debugging
One of the most frustrating obstacles to new programmers is
when they hit a dead end and cannot figure out a way to debug
their code. Debugging is an important skill that continues to be
both difficult for novice programmers to learn and challenging
for computer science and information systems educators to
teach (McCauley et al., 2008). Giving students explicit early
practice with debugging is a way to develop skills that may
come in handy later. Program errors typically come in three
categories: (1) syntax errors – the code has violated a language
rule (undeclared variable, punctuation issue, etc.), (2) run-time
errors – the program “crashes” because of an unexpected
situation (division by zero, invalid memory access, the
dreaded infinite loop, etc.), and (3) logical errors – the
program is producing the wrong output (instructions out of
sequence, wrong formula, etc.).

A debugging homework problem should be assigned very
early in the semester in which students are given several
programs that each contains multiple syntax errors. This
allows students to become familiar with the compiler’s error
messages. Students have to correct each error and then add
comments to the programs that describe the errors they correct.
Additional assignments may be given later in the semester that
have run-time and logical errors. Common examples that trip
up students who are learning languages like C++ or Java are
using “=” instead of “==” for comparison and including a
semi-colon after the test of the condition of a while loop.

3.2 Begin with an Exciting Application
Ever since the publication of Kernighan and Ritchie’s book
(The C Programming Language), we have been tacitly obliged
to start our students with a “hello, world” program. However,
such programs rarely motivate or excite students and even
were considered harmful (Westfall, 2001). A significant
program with audio and/or visual elements can accomplish
several pedagogical goals. First of all, it can display what
well-written code, complete with informative comments,
should look like. Secondly, it can be an opportunity to point
out that such a result can rarely, if ever, be achieved without
significant thought and planning (i.e., design). Lastly, such a
program, if chosen carefully, can be an application that serves
as a goal for the student upon completion of the course.

We have used the BlueJ development environment and a
textbook authored by Barnes and Kölling (2016) to introduce
the Java programming language. The textbook contains
several simple graphics programs that students can execute
and modify on the first day of class. We invited the students to
run a program that displays a red house with the sun above it.
After asking them to peruse the source code, we challenged
them to change the color of the house or add a second sun.
This code includes six well-written Java classes.

Now that we are using Python to teach the same course,
we begin the first class by having students execute a pygame
application in which they shoot aliens. We ask them to change
the background color, slow the game down, or add their names
to the title of the game. They are exposed to well-written
Python code and are generally surprised at how easy it is to
manipulate the code and see immediate results.

3.3 Code Early and Often
Students need an opportunity to practice each new concept,
whether they are dealing with language syntax and semantics
or problem solving concepts and algorithms. They need to be
able to solve problems themselves, not just watch the
professor. This can be achieved in a variety of ways.
Interweaving lectures, class discussions, and in-class activities
allows the students to try out new concepts early in the course.
Introducing new programming concepts via live coding
exercises can especially benefit those who learn best from a
“hands-on” approach (Tan, Ting, and Ling, 2009).
Demonstrating these concepts with this approach (by the
instructor, the student, or both) can assist in making the
concepts clear and memorable.

This approach can be used when teaching many of the
basic concepts. Introductory programming courses often focus
on the three critical components of any complete program:
input, processing, and output. Writing a complete, working

Journal of Information Systems Education, Vol. 31(2) Spring 2020

107

program in class can commence with the students following
along while the outline of the program is written by the
instructor. Students can then be challenged with one of the
steps of a basic program (e.g., writing the code to accept user
input). This can give the instructor the opportunity, in a small
classroom, to move about the room and help those who may
be struggling as well as to provide the opportunity to reinforce
the input, processing, and output model. Verbal instructions
can be given to those who have finished the first task while the
instructor continues to help others. As students progress, the
instructor can return to the front of the classroom and continue
developing the program. A whiteboard is invaluable in
assisting with concepts or visual depictions of the internal
working of the code or the design of the solution in terms of a
flowchart or pseudocode. Having students write their own
code, along with the instructor-led coding and instructor-led
explanations on the whiteboard, provides a variety of mental
activities so students with different learning styles are able to
assimilate the input, processing, and output model into their
programming skill set.

Smaller programming assignments frequently given
between class meetings allow the students to have ample
opportunities for learning outside of class by working out a
problem with newly learned concepts. A larger programming
assignment typically gives students a better and more
challenging opportunity to design and implement a software
solution. These activities provide a variety of opportunities for
students to learn by doing from the onset of the course and
allow the professor to recognize problem areas.

3.4 Design and Code Exercises with Published Solutions
It can be very helpful to encourage students to work problems
that are presented in the textbook along with the author’s
solution code, which is usually provided as a supplement or in
an appendix. Students will benefit most by designing and, if
time allows, coding their own solution before looking at the
author’s code.

However, since most students will not have time to code
each and every program in the book, the instructor can
encourage students to at least design a candidate solution in
their heads, if not on paper, before looking at the author’s
solution. This is an excellent opportunity to emphasize coding
as a creative endeavor. It is doubtful that the students will
approach the problem in the same way as the author, but they
may have a correct solution derived in a unique fashion – one
of the many enjoyable aspects of programming.

This activity may also prompt a discussion of evaluating
the elegance of a particular approach. Although there are often
many valid solutions to a given programming exercise, not all
solutions are qualitatively the same. Some may minimize the
amount of code written. Verbose solutions, while requiring
more lines of code, may be easier to read. A discussion of the
trade-offs involved and the notion of “elegant” solutions may
prove valuable to beginners.

3.5 Emphasize Code Style and Demonstrate Conventional
Structures
Clean, well-organized, and consistently formatted code
improves the code’s readability, decreases the chances of
making errors in the code, and makes the code easier to
maintain. This is more critical when the code is maintained by

people other than the original programmer. As such, it is
important to emphasize code style to students in introductory
programming courses. Consistency is the most important
measure for code format. Indentation, spacing, code blocks,
class member ordering, maximum line length, and parentheses
should all be used consistently. Even though most of today’s
IDEs (integrated development environments) provide
functionality to format the source code automatically, it is still
important to emphasize to students why the code style is
important and demonstrate how to format the code.

For a structured program, it is important to demonstrate
the Input-Processing-Output structure to students. A novice
programmer will typically mix up the processing and output,
especially when there are multiple items to process and the
output contains multiple lines. For instance, in the example
provided in Figure 1, some novice programmers will print the
first output message once the max value is found, and then
move on to find the min value and print the second output
message. This will change the Input-Processing-Output
structure into an Input-Processing-Output-Processing-Output
structure. A better coding practice is to find both the max
value and the min value first, and then print the two output
messages, as shown in Figure 1.

import java.util.Scanner;

public class MaxMin {
 public static void main(String[] args) {
 // Input
 Scanner input = new Scanner(System.in);
 System.out.print(“Enter three different integers: “);
 int a = input.nextInt();
 int b = input.nextInt();
 int c = input.nextInt();

 // Processing
 int max = a; // largest of a, b, and c
 if (max < b) {
 max = b;
 }
 if (max < c) {
 max = c;
 }

 int min = a; // smallest of a, b, and c
 if (min > b) {
 min = b;
 }
 if (min > c) {
 min = c;
 }

 // Output
 System.out.printf(“The largest number is %d.\n”,
max);
 System.out.printf(“The smallest number is %d.”,
min);
 }
}

Figure 1. An Example of the Input-Processing-Output
Structure

Journal of Information Systems Education, Vol. 31(2) Spring 2020

108

 For an object-oriented program, it is important to
emphasize the ordering of the class members when defining a
class. The code within a class definition should be grouped
into three sections in sequential order, as shown in Figure 2.
The first section contains the data fields, the second section
contains the constructors, and the third section contains the
methods (i.e., getters/accessors and setters/mutators).

public class Employee {
 // Data fields
 private String firstName;
 private String lastName;
 private double monthlySalary;

 // Constructors
 public Employee() {
 }

 public Employee(String fName, String lName, double
mSalary) {
 firstName = fName;
 lastName = lName;
 monthlySalary = mSalary;
 }

 // Methods
 public String getFirstName() {
 return firstName;
 }

 public void setFirstName(String newFirstName) {
 firstName = newFirstName;
 }

 public String getLasttName() {
 return lastName;
 }

 public void setLastName(String newLastName) {
 lastName = newLastName;
 }

 public double getMonthlySalary() {
 return monthlySalary;
 }

 public void setMonthlySalary(double
newMonthlySalary) {
 monthlySalary = newMonthlySalary;
 }
}

Figure 2. Three Sections in a Class Definition

Emphasizing the ordering of the class members when
defining a class becomes especially important if we adopt an
objects-first teaching approach. Some introductory
programming languages do not support classes, but
emphasizing style conventions is still important. For instance,
when using C++ for procedural programming, it is a
convention to list function declarations above the main()
function and function definitions below the main() function. In

larger projects, the function declarations could be included
in .h files where the implementation would be located in .cpp
files.

3.6 Flip the Classroom and Let Students Take Control
In recent years, “flipping the classroom” has become a
catchphrase, and the flipped classroom model has been
gaining popularity. In a flipped classroom, according to Mok
(2014), the instructor “delivers” lectures before class in the
form of pre-recorded videos and spends the actual class time
engaging students in learning activities that involve
collaboration and interaction. The most significant advantage
of the flipped classroom model is that it promotes student-
centered learning and collaboration. Student-centered, active
learning and participation help students better understand
challenging programming concepts, render pedagogical
benefits, and improve overall teaching effectiveness and
learning efficiency (e.g., Benander and Benander, 2008). In an
exploratory empirical study involving two sections of an
introductory programming course taught by the same
instructor in the same semester, Crabtree, Nickels, and Parris
(2013) found that teaching sections of lectures interspersed
with hands-on programming examples resulted in higher exam
scores and a higher student retention rate than those of lectures
first and hands-on programming examples second.
Furthermore, Zhang et al. (2013) compared the effects of the
two teaching approaches on learning performance – the
instructor-centric lecture and exercise approach versus the
student-centric exercise only approach. Their results support
the conclusion suggesting that when teaching introductory
programming courses, instructors may want to consider
choosing student-centered, active learning over the traditional
lecture format in order to gain better student learning
performance.

One way that we implement the flipped classroom model
is to assign a chapter quiz before the class begins on that
specific chapter and spend the actual class time leading the
students to work on the programming assignments,
interactively and collaboratively. Typically, a chapter quiz
contains 10 multiple-choice questions. These questions are
content-based and randomly drawn from a test bank provided
by the textbook publisher as part of the instructor’s resources.
The chapter quiz is delivered via Canvas, a trusted, open-
source, modern learning management system (LMS) with
numerous robust features that support a deep focus on
teaching and learning. There are many options to set up the
quiz. We typically adopt the following settings for the quiz: (1)
shuffle answers, (2) set 30 minutes (about 3 minutes per
question) as the time limit, (3) allow 3 attempts and keep the
highest as the quiz score, (4) let students see their quiz
responses only once after each attempt, (5) show one question
at a time, (6) require an access code, and (7) set the due date at
midnight the day before the class meeting time.

3.7 Gauge Student Concept Mastery using Exit Tickets
An instructor covering a topic does not necessarily mean
students have mastered that concept. Computer programming
is, in many ways, similar to mathematics in that most topics
are based on previous building blocks. You cannot work with
arrays, for example, if you do not understand repetition
structures as well as operations with simple data types.

Journal of Information Systems Education, Vol. 31(2) Spring 2020

109

Using exit tickets is a technique that can gauge whether
students have mastered a new concept. Exit tickets offer easy,
quick, and informative assessments that help encourage
student connections to content, self-reflection, and a purpose
for future learning (Angelo and Cross, 1993; Marzano, 2012).
An exit ticket is literally a small ticket (3x5 index cards work
well) that a student must submit in order to leave the
classroom. Typically, these are distributed to students with
about five minutes remaining in class, and each consists of a
short question or two.

The questions could be in a variety of formats. You may
ask students to write on paper the lines of code necessary to
solve a problem (“Write the code to print all prime numbers
less than 100”). You may ask a short concept question (“What
is the difference between an array and a class?”). You could
ask them to rate how well they followed the day’s lecture on a
scale from 1 to 10, with 1 being “completely lost” and 10
being “completely understood it.” You could ask them about
the difficulty level of the assigned textbook readings. The
basic idea is that you get immediate feedback on a topic
related to the students’ learning. Whether you require students
to include their names on the exit tickets or if you include their
responses as part of their course grade is completely up to you.

3.8 Help Students Build Computational Thinking Skills
Critical thinking skills are imperative for problem solving. In
computing, these critical thinking skills fall under the realm of
computational thinking (Kules, 2016). Shein (2014, p. 16)
maintains that “not everyone needs coding skills, but learning
how to think like a programmer can be useful.” This is
because “computational thinking helps people learn how to
think abstractly and pull a problem apart into smaller pieces”
(Shein, 2014, p. 17). We are not merely teaching students to
“code,” we are teaching them to solve problems, and we are
teaching them to think computationally.

For example, if a student is asked to determine the
minimum value from a list of numbers, the student will scan
the numbers, find the minimum value, and declare it. If the
same novice programmer is asked to design an algorithm to
determine the minimum value in a list of numbers, the novice
might create an algorithm that is similar to this: (1) scan all of
the numbers; (2) output the minimum. Students may not
realize that “scan all of the numbers” is what needs to be
detailed. It is helpful to guide the students through an
interactive exercise where they are led to see the constraints of
the problem.

Ask a student to listen to the numbers called out and, at
the end of the list, ask the student for the minimum value.
When this happens, the student actually goes through the
algorithm that is required to solve this problem. The first
number spoken is initially the minimum. Then, they listen to
the next number. If the new number is smaller than the
minimum, they toss the old minimum and keep up with the
new minimum. They repeat this process until no more
numbers are given. Whatever number is stored in their brain
will be the minimum. The professor can then write the
algorithm, draw the flow chart, and develop the actual code
needed to solve the problem just mimicked. Students can see
how to transform a manual solution for a problem into a
computer program.

3.9 Inject Peer Tutors into the Classroom
A couple of years ago, we started having our upperclass peer
tutors attend the course lecture sessions in our CS I course.
With a classroom of 30 students, each with a computer, this
provided opportunities to expand classroom activities. Having
another person to assist students made it more manageable to
add more essential, hands-on, in-class exercises where
immediate feedback was available. Attending class allowed
the tutor to deepen his or her understanding of the material and
to know exactly what the students had been taught during
class. A noticeable difference in the classroom atmosphere
was obvious.

In addition to improvements in the classroom environment,
there were several unexpected results. The usage of our out-
of-class, drop-in tutoring increased dramatically. We believe
students became familiar and comfortable with the tutors in
the classroom and felt less threatened to visit the drop-in
tutoring on their own. We also noticed an observable change
in our tutors, as they would frequently stop by our offices to
discuss student issues, offer alternative strategies to solving
problems, and suggest activities to try in upcoming classes.

Paying student tutors to attend course lectures costs
money, but we believe the benefits to the classroom
atmosphere and the improved students’ mastery of concepts
are worth the investment. The unexpected benefits to the
tutors acting as near-peer mentors are also a positive side
effect (Dickson, 2011; Trujillo et al., 2015).

3.10 Just Go Agile and Team Students Up
Agile software development methods are basically iterative
development approaches that focus on incremental
specification, design, and implementation (Sommerville,
2016). Agile methodologies are designed to produce high
quality software in a cost effective and timely manner, while
adapting to meet the changing needs of the end users (Zhang
et al., 2010). As a core practice of eXtreme Programming (XP),
an early agile methodology, pair programming involves two
programmers sitting side by side, sharing a single computer
screen, and working on the same software program
collaboratively. Going agile and teaming students up will
provide them the opportunity to understand and apply agile
software development practices. Teamed students will be able
to bounce questions and ideas between each other.

In introductory programming courses, the programming
ability levels of incoming students can vary greatly. The
challenge for the professor then becomes how to give enough
detail and instruction to those who have little to no experience
without losing the interest of those who have programmed
before. As such, we have used an active and cooperative
learning approach where teaming is used in the classroom.
This is akin to pair programming in agile development, but is
more of a pair (or triple) learning situation.

The students are placed in groups of two or three. They
are instructed on how to operate in this learning environment.
One person (the driver) is to be typing in source code while
the teammates (observers/navigators) are reviewing code as it
is typed, looking up resources online or from the text,
providing feedback, and asking questions of what is being
typed by the driver. Teams are composed so that those with
experience can share their knowledge with more novice peers.
This collaborative work on exercises and the interaction

Journal of Information Systems Education, Vol. 31(2) Spring 2020

110

among students will provide immediate feedback to the
professor without needing to visit every student. The professor
can survey the room, see how each group is progressing, and
gain valuable information about what has been learned or what
needs reinforcing.

Many studies have shown teaming students up to be an
effective way of learning to program (e.g., Radermacher and
Walia, 2011). The research findings by Chen and Rea (2018)
suggest that students’ problem solving skills and solution
formation experience are more important than their prior
specific domain knowledge, and that gender and major
composition (computing vs. non-computing majors) are
important factors to consider when assigning programming
pairs. As such, assigning pairs should not be done randomly.
Many factors (e.g., the student’s gender, major, problem
solving skills, solution formation experience, and personality)
need to be taken into consideration. Linden (2018) reflected
on the implementation of Scrum to create a teaching and
learning environment in an introductory programming course
that fosters self-regulated learning in students. The evaluation
of the Scrum-based learning environment revealed that
students want to be in control of their learning.

Learning to program in pairs or triples in class can be
beneficial to students. However, novices also need ample
opportunity to solve problems and program on their own.
They need to know that getting too much help from others is
not beneficial to them in the long run. Cheating can also
diminish the quality of a program if it becomes widespread
(Sheard et al., 2017). Requiring students to do a significant
amount of programming work on their own and holding them
accountable for doing such work are good for them and good
for any academic computing program.

3.11 Keep It Simple
There are so many new things to master when learning to
program for the first time. As such, it is important to avoid
extraneous components that are not critically related to the
curriculum.

3.11.1 Keep it simple (environment). Advanced Integrated
Development Environments (IDEs) are great tools for
managing large, multi-class, multi-component projects, but
they often include extra files and folder hierarchies that can be
confusing to novices. A simple IDE, such as Dev C++, which
includes a text editor that has settings to correctly assist with
proper indentation of code structure, works nicely for
beginning programmers. As students move on to second and
third programming courses, more advanced IDEs, such as
Visual Studio, which include project management tools, can
be introduced.

3.11.2 Keep it simple (logic). Often a solution to a problem
has multiple layers of logic. When novices are learning to
write nested loops, for example, it is useful to show them how
to work both inside out and outside in. It may also be helpful
to draw flowcharts of more complicated looping structures so
students are able to model the code in multiple ways. A basic
selection sort is an excellent algorithm for illustrating this
process. Students could be asked to design code that will
select the smallest (or largest) value in an array segment and
swap that value with the value in the first position. The

instructor can then show them how to embed that solution in
an outer loop that will sort the entire array. The instructor
could then begin with the outer loop and then develop the
logic for implementing the inner loop.

3.11.3 Keep it simple (compilation). It is important when
students are faced with a complex programming problem to
break the problem down into smaller parts. If they
successfully build a small chunk of code, compile it, debug it,
and test it, then they have a working component. This gives
them a starting point for the next layer of the solution. This
concept matches iterative life cycles in the professional world.
Postponing compilation until the entire solution has been
coded typically results in more compiler and logic errors than
can be handled, leading to frustration and failure.

3.12 Learn from Our Peers and Get Student Feedback
No matter how well we have designed and delivered our
course, there is always room for us to improve our teaching
and students’ learning effectiveness, which can be
accomplished through two major approaches. The first
approach is to learn from our peers, and the second approach
is to get student feedback.

Learning from our peers is very helpful. There are so
many ways to learn from our peers. For instance, we can audit
a class taught by a colleague who has just won a teaching
award. We can talk to senior scholars in our field and ask them
for effective teaching advice. We can also attend education
conferences such as SIGCSE and EDSIGCON to hear what
other professors are doing or read the pertinent conference
proceedings. All of these strategies can provide a wealth of
fresh ideas to improve our teaching and students’ learning
effectiveness.

Getting student feedback on course design and delivery is
also very important. This feedback is from the student to the
instructor, and the majority of it should be constructive, to the
point, and actionable. With this feedback, we should be able to
develop additional innovative ways to improve the design and
delivery of our introductory programming course. This, in turn,
can help improve our teaching and students’ learning
effectiveness.

3.13 Maintain a Steady Rhythm
Like all of us, students are more likely to succeed when they
understand what is expected of them. Maintaining a steady
rhythm in the classroom can help in this regard. Students who
know that the same deliverables such as code, design,
homework exercises, and completed reading assignments will
be expected on a regular basis are less likely to become
frustrated than students in courses where such demands seem
to be ad-hoc.

A daily agenda can set expectations for what is expected
both in and out of the classroom. A steady and predictable
rhythm also affords more opportunities for students to explore
and experiment with different approaches to studying and can
lead to discussions about metacognition and its applicability to
learning to write code. Figure 3 provides an example of a
typical agenda that lays out the day’s tasks along with the
tasks expected outside of class.

Journal of Information Systems Education, Vol. 31(2) Spring 2020

111

Today’s agenda 1. Quiz over assigned reading
2. Review homework
3. Code with me: Chapter 7,
first three sections
4. Design homework solution

To be completed
before next class

1. Finish homework (code, test,
and debug)
2. Design homework solution

Figure 3. An Example of a Typical Agenda with Tasks
Expected Outside of Class

3.14 Necessitate Design Documents before Coding
Through program evaluation, we noticed students in our
capstone class were going straight to coding, spending little
time on design prior to implementation. This made for poor
code maintainability, reusability, and readability, and inferior
overall software design.

A program design document helps the student connect the
program requirements to design choices and then connect
those design choices to implementation. We want our students
to build the mentality of planning before coding. We also want
them to build additional mental models of their solutions in
addition to source code. The research results by Ramalingam,
LaBelle, and Wiedenbeck (2004) show that the student’s
mental model of programming influences self-efficacy and
that both the mental model and self-efficacy affect course
performance.

After discovering design was a student weakness, we
began to increasingly require design submissions for major
projects prior to source code submissions. This evolution
resulted in a design document template that students are now
required to complete prior to every major project in CS I. A
successful design document in our course will completely and
unambiguously describe all of the following items: (1)
program requirements, (2) inputs, (3) outputs, (4) a test plan,
(5) a solution algorithm, and (6) a flowchart of the algorithm.

We introduce the design document well before the first
major project. Prior to the first project, different aspects of this
design document are modeled with in-class activities and
portions of the design document are required for smaller
assignments given outside of class. This activity helps the
student think about the solution before they begin coding.

When we assign larger, one-week long projects in CS I,
we require students to submit their design document two days
after the project assignment is distributed. Students then have
the remainder of the week (five days) to complete and test the
actual source code. The design document not only forces the
student to plan, but it also ensures that the student completely
understands the problem before attempting to code a solution.
We found that students with good design documents not only
scored higher on their source code submissions but also
performed better on exams (Terwilliger and Jenkins, 2017).

3.15 Offer Homework Feedback using Students’ Code and
Do the One-On-One Grading
Experience and research have shown that many students will
make similar kinds of mistakes when learning how to program
(Hristova et al., 2003). When the students’ work is graded,
common mistakes can be collected and one student’s
submission that contains one or more of these errors can be
displayed to the entire class. To avoid embarrassing a student,

the instructor should always remove the student name from the
comment header before the code is displayed; some students
just do not like being called out, even for praise. If time allows,
all of the errors made by the students may be displayed to the
entire class when graded homework is reviewed in order to
ensure that all student questions can be answered.

Whenever possible, we as instructors, will grade students’
program submissions with them one-on-one, especially for
those students that need our help the most. Grading a student’s
program one-on-one can benefit both the instructor and the
student. On the one hand, the instructor has a great
opportunity to get to know the student better, to understand
what help is most needed by the student, and to clarify the
student’s misconceptions. On the other hand, the student has a
chance to get to know the instructor better, to understand the
instructor’s expectations, and to ask clarifying questions.

When a one-on-one session is not practical, a small group
review session of three or four students can also accomplish
the same objectives. A real-time, face-to-face code review
session can provide students with “lots of pragmatic learning”
(Guo, 2014). Specifically, students can ask clarifying
questions and get prompt and understandable answers.

Timely communication and feedback is key to student
learning effectiveness (Roth and Klein, 2012). Whenever
possible, the student work should be graded and returned as
quickly as possible in order to provide prompt feedback. Our
goal is to grade and return student work within 72 hours of the
assignment due date. There are many positive outcomes to
providing students with prompt feedback. Students recognize
that their instructor is engaged and wants them to succeed.
Since the work should still be relatively fresh in the student’s
memory, it should be easier for the student to understand and
relate to the instructor’s feedback.

3.16 Provide Sample Runs for each Programming
Assignment
Providing sample runs is useful for both instructors and
students, especially in an introductory programming course. A
sample run shows both the input and output interfaces. A
simple Java programming assignment is provided in Figure 4.

JAVA_HA1.2: Three Means

Write a program (ThreeMeans.java) that prompts the user
to enter two positive floating-point numbers and prints their
arithmetic mean, geometric mean, and harmonic mean.
When the user enters 4.2 and 2.7, the output of your
program should look exactly like the following:

Enter two positive floating-point numbers: 4.2 2.7
The arithmetic mean is 3.45.
The geometric mean is 3.37.
The harmonic mean is 3.29.

Figure 4. An Example of a Simple Java Programming
Assignment

 For the instructor, the sample run makes it easier to grade
the student’s submission. Treating the sample run as part of
the program specification, the instructor can use a black-box
testing approach to run the student’s submission and compare
the result character-by-character with the sample run provided

Journal of Information Systems Education, Vol. 31(2) Spring 2020

112

in the program specification. Any deviation between the
student’s result and the sample run will result in a point
deduction. For students, the sample run provided in the
program specification gives them clear directions and also
forces them to use specific techniques. For instance, with the
prompt message in the sample assignment described above,
they have to use print instead of println; otherwise, the two
input numbers will be pushed to the next line. They also need
to figure out how to format the output numbers so that each
number has two digits after the decimal point. Finally,
providing the sample run helps the students understand that
programming can be viewed as a process of converting
program specifications into working code. Furthermore,
forcing the students to explicitly conform to the format of the
sample run helps emphasize that defined interfaces cannot be
modified by the programmer without the consent of all
pertinent stakeholders.

3.17 Quiz Students Frequently
We have observed that student attendance and continuous
active engagement are critical for success in introductory
programming courses. Students seem to have more and more
difficulty reading the assigned textbook material before
coming to class. This is, no doubt, influenced by the media
deluge that we experience on a daily basis. However, reading
is invaluable in learning to program. The terminology and
concepts are often new and can be quite abstract. A short quiz,
limited to two or three minutes at the start of class, can serve
as motivation for actually reading the assigned material so
that the terms and concepts presented in the lecture have some
degree of familiarity. Ideally, homework that covers the same
concepts can assist in presenting the information a third time.

Students who admit to being lost with assigned homework
have, at times, admitted that they have never read the material
in the textbook. A daily quiz may provide the added incentive
needed to begin the process on the right foot.

If a daily quiz is not desirable or feasible, another strategy
to address this issue is giving unannounced or surprise quizzes.
Class time is often precious, so the quizzes can take place in 5
to 10 minutes at the beginning or end of the class period. If
class sizes are large or no grading assistance is available,
students can still be assessed in an effective manner using
multiple-choice questions. Figure 5 shows three sample
questions to evaluate students in a CS I course that uses C++.

1. What is the output for the code snippet below?
(a) 35 (b) 36 (c) 35.77 (d) 35.78

double b = 35.7777;
cout << setprecision(2) << fixed << b << endl;
2. What is the output for the code snippet below?
(a) 0 (b) 5 (c) 6 (d) 10

num=0;
for (int i=5; i<=10; i++)
 num++;
cout << num;
3. What is the largest valid subscript for stuff in the
following declaration: int stuff[8];
(a) 1 (b) 7 (c) 8 (d) 9

Figure 5. Sample Questions in a Daily Quiz

 Even if the quizzes end up being a small percentage of the
students’ semester grade (e.g., 10%), they still should
accomplish these two important goals: (1) improved course
attendance and (2) students studying and reviewing course
topics on a continuous basis. In fact, it may be possible to
increase student final exam scores by giving pop quizzes and
not even grading them (Khanna, 2015).

3.18 Read before Writing
Most children learn to read before they learn to write. Many
learn to form letters as they are learning to read. Adults who
are learning a second language must be able to read before
they can possibly be expected to write. However, budding
programmers are sometimes writing code before they really
learn to read what experienced programmers have produced.
Textbooks often have snippets of code or small simple
programs, but rarely display a real-world example of non-
trivial code.

Showing introductory students professionally-crafted code
as an exemplar can have many benefits. If the instructor
emphasizes the modularity of the code, students may be able
to recognize the syntax for defining the scope of each module
before they learn the language. The style of the code can make
a good first impression that can be emulated. The proper use
of operations or methods from the main program of a carefully
chosen example can make the overall purpose of the program
readable, even to beginners.

3.19 Steer Clear of Slide Decks
Students in introductory programming courses, as in most
courses, tend to “zone out” during PowerPoint presentations.
There have been many articles published that question the
ability of such presentations to enhance learning (e.g., Szabo
and Hastings, 2000; Penciner, 2013). While there is nothing
wrong with presentation tools such as PowerPoint or Keynote
in and of themselves, instructors should think carefully about
the purpose of such tools. Penciner (2013) argues that while
there are many reasons why lecturers use slide decks, there are
only three reasons to consider when deciding if they would be
appropriate for your next presentation:

1. Emphasis. A single word or phrase related to the
concept conveyed.

2. Argumentation. Often using graphs or tables.
3. Multimedia learning. Pictures can often make verbal

information memorable.

While using slides for emphasizing concepts or displaying

pictures of internal memory structures may be useful,
argumentation is rarely part of the typical computer course. It
is even more difficult to imagine how relying on such slides
for the bulk of the presentation can be justified in most
modern classrooms where the instructors (and often the
students) have computers loaded with the editors, compilers,
and interpreters necessary to write, build, and execute code.

3.20 Try Multiple IDEs and Engage Students with
Interactive Tools
An IDE typically consists of a source code editor, build
automation tools, and a debugger, integrating the
functionalities of editing, compiling, building, debugging, and

Journal of Information Systems Education, Vol. 31(2) Spring 2020

113

online help in one graphical user interface (Liang, 2015). Most
IDEs provide features such as syntax highlighting and code
completion, making it easier for programmers to write and
debug their programs. There are many IDEs available for
programmers to choose from, and most of them are free for
personal and educational use. Each IDE has its own
advantages and disadvantages. Thus, experimenting with
multiple IDEs provides students the opportunity to navigate
different interfaces, learn diverse features and focuses, and
build confidence in using them.

Engaging students with different interactive tools can also
improve their learning effectiveness. There are many
interactive tools for students to use. One such tool is
CodeSkulptor, which is an interactive, web-based Python
programming environment that allows Python code to be run
in a web browser (http://www.codeskulptor.org). With a web
browser, the tool allows users to write, edit, run, debug, and
test the code. It can animate program execution and provide
cogent error messages that are helpful for debugging code.

Numerous IDEs provide an option to code with visual
blocks, which allow novice programmers to focus on the
code’s semantics rather than its syntax (Bau et al., 2017).
Scratch, for instance, is a free, block-based visual
programming language. It was developed to “make it easy for
everyone, of all ages, backgrounds, and interests, to program
their own interactive stories, games, animations, and
simulations, and share their creations with one another”
(Resnick et al., 2009, p. 60).

3.21 Use Planned Schedules for Larger Projects
It is difficult to enumerate the tasks needed to complete a
complex programming project. In a study of CS I classes, we
evaluated how long students thought they would take to
complete projects, how long they actually took to complete the
projects, and how much of their time was spent on design
prior to coding (Terwilliger and Jenkins, 2017). We examined
how those factors influenced the amount of time during which
students felt they were “stuck” and how it related to their
overall performance.

Our objective was to have students begin the planning
process immediately after the project is assigned. We wanted
to get students thinking about the “big picture” of the project
development life cycle. We wanted them to anticipate when
they may get stuck so that it was during a time when resources
such as tutoring and instructor office hours would be available.
For a week-long project, students had to submit a spreadsheet
that showed how much time they expected to be working on
their project design, the actual coding, as well as the program
documentation.

Once the project source code was turned in, the students
submitted a second spreadsheet that detailed the actual hours
invested, as well as other data such as what resources were
used and how much time was spent “stuck.” Perhaps not
surprising, students did not plan enough time for their projects.
They did get better at planning, however, as the semester
progressed. We also observed that the better planners
performed better on course exams.

3.22 Value Certification
There is much debate surrounding the nature of the
relationship between academic degrees and industry

certifications, especially as they apply to students and recent
graduates of computing programs (Hitchcock, 2007). The
value of such certifications varies with time, location, and
experience. However, the right certification at the right time
can sometimes give a candidate entrée into opportunities that
are not available otherwise.

Many organizations (w3schools.com, Oracle, CompTIA,
etc.) provide certifications that can be used to provide
additional opportunities and act as motivation above and
beyond letter grades. Oracle offers a Java Foundations
Certified Junior Associate exam that may be appropriate for
some introductory programming courses. Regardless of major,
such certifications can help students find employment during
school or after graduation. Helping students become aware of
the available certifications, as well as having discussions about
their value, is a great service.

3.23 Work with REPL Environments
Many languages, including LISP, Scheme, and Python,
include a Read-Eval-Print Loop (REPL) shell or environment
(Sandewall, 1978; Findler et al., 2002). Other languages, like
Java, have recently added such support. These environments
can be a valuable resource for beginning programmers. At the
Python REPL prompt, students may enter entire programs,
statements, or simple expressions. This environment is ideal
for teaching students the difference between statements, which
can also be a single line in a working Python script, and
expressions which are not valid as a line in a program. It is
also easy to demonstrate the difference between defining a
function, which is stored at a particular memory address
(which can be displayed by simply typing the name of the
function), and the invocation of that function by using the
name along with the parameter list. There are many uses for
the REPL environment when teaching programming, and
students can benefit by learning how to quickly jump back and
forth between a program editor and the REPL prompt.

3.24 X-Out Student Frustration and Show that We Care
As computer programmers, we are accustomed to providing
clear, concise, and precise instructions that can be
unmistakably interpreted by a compiler or interpreter and then
executed. However, as computing professors, we do not have
the guarantee that our instructions will be so readily accepted
by our human students. Humans make mistakes, they
misunderstand, they are creative, they can lose focus, they are
sometimes bored, or they get distracted by the birds. Beyond
the basic error-prone nature of humans is the sheer frustration
which can be overwhelming when students are learning to
program. How the student deals with that frustration can be an
indicator of how successful they become in an introductory
programming course. Rodrigo and Baker (2009, p. 75) state,
“researchers recognize frustration is potentially a mediator for
student disengagement and eventually attrition.” Affective
factors (emotional factors impacting learning) are significant.
Lishinksi (2016, p. 261) states, “affective factors (e.g., self-
efficacy) and dispositional factors (e.g., personality traits) may
be just as important as cognitive factors in learning to
program.”

We show our students that we care about them and their
success in our course when we help them to manage some of
the frustrations of learning to program. There are many ways

Journal of Information Systems Education, Vol. 31(2) Spring 2020

114

http://www.codeskulptor.org/

we can help our students deal with their frustrations in
addition to enhanced instruction. We can be good listeners and
talk to students with respect. We can be available to help
students. When we offer constructive criticism, we should first
offer a positive comment about their work. When students hit
roadblocks, it is important to let them know they are not alone.
Being nice to students does not mean we lower our standards;
it just means we are treating them the way we would like to be
treated. We have found that when students know we care
about them, they seem to be more determined to do well in our
classes. They know they have someone who will walk them
through the hard parts while still showing them how to deal
with the challenges of learning to program.

3.25 Yield Results beyond Teaching Syntax
When teaching programming classes, the instructor often
explains a language construct and then makes up some
elementary use of that construct. This is similar to showing
someone how a hammer is used by driving a nail into a piece
of wood. But why not use a more practical approach to show
the student how hammers and nails are used to build
something? “Programming can be viewed as a social practice
structured by tacit ‘rules of the game’ rather than a formal
exercise linking specifications to code” (Tenenberg et al.,
2018, p. 66). Instructors need to emphasize using
programming language constructs for problem solving and not
just as syntactic entities. Lahtinen, Ala-Mutka, and Järvinen,
(2005, p. 17) state that “the biggest problem of novice
programmers does not seem to be the understanding of basic
concepts but rather learning to apply them.”

For example, when teaching the modulo (remainder)
operator, we normally just show how it works, try it out on the
machine, and let the students practice it as well. This is not
inherently wrong, but there are a number of applications
where the modulo operator is a very useful tool. So, why not
have smaller assignments where students can discover its use
to extract digits, identify factors, print calendars, and
implement circular queues while learning the syntax? It is
unlikely that many students have practical experience in using
the remainder of a division operation and this is a great
opportunity to provide that.

When we teach students about variables of type character,
why not create simple examples that help illustrate the fact
that these variables are represented, internally, as numeric
values? For example, students could be asked to print out the
letters of the alphabet with a simple for loop:

 for (char ch = ‘A’; ch <= ‘Z’; ch++)
 cout << ch << “:” << int(ch) << endl;

This gives them practice declaring and initializing

characters, writing loops, and gives them a peek at how
characters are represented in memory.

When teaching loop constructs, we typically use contrived
scenarios to teach loop syntax and show the results of using
those loops. But this is an opportunity to show students how
the loop construct can be used as a problem solving tool. For
example, we could ask our students to find the largest or
smallest values in a list of numbers. This elementary action is
an important sub-task in many powerful algorithms, and

students need to be comfortable with its implementation by the
end of their first programming course.

3.26 Zone in on Creativity
Coding is a very creative activity. There are often numerous
ways to solve the same problem. Many people get joy out of
coming up with a unique solution to a familiar problem,
especially if that solution is efficient, elegant, or has some
other quality that sets itself apart from the more common
approaches.

While many students may associate creativity with
graphics programming and attractive user interfaces, writing
elegant algorithms can be a source of gratification for those
who are encouraged to put their creative problem-solving
skills to work. Therefore, it is important that we encourage
students to think “outside-the-box” and apply their ingenuity
when solving problems.

4. DISCUSSION

4.1 Summary of Content
We have presented a collection of 26 tips for teaching an
introductory programming course. The list was produced by a
team of four highly experienced faculty members who initially
worked independently and then consolidated and refined their
collection of tips to produce the alphabetical list in Table 1.

No. Teaching Tip
1 Assign homework on debugging
2 Begin with an exciting application
3 Code early and often
4 Design and code exercises with published solutions
5 Emphasize code style and demonstrate conventional

structures
6 Flip the classroom and let students take control
7 Gauge student concept mastery using exit tickets
8 Help students build computational thinking skills
9 Inject peer tutors into the classroom
10 Just go agile and team students up
11 Keep it simple
12 Learn from our peers and get student feedback
13 Maintain a steady rhythm
14 Necessitate design documents before coding
15 Offer homework feedback using students’ code and

do the one-on-one grading
16 Provide sample runs for each programming

assignment
17 Quiz students frequently
18 Read before writing
19 Steer clear of slide decks
20 Try multiple IDEs and engage students with

interactive tools
21 Use planned schedules for larger projects
22 Value certification
23 Work with REPL environments
24 X-out student frustration and show that we care
25 Yield results beyond teaching syntax
26 Zone in on creativity

Table 1. Twenty-Six Tips for Teaching Introductory
Programming

Journal of Information Systems Education, Vol. 31(2) Spring 2020

115

4.2 Pedagogical Implications
The 26 tips for teaching introductory programming presented
in this paper have important pedagogical implications. First,
the collection of tips is based on years of personal experience,
so all the tips have gone through the test-adjust-retest process
and have, at least informally, been shown to work. Second, we
have made every effort to ensure that the tips are clearly
presented. For each tip, the what, how, and why questions are
addressed. For instance, in the tip titled “Flip the Classroom
and Let Students Take Control,” we focused on the following
three questions: (1) What is the flipped classroom model? (2)
How do we apply the flipped classroom model in our teaching?
(3) Why is the flipped classroom model effective in teaching
and student learning? By clearly elaborating on each teaching
tip, our peers can easily adopt a specific tip and apply it in
their instruction. Third, these teaching tips can provide
incentives for other introductory programming instructors to
develop their own teaching tips. More well-elaborated and
well-disseminated tips will certainly inspire more educators to
join the effort and hopefully encourage the development of a
virtuous cycle for improved teaching and learning
effectiveness.

It is worth noting that our list of teaching tips, although
comprehensive, is not meant to be exhaustive. We do not
expect professors to apply all of our teaching tips in their
classroom. Our goal in writing this paper is two-fold. First, we
wanted to share our teaching tips so that our peers can apply
them in their own classroom. Second, we wanted to inspire
our peers to participate in the creation and sharing of their own
teaching tips in an effort to improve overall teaching and
student learning effectiveness.

4.3 Limitations and Future Research
This study has several limitations. First, the four-person group
of instructors, all based at the same university, provides only
an isolated glimpse into the variety of teaching strategies
employed around the world. A team with a larger number of
participants could surely generate more teaching tips,
especially if participants are from different schools. An online
questionnaire could be created so that more instructors could
share their teaching experiences. Second, this paper is
intended to provoke thought and encourage discourse. All of
the tips presented in the paper are based on personal
experience. Future research can design and implement more
rigorous empirical studies to capture quantitative and/or
qualitative data in an effort to validate premises that are
untested in this paper. Third, teaching and learning are two
sides of the same coin. In this paper, we focused on the
teaching side. Future research can look more into the learning
side. Research on tips for learning introductory programming
developed by students is a promising area that could
complement this study and shed some light on improving
teaching and student learning effectiveness.

4.4 Concluding Remarks
Effective teaching of introductory programming is both
important and challenging. The 26 tips presented in this paper
should help introductory programming instructors improve
their teaching effectiveness, thereby improving student
learning outcomes. It is our hope that our peers can utilize

some of the tips from this paper, apply them in the classroom,
and immediately see the benefits for their students.

5. REFERENCES

Angelo, T. A. & Cross, K. P. (1993). Classroom Assessment

Techniques: A Handbook for College Teachers (2nd ed.).
San Francisco, CA: Jossey-Bass.

Barnes, D. J. & Kölling, M. (2016). Objects First with Java: A
Practical Introduction Using BlueJ (6th ed.). Upper Saddle
River, NJ: Pearson.

Bau, D., Gray, J., Kelleher, C., Sheldon, J., & Turbak, F.
(2017). Learnable Programming: Blocks and Beyond.
Communications of the ACM, 60(6), 72-80.

Benander, A. C. & Benander, B. A. (2008). Student Monks –
Teaching Recursion in an IS or CS Programming Course
Using the Towers of Hanoi. Journal of Information Systems
Education, 19(4), 455-467.

Chen, K. & Rea, A. (2018). Do Pair Programming Approaches
Transcend Coding? Measuring Agile Attitudes in Diverse
Information Systems Courses. Journal of Information
Systems Education, 29(2), 53-64.

Crabtree, J. D., Nickels, D. W., & Parris, J. B. (2013).
Clearing the Hurdles to Success in Teaching Computer
Programming: Applying the Scientific Method to Improve
Student Outcomes. Academy of Business Research Journal,
2, 45-56.

Dickson, P. E. (2011). Using Undergraduate Teaching
Assistants in a Small College Environment. Proceedings of
the 42nd ACM Technical Symposium on Computer Science
Education (pp. 75-80). New York, NY: ACM.

Findler, R. B., Clements, J., Flanagan, C., Flatt, M.,
Krishnamurthi, S., Steckler, P., & Felleisen, M. (2002).
DrScheme: A Programming Environment for Scheme.
Journal of Functional Programming, 12(2), 159-182.

Guo, P. (2014). Refining Students’ Coding and Reviewing
Skills. Communications of the ACM, 57(9), 10-11.

Hitchcock, L. (2007). Industry Certification and Academic
Degrees: Complementary, or Poles Apart? Proceedings of
the 2007 ACM SIGMIS CPR Conference on Computer
Personnel Research: The Global Information Technology
Workforce (pp. 95-100). New York, NY: ACM.

Hristova, M., Misra, A., Rutter, M., & Mercuri, R. (2003).
Identifying and Correcting Java Programming Errors for
Introductory Computer Science Students. Proceedings of
the 34th SIGCSE Technical Symposium on Computer
Science Education (pp. 153-156). New York, NY: ACM.

Khanna, M. M. (2015). Ungraded Pop Quizzes: Test-
Enhanced Learning without All the Anxiety. Teaching of
Psychology, 42(2), 174-178.

Kules, B. (2016). Computational Thinking Is Critical Thinking:
Connecting to University Discourse, Goals, and Learning
Outcomes. Proceedings of the 79th ASIS&T Annual
Meeting: Creating Knowledge, Enhancing Lives through
Information & Technology (pp. 1-6). Silver Springs, MD:
American Society for Information Science.

Lahtinen, E., Ala-Mutka, K, & Järvinen, H.-M. (2005). A
Study of the Difficulties of Novice Programmers.
Proceedings of the 10th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education
(pp. 14-18). New York, NY: ACM.

Journal of Information Systems Education, Vol. 31(2) Spring 2020

116

Liang, Y. D. (2015). Introduction to Java Programming,
Comprehensive Version (10th ed.). Upper Saddle River, NJ:
Pearson.

Linden, T. (2018). Scrum-Based Learning Environment:
Fostering Self-Regulated Learning. Journal of Information
Systems Education, 29(2), 65-74.

Lishinksi, A. (2016). Cognitive, Affective, and Dispositional
Components of Learning Programming. Proceedings of the
2016 ACM Conference on International Computing
Education Research (pp. 261-262). New York, NY: ACM.

Marzano, R. J. (2012). Art and Science of Teaching: The
Many Uses of Exit Slips. Educational Leadership, 70(2),
80-81.

McCauley, R., Fitzgerald, S., Lewandowski, G., Murphy, L.,
Simon, B., Thomas, L., & Zander, C. (2008). Debugging: A
Review of the Literature from an Educational Perspective.
Computer Science Education, 18(2), 67-92.

Mok, H. N. (2014). The Flipped Classroom. Journal of
Information Systems Education, 25(1), 7-11.

Penciner, R. (2013). Does PowerPoint Enhance Learning?
Canadian Journal of Emergency Medicine, 15(2), 109-112.

Radermacher, A. D. & Walia, G. S. (2011). Investigating the
Effective Implementation of Pair Programming: An
Empirical Investigation. Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education (pp.
655-660). New York, NY: ACM.

Ramalingam, V., LaBelle, D., & Wiedenbeck, S. (2004). Self-
Efficacy and Mental Models in Learning to Program.
Proceedings of the 9th Annual SIGCSE Conference on
Innovation and Technology in Computer Science Education
(pp. 171-175). New York, NY: ACM.

Resnick, M., Maloney, J., Monroy-Hernandez, A., Rusk, N.,
Eastmond, E., Brennan, K., Millner, A., Rosenbaum, E.,
Silver, J., Siverman, B., & Kafai, Y. (2009). Scratch:
Programming for All. Communications of the ACM, 52(11),
60-67.

Rodrigo, M. M. T. & Baker, R. S. J. D. (2009). Course-
Grained Detection of Student Frustration in an Introductory
Programming Course. Proceedings of the Fifth
International Workshop on Computing Education Research
Workshop (pp. 75-79). New York, NY: ACM.

Roth, Y. & Klein, D. (2012). Effective Teaching Elements in
Online Adult Learning. Issues in Information Systems,
13(2), 155-163.

Sandewall, E. (1978). Programming in an Interactive
Environment: The “Lisp” Experience. ACM Computing
Surveys, 10(1), 35-71.

Sheard, J., Simon, Butler, M., Falkner, K., Morgan, M., &
Weerasinghe, A. (2017). Strategies for Maintaining
Academic Integrity in First-Year Computing Courses.
Proceedings of the 2017 ACM Conference on Innovation
and Technology in Computer Science Education (pp. 244-
249). New York, NY: ACM.

Shein, E. (2014). Should Everybody Learn to Code?
Communications of the ACM, 57(2), 16-18.

Sommerville, I. (2016). Software Engineering (10th ed.).
Upper Saddle River, NJ: Pearson.

Szabo, A. & Hastings, N. (2000). Using IT in the
Undergraduate Classroom: Should We Replace the
Blackboard with PowerPoint? Computers & Education,
35(3), 175-187.

Tan, P.-H., Ting, C.-Y., & Ling, S.-W. (2009). Learning
Difficulties in Programming Courses: Undergraduates’
Perspective and Perception. Proceedings of the 2009
International Conference on Computer Technology and
Development (pp. 42-46). Piscataway, NJ: IEEE.

Tenenberg, J., Roth, W.-M., Chinn, D., Jornet, A., Socha, D.,
& Walter, S. (2018). More than the Code: Learning Rules
of Rejection in Writing Programs. Communications of the
ACM, 61(5), 66-71.

Terwilliger, M. & Jenkins, J. T. (2017). Exploring the
Relationship between Planning and Problem Solving with
CS1 Students. Proceedings of the 59th Annual ACM Mid-
Southeast Conference (p. 76). New York, NY: ACM.

Trujillo, G., Aguinaldo, P. G., Anderson, C., Bustamante, J.,
Gelsinger, D. R., Pastor, M. J., Wright, J., Márquez-Magaña,
L., & Riggs, B. (2015). Near-Peer STEM Mentoring Offers
Unexpected Benefits for Mentors from Traditionally
Underrepresented Backgrounds. Perspectives on
Undergraduate Research and Mentoring, 4(1), 1-13.

Westfall, R. (2001). Technical Opinion: Hello, World
Considered Harmful. Communications of the ACM, 44(10),
129-130.

Zhang, X., Hu, T., Dai, H., Li, X. (2010). Software
Development Methodologies, Trends and Implications: A
Testing Centric View. Information Technology Journal,
9(8), 1747-1753.

Zhang, X., Zhang, C., Stafford, T. F., & Zhang, P. (2013).
Teaching Introductory Programming to IS Students: The
Impact of Teaching Approaches on Learning Performance.
Journal of Information Systems Education, 24(2), 147-155.

Journal of Information Systems Education, Vol. 31(2) Spring 2020

117

AUTHOR BIOGRAPHIES

Xihui “Paul” Zhang is a professor of computer information

systems in the College of Business
at the University of North Alabama.
He received his B.S. and M.S.
degrees in earth sciences from
Nanjing University (1993, 1996),
Nanjing, China, and his M.S. and
Ph.D. degrees in management
information systems from the
University of Memphis (2004,
2009), Memphis, TN. His work has
been published in the Journal of

Strategic Information Systems, Information & Management,
Journal of Database Management, Journal of Organizational
and End User Computing, Journal of Computer Information
Systems, Journal of Information Systems Education, and
Journal of Information Technology Management, among
others. He serves as the managing editor of The Data Base for
Advances in Information Systems. He also serves on the
editorial review board for several academic journals, including
the Journal of Computer Information Systems, Journal of
Information Systems Education, and Journal of Information
Technology Management.

John D. Crabtree is a professor of computer science and

information systems in the College
of Business at the University of
North Alabama where he has
taught courses in e-commerce,
database management, computer
programming, software
engineering, enterprise
architecture, data structures, and
algorithms. He earned his Ph.D. in
computer science, an M.S. and
B.S in math/computer science, and

a B.S. in geophysical engineering, all from the Colorado
School of Mines in Golden, Colorado. Prior to his career in
academia, he was a software development consultant in the
Denver area where he developed systems in e-commerce,
telecommunications, science, defense, GIS, manufacturing, oil
and gas exploration, and insurance. His research interests
include software engineering, GIS, big data, graphing
algorithms, and cheminformatics.

Mark G. Terwilliger is an associate professor of computer
science in the College of Business
at the University of North
Alabama. He earned a Ph.D. in
computer science from Western
Michigan University in 2006. His
dissertation was on the topic of
localization in wireless sensor
networks. He earned a Master’s in
computer science at Michigan
State University where his focus
was on artificial intelligence and

expert systems. He was previously a professor in computer
science and mathematics at Lake Superior State University,
where he also served as the chairman of the computer science
and mathematics department. His research publications have
been in the areas of wireless sensor networks, evolutionary
computing, parallel algorithms, and computer science
education. He currently serves on the program committees for
the International Conference on Agents and Artificial
Intelligence (ICAART) and the International Conference on
Intelligent Systems and Applications (INTELLI).

Janet T. Jenkins is an associate professor of computer

science at the University of North
Alabama. She has taught
computer science at the college
level for over 20 years. She
earned her Ph.D. and Master’s in
computer science at the University
of Alabama (2008, 1999) with her
research focus on software
engineering and non-functional
requirements, component-based
software engineering, and the
Common Object Request Broker

Architecture. She earned her B.S. in secondary education with
areas of mathematics and computer science in 1997. Her
current pedagogical research interests are in the areas of
computational thinking, computer science education, and
mathematics education. These efforts have been funded by
Math Science Partnership and are now funded by the National
Science Foundation. Funding supports the work of training
math teachers to apply an instructional model designed to
explicitly teach generalization and abstraction by using
computer programming to explore mathematical concepts.

Journal of Information Systems Education, Vol. 31(2) Spring 2020

118

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2020 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 2574-3872

