

Teaching Introductory Programming to IS Students: The
Impact of Teaching Approaches on Learning Performance

Xihui Zhang
Department of Computer Science and Information Systems

College of Business
University of North Alabama

Florence, AL 35632, USA
xzhang6@una.edu

Chi Zhang

Department of Information Technology
School of Computing and Software Engineering

Southern Polytechnic State University
Marietta, GA 30060, USA

chizhang@spsu.edu

Thomas F. Stafford
Department of Management Information Systems

Fogelman College of Business and Economics
University of Memphis

Memphis, TN 38152, USA
tstaffor@memphis.edu

Ping Zhang

Department of Mathematical Sciences
College of Basic and Applied Sciences

Middle Tennessee State University
Murfreesboro, TN 37132, USA

pzhang@mtsu.edu

ABSTRACT

Introductory programming courses are typically required for undergraduate students majoring in Information Systems.
Instructors use different approaches to teaching this course: some lecturing and assigning programming exercises, others only
assigning programming exercises without lectures. This research compares the effects of these two teaching approaches on
learning performance by collecting data from two sections of an introductory programming course in an urban public
university. One section used lectures and assignments while the other used assignments only. Data analysis included tests
within each dataset, tests across the two datasets, and tests of a simple model over the combined dataset. Results indicated that
both approaches are effective, but the exercises-only approach is more effective than lectures combined with exercises.
Further analysis indicated that students’ current programming skills, prior programming experience, and grade expectations
are significant antecedents of learning performance in the course. Results support the conclusion suggesting that when
teaching introductory programming courses, instructors may want to consider choosing the student-centered active learning
over the traditional lecture format in order to improve students’ learning performance. This study contributes to the
improvement of teaching and learning effectiveness as well as efficiency of introductory programming classes to the benefit of
instructors and students, alike.

Journal of Information Systems Education, Vol. 24(2) Summer 2013

147

Keywords: Teaching approach, Learning performance, Active learning, Introductory programming course

1. INTRODUCTION

Undergraduate students majoring in information systems (IS)
are typically required to complete an introductory
programming course. In general, this course focuses on
teaching students one of the several major high-level
programming languages, including C, C++, Java, C#, and
Visual Basic .NET. Students typically must pass this course
with a letter grade of C or higher.

Unfortunately, students often struggle with introductory
programming courses. Anecdotal evidence suggests that
students taking this course are stressed and afraid of learning
the material (Woszczynski et al., 2005a; Woszczynski et al.,
2005b). Results from empirical studies indicate that more
than one-third of the students taking this course are
characterized as “DWF” (earning letter grades of D,
withdrawals, or failures), and do not complete the course
with the A, B, or C grade required (Beise et al., 2003; Gill
and Holton, 2006).

Instructors of such courses use different approaches:
some give lectures and assign programming exercises, as
well, while others only assign programming exercises
without giving lectures (Chou, 2001; Poindexter, 2003).
Instructors using the former approach believe that lectures in
addition to exercises help students better understand
programming concepts and ultimately help improve their
programming skills; instructors using the latter approach
believe that actively engaged in coding to solve concrete
business and computing problems best serves the
understanding of programming concepts (Chou, 2001; Gill
and Holton, 2006).

A question arises: which approach actually is more
effective? At one level, each teaching approach is a matter of
personal preference based on belief, but we believe that the
most effective approach to teaching introductory
programming courses will be indicated by student learning
performance, which can be assessed by objective measures.
To that end, this study purposely compares the learning
outcomes for the two teaching approaches to introductory
programming. Specifically, we address three research
questions: (1) is teaching introductory programming using
exercises only as effective as using exercises combined with
lectures, or (2) is one approach more effective than the other?
Lastly, (3) what specific factors predict the student learning
performance?

Our search of the literature indicates that little research
has been done in this area. Hence, empirically determining
the answers to these questions is the purpose of this study.
We think that determining the effectiveness of programming
instruction combined with programming exercises as a
teaching approach is critical to informing the effective
instruction of introductory programming courses, and that
identifying the most effective teaching approach for
programming courses effectiveness will lead to increased
learning outcomes among IS students.

This paper proceeds as follows: first we present a review
of the literature from which we develop hypotheses.
Following this, the research methodology is discussed,
including details on course background, data collection, and

data analysis. Results of hypothesis testing are presented,
followed by a discussion of the findings and their
implications as well as a discussion of limitations and
directions for future research. We conclude the paper with
our recommendations and discussion of the issues related to
effectiveness in teaching introductory programming.

2. LITERATURE REVIEW AND HYPOTHESES

DEVELOPMENT

2.1 Traditional Teaching Approach
The traditional approach to teaching is instructor-led and
instructor-centered (Saulnier et al., 2008; Wilson, 1995).
This approach suggests that instruction is the primary
conduit through which knowledge is delivered in classrooms.
Indeed, introductory programming courses are generally
taught with lectures, only, or with lectures combined with
experiential labs and discussion. In the typical programming
classroom, this generally translates into teaching with
PowerPoint-based lectures supplemented by audiovisual and
other multimedia teaching materials (Schiller, 2009).

When the traditional instructor-led teaching approach is
used in programming courses, the instructor generally
reviews the content of a chapter, explaining the key terms
and concepts followed by the assignment of programming
exercises. Students complete the assignments and the
instructor provides grades and feedback on their submissions.
This traditional teaching approach, used for decades in
programming courses, usually produces satisfactory results
in terms of student learning performance on tests covering
lecture concepts and programming assignments (Saulnier et
al., 2008; Wilson, 1995). In this approach, to understanding
programming concepts, students use low-level learning
strategies to memorize course information and such
memorization approaches typically leads to reasonable test
performance. The reason students can perform well through
the recall of relevant information on tests is because
introductory programming courses typically focus on
delivering programming concepts and definitions of
programming in addition to basic programming language
syntax and semantics (Pendergast, 2006). Thus, we
hypothesize:

Hypothesis 1: The traditional teaching approach of
lectures combined with assignments is effective for an
introductory programming course.

2.2 Active Learning Approach
When the traditional instructional approach is used, students
are passive recipients of information from the instructor
(Prince, 2004); as such, they will often perceive their
programming classes as “dry, boring, and tedious” (Lippert
and Granger, 1997). In view of this common perception,
some educators have begun to experiment with established
instructional approaches, redesigning software development
courses into more active learning experiences, using
exercises and peer learning combined with mini-lectures,
where necessary, as compared to the traditional extended
lecture approach. Active learning is one of the alternatives to
the traditional lecture-based mode of course delivery for

Journal of Information Systems Education, Vol. 24(2) Summer 2013

148

teaching programming courses (Poindexter, 2003). The
active approach to learning emerged in the literature in the
early 1990s, and involves instructional activities that lead
students in “doing things and thinking about what they are
doing” (Bonwell and Eison, 1991, p. 1).

The core element of active learning is student
engagement through activities related to the course topics
(Bakke and Faley, 2007; Schiller, 2009; Williams and Chinn,
2009). In this view, student engagement is critical to learning,
whether they do their experiential work individually or in
groups. In the active learning environment, students do not
simply participate but generally commit to learning and
understanding. Hence, learning is enhanced when students
become directly engaged in the learning process (Bakke and
Faley, 2007; Schiller, 2009; Williams and Chinn, 2009).

In addition to the benefits of direct engagement, student
motivation and interpersonal skills are improved in the active
learning process (Poindexter, 2003; Prince, 2004; Vernon
and Blake, 1993). Both the active exercises and the
experiential environment in which they are presented
produce benefits for the students. For instance, studies show
that active exercises accelerate the learning cycle and
improve student problem-solving abilities; related benefits
are the reduction of student boredom and the improvement of
their course performance (Cordes and Parrish, 1996; Lippert
and Granger, 1997; McConnell, 1996; Neufeld and Haggerty,
2001). As contrasted to the instructor-centered approach to
teaching, active learning is considered to be learner-centered
and has demonstrated substantial improvements in learning
outcomes for E-commerce courses (Abrahams and Singh,
2010), database courses (Harris and Vaught, 2008), and
MBA-level IS courses (Schiller, 2009). When active learning
approaches are used in an introductory programming course,
it is expected to improve students’ attention, engagement,
attitude, motivation, and problem-solving abilities. As such,
we hypothesize:

Hypothesis 2: The active learning approach is effective
for an introductory programming course.

2.3 Characteristics of Active Learning Approach
Active learning uses problem-based learning. Problem-based
learning is an instructional method that presents information
on the course topic followed by inviting the students to
consider how they might use the information to solve related
problems and whether they need to learn more in order to
master such problems as well as how they might go about
obtaining additional knowledge related to problems at hand
(Prince, 2004; Williamson and Chang, 2009). The problem-
based approach typically involves significant amounts of
self-directed learning on the part of the students, which is
likely to influence student attitudes and study habits
positively (Prince, 2004).

Vernon and Blake (1993) conducted a meta-analysis
spanning 35 studies on the problem-based learning approach,
and their results indicated that student attitudes, class
attendance, and student moods were consistently more
positive for problem-based learning course as compared to
course using the traditional instructor-centric approach.
Other studies suggest that students will improve the long-
term retention of knowledge and develop enhanced critical
thinking and problem-solving skills when taught with the

problem-based approach (Gallagher, 1997; Major and
Palmer, 2001; Norman and Schmidt, 1992).

Active learning promotes student engagement. Active
learning introduces experiential activities into the classroom
and promotes student engagement in the course (Bakke and
Faley, 2007; Schiller, 2009; Williams and Chinn, 2009).
Bakke and Faley (2007) found that active learning keeps
student interested and engaged while producing high quality
learning outcomes. Their results indicate that with active
learning students enjoy the classroom experience, have
greater control over the learning process, and are able to
master more difficult materials. One reason is that active
learning is self-directed, hence self-motivated. Motivation
research indicates that understanding of content is enhanced
when students are committed to knowledge attainment
through the use of deep learning strategies such as active
learning (Blumenfeld et al., 2006). As such, motivation to
learn sets the stage for cognitive engagement. When
cognitive engagement is deep, students are able to relate new
materials to prior knowledge, which has great benefits over
superficial cognitive engagement approaches such as rote
memorization (Fredricks et al., 2004).

It is worth noting that motivation alone is not sufficient
for ensuring better achievement in the classroom. Cognitive
engagement is a catalyst to learning and achievement.
Students who value the subject matter and perceive that their
needs have been met in the course are more likely to employ
deep-level learning strategies (Blumenfeld et al., 2006).
Hence, student motivation is enhanced when they have
opportunities to decide what and how to analyze, interpret,
and apply in the learning process. Such deep and self-
directed learning approaches help students make decisions,
as well as synthesize, relate, and transform information.

Active learning requires learners to be more responsible.
Perkins (1991) identified three demands imposed on learners
in active learning: cognitive complexity, task management,
and acceptance of the approach. In active learning, learners
do not simply memorize the content of lectures and repeat it
on assignments and tests. They are responsible for
reorganizing and constructing new models based on their
existing knowledge structures. These types of tasks are
cognitively more complex as compared to the traditional
lecture-based approach to learning. The active learning
approach considers that learners are responsible for
managing their own learning process as opposed to
instructors taking responsibility for the learning process.
Students involved in active learning approaches have to
think more about the concept at hand and the process of
mastering the concept. Collectively, this approach may lead
to better performance and learning experiences for students
than the traditional teaching approach. Thus, we hypothesize:

Hypothesis 3: The active learning approach is more
effective than the traditional teaching approach for an
introductory programming course.

2.4 Antecedents of Student Learning Performance
Antecedents of student learning performance in
programming courses have been studied extensively (e.g.,
Beise et al., 2003; Chou, 2001; Hasan and Ali, 2004; Simon
and Werner, 1996; Szajna and Mackay, 1995). For instance,
Beise et al. (2003) examined age, race, and gender as well as

Journal of Information Systems Education, Vol. 24(2) Summer 2013

149

SAT scores as predictors of students’ learning performance
for computer science and information systems majors. In
another study, Hasan and Ali (2004) assessed the effects of
computer attitudes, computer experience, and computer self-
efficacy on students’ learning performance. Other factors
that have been studied include training approaches (Chou,
2001; Simon and Werner, 1996) and computer anxiety (Chou,
2001).

In this study, we consider several other important
antecedents of student learning performance drawn from
prior studies, including students’ existing programming skills,
prior programming experience, grade expectations, and
overall GPA. It is easy to argue that students’ current
programming skills and prior programming experience will
contribute to their learning performance in a programming
class (e.g., Hasan and Ali, 2004). It is also not difficult to
argue that students who want to achieve a better grade will
likely perform better than those who do not, because of the
beneficial effects of goal orientation. And, like the predictive
role SAT scores as indicated by Beise et al. (2003), grade
performance in the form of overall GPA also tends to reflect
student capabilities for learning. Thus, we hypothesize:

Hypothesis 4: Students with higher levels of current
programming skills will perform better in an introductory
programming course.

Hypothesis 5: Students with more programming
experience will perform better in an introductory
programming course.

Hypothesis 6: Students with higher grade expectation
will perform better in an introductory programming course.

Hypothesis 7: Students with higher overall GPA will
perform better in an introductory programming course.

Note that H4 hypothesizes the relationship between
levels of students’ current programming skills and their
course performance; the levels of students’ current
programming skills were measured by their pretest scores.
H5 hypothesizes the relationship between students’
programming experience and their course performance; the
students’ programming experience was measured by a self-
reported item in a short survey, in which students were
requested to choose one from the following five levels of
their programming experience: none, some, fair amount, a lot,
and expert. We would expect programming skills and
programming experience to be inter-related, but to the extent
that skills (as measured by knowledge of the topic) can
potentially be high without the necessity of having applied
experience, we consider skills and experience to be distinct
from each other.

3. RESEARCH METHOD

3.1 Course Background
To test the hypotheses we have developed, an introductory
programming course in an urban public university in the
mid-south region of the United States was used to collect
data. The course, titled “Application Program Development,”
had been offered in the college of business for quite a few
years and was well established. Most of the students
registered in this course were juniors or seniors majoring in
Management Information Systems (MIS). The textbook used
for the programming course was C: How to Program (5th

edition) by Deitel and Deitel (2007). This introductory
programming course covered the first 7 chapters of the text,
including: (1) Introduction to Computers, the Internet and the
Web, (2) Introduction to C Programming, (3) Structured
Program Development in C, (4) C Program Control, (5) C
Functions, (6) C Arrays, and (7) C Pointers.

The prerequisite for this class was a class titled
“Computer Hardware and Systems Software.” The
programming course was normally offered in two sections
per semester, which were typically taught by two different
instructors, and was a required course for undergraduate MIS
majors. During the data collection semester, as was usual
practice, the course was offered in two sections, each taught
by a different instructor. One section had 17 students, and
the other had 19 students. Each student enrolled into one of
the two sections by his/her own choice.

The two instructors shared the same syllabus, used the
same textbook, covered the same number of chapters in the
same order, assigned the same set of seven programming
assignments, and gave identical tests. Both sections met in
class twice a week (each for 75 minutes) for programming
exercises, and both instructors were available for clarifying
concepts and helping with programming assignments in class
and outside of class (mostly through emails and visits during
the instructor’s office hours).

Hence, the courses were identical except for two specific
circumstances: one instructor lectured for half of the class
time and assigned programming exercises during the other
half, whereas the other instructor only assigned
programming exercises without giving lectures. The
instructor providing the assignment-only curriculum also
attempted to create a more relaxed atmosphere by allowing
students to talk, debate, and move freely in the classroom
when the class was in session. Students in this assignment-
only section were encouraged to discuss class-related topics
with their fellow classmates, and routinely posed questions
to and sought answers from each other.

In the assignment-only section, a more liberal schedule
for completion of the assignments was used. Due dates for
assignments were less rigid: instead of setting up a specific
due date for each assignment, as was the case in the lecture-
and-assignments section, assignments were assembled into
groups and a more liberal due date was assigned to the
combined group of projects. As such, students in the
experiential section were permitted to manage the pace of
their own learning processes by completing their work in
accord with their own needs and priorities. With this
scheduling flexibility, students had more control over
learning and as a result, were required implicitly to be more
responsible for their learning effectiveness and efficiency.

Even though one section was designed for lecture and
exercises and the other was an active learning section
centered on exercises, only, both sections had access to the
PowerPoint lecture slides that were the basis of the lecture-
centric section. Upon successful completion of the course,
according to the course objectives from both instructors’
syllabi, the student should be able to:
 Define common programming terms, operators and

conventions.
 Demonstrate the ability to create and run programs using

appropriate editing, compiling, and linking tools.

Journal of Information Systems Education, Vol. 24(2) Summer 2013

150

 Understand selecting and using proper data types.
 Identify and correct errors in programming code

(debugging).
 Explain the characteristics of sequence, selection,

iterative, and modular control structures.
 Implement results of problem solving techniques in a

program design.
 Illustrate logically correct programming code (e.g.,

through pseudocode).
 Create working programming code from pseudocode,

UML, etc.

3.2 Data Collection
Data were collected from both sections throughout the
semester, including three major parts: a pretest and a posttest,
three course examinations, and a short survey. The pretest
was given to the students at the first class meeting. It
contained 30 multiple choice questions, evenly covering the
contents of all the 7 intended chapters of the textbook, and
this was the operational assessment of programming skills at
the pretest phase. The students were encouraged to give their
best efforts to get the highest score they could even though
they might have felt unprepared for the material. A posttest
using the same set of questions as the pretest was given to
the students at the end of the semester.

The three course examinations were administered at
different points during the semester. The first exam covered
chapters 1, 2, and 3, with the second covering chapters 4 and
5 and the third covering chapters 6 and 7. Each test
contained 40 multiple choice questions, and were presented
in the same format as the pretest and posttest.

A short survey (aside from the programming skills
pretest) was given to the students at the beginning of the
semester to assess past programming experience, grade
expectation for the course, and overall GPA. This
information was used to test whether these factors were
significant predictors of student learning performance.
Students were asked to provide their name. They were asked
about their programming experience, by choosing from
experience levels that included “none,” “some,” “a fair
amount,” “a lot,” and “expert.” Students indicated their grade
expectation for the course using standard letter grades and
indicated their overall GPA by indicating one of five levels:
2.2 or less; 2.3-2.5; 2.6-2.9; 3.0-3.3; and 3.4-4.0.

3.3 Data Analysis and Hypothesis Test Results
Two datasets were obtained, one from each of the two class
sections. The first dataset, containing 17 responses,
represented the traditional teaching approach. The second
dataset, containing 19 samples, represented the active
learning approach. Data analysis was conducted within each
dataset, across the datasets, and over a dataset of the two
combined.

Within each dataset, we conducted one-sample t-tests on
the pre and post-tests which covered the course content, in
order to determine whether the difference between student
knowledge at the beginning of the course and at the end were
different. This test was performed within both samples, and
the results, as shown in Table 1, indicated that both tests
were significant, with each of the p values being less than
0.001. This provided evidence that each of the teaching

approaches had a beneficial effect in terms of increasing
knowledge across the course of a semester. Thus, both H1
and H2 were supported. The question was which teaching
approach was more effective.

Table 1. One-Sample T Test Results for Datasets One

and Two

In testing across the datasets, we assessed whether there
was a significant difference in terms of the two teaching
approaches between the two pretest results, between the two
posttest results, between the difference score between pretest
and posttest per dataset, and between the two overall score
results for each dataset. The overall course performance was
represented by the sum of scores from the three course
exams. The group statistics for pretest, posttest, difference
between posttest and pretest, and overall score are shown in
Table 2. The independent samples t-test results, as shown in
Table 3, indicated that there was no significant difference
between the two pretest results (df = 34, t = 0.588, p = 0.560),
no significant difference between the two posttest results (df
= 34, t = -1.600, p = 0.119), and no significant difference
between the two overall score results (df = 34, t = -1.092, p =
0.283). This suggested that on average, students from the
two different sections performed at the same level of
programming skill at the beginning of the semester as well as
at the end of the semester. The difference between the two
differences (pretest vs. posttest, per dataset) was significant
(df = 34, t = -2.320, p = 0.026), as also shown in Table 3.
This suggested that the programming-exercises-only
approach (i.e., the active learning approach) was more
effective than the other approach, having produced a
significantly greater difference score in programming
competency for the experiential section. Thus, H3 was
supported.

 Sect. N Mean Std.
Deviation

Std. Error
Mean

Pretest 1 17 49.24 12.969 3.145
2 19 46.58 14.009 3.214

Posttest 1 17 64.59 12.238 2.968
2 19 71.37 13.086 3.002

Diff 1 17 15.35 8.923 2.164
2 19 24.79 14.474 3.321

OS 1 17 66.37 10.198 2.473
2 19 70.30 11.259 2.583

Notes: OS = Overall Score

Table 2. Group Statistics

In the analysis results (see Table 3), it was shown that
there is no significant difference in the pretest, posttest, and
overall score results. However, the difference between the

Section
Test Value = 0

t df Sig. (2-
tailed)

Mean Diff

1 7.094 16 .000 15.353

2 7.465 18 .000 24.789

Journal of Information Systems Education, Vol. 24(2) Summer 2013

151

improvements across sections (pretest results subtracted
from posttest results) was shown to be significantly different.
The implications of this outcome require additional
consideration.

 t-test for Equality of Means

 t df Sig. (2-
tailed

Mean
Diff

Std. Error
Diff

Pretest .588 34 .560 2.656 4.517
Posttest -1.600 34 .119 -6.780 4.238
Diff -2.320 34 .026 -9.437 4.067
OS -1.092 34 .283 -3.926 3.596
Notes: OS = Overall Score

Table 3. Independent Samples T Test Results

Simply put, the difference score reflects changes in

programming knowledge between the start and the end of the
course. While both sections improved significantly from
pretest to posttest, the experiential learning section showed a
much larger improvement. Essentially, while both
approaches to teaching programming have merit, the
experiential approach has significantly greater merit, based
on student performance.

We combined both datasets into a single group for
additional analysis. Our assessments of pretest, programming
experience, expected grade, and overall GPA was used to
perform regression tests, which we presume to be legitimated
by the sample size exceeding the lower bound for central
limit theorem effects. Overall course performance, as in prior
analysis, was assessed by the sum of the three course exams.
This score was the criterion for regression analysis;
predictors were pretest, programming experience, expected
grade, and overall GPA.

As shown in Table 4, the results of the regression testing
for the predictors explained about 66% of the variance in the
students’ overall course performance. Of the predictors,
pretest scores (p = 0.0009), programming experience (p =
0.051), and expected grade (p = 0.0041) were significant
predictors of overall course performance. GPA was not a
significant predictor of overall course performance (p =
0.2152). Thus, H4, H5, and H6 were supported, but H7 was
not.

Source DF Type I SS Mean
Square

F
Value Pr > F

Pretest 1 0.18780078 0.18780078 14.47 0.0009
PE 2 0.14322714 0.03580678 2.76 0.0510
EG 3 0.22357159 0.07452386 5.74 0.0041
OG 3 0.06233811 0.02077937 1.60 0.2152

R-Square: 0.664562
Notes: PE = Programming Experience; EG = Expected
Grade; OG = Overall GPA

Table 4. The GLM Procedure Results

4. DISCUSSION

4.1 Implications of Findings
An introductory programming course can be taught in a
traditional lecture setting or in an active learning

environment. Results suggest either approach will have a
beneficial effect on programming knowledge, in general.
However, some teaching approaches will produce better
learning outcomes than others, and the experiential approach
appears to have marked advantages in terms of improvement
in programming skills over the course of a semester.

This paper describes a comparative analysis study that
investigated the effectiveness of the two teaching approaches
on students’ learning performance in an introductory
programming course. The results indicate that both teaching
approaches are effective in improving students’
programming knowledge and skills, but they also show that
the active learning environment is more effective than the
traditional lecture setting. We also demonstrate that current
programming skills, prior programming experience, and
grade expectations are significant predictors of student
learning performance in terms of final grades for a
programming course.

These findings have important practical implications.
Instructors who are teaching programming courses may
consider choosing the active learning approach over the
traditional lecture-based approach, or at least integrate active
learning components into their classes, since the experiential
learning components appear to have superior outcomes for
students (Bakke and Faley, 2007; Schiller, 2009; Williams
and Chinn, 2009). However, because both instructor-centric
and experience-centric teaching approaches have been shown
to be effective in improving students’ learning performance,
instructors who are comfortable with the traditional
instructional approach might consider a mixed approach.
Instructors can also consider a hybrid approach with lectures
for concept explanation and programming demonstration,
and active problem-based learning for exercises and
assignments.

Students who take programming courses can benefit
from the positive effects that active learning can produce.
Students engaged in problem-based learning will be more
motivated and engaged, and take more personal
responsibility for their learning process (Poindexter, 2003;
Prince, 2004; Vernon and Blake, 1993). This is certainly a
point for both students and instructors to consider.

Our findings that predictive factors such as students’
current programming skills, prior programming experience,
and grade expectation strongly influence learning outcomes
have important implications (e.g., Beise et al., 2003; Hasan
and Ali, 2004; Szajna and Mackay, 1995). One approach, for
example, might be for instructors in the early days of a
course’s administration to motivate students with little prior
programming knowledge and experience to build intentions
to attempt to earn a higher grade. Since grade expectations
are shown here to lead to better learning outcomes, regular
encouragement to seek better grades may help in improving
students’ overall learning performance.

Of course, it is important to note that active learning
approaches do not automatically result in better learning
performance; instructor engagement is required, as well. The
structure of the learning environment (e.g., the curriculum
and assessment) is a critical factor to the success of active
learning approaches (Miller et al., 1996; Poindexter, 2003).
Factors of student motivation, engagement, and personal
responsibility are essential to the success of active learning

Journal of Information Systems Education, Vol. 24(2) Summer 2013

152

curricula, as we have shown, but aside from the specific set
of predictors tested here, some of these factors will vary
greatly between individuals.

4.2 Limitations and Future Research
This study has several limitations that need to be addressed
in future research. The first limitation regards sample size,
which is small but not untenable in the analysis of this
experimental design. A compilation of 17 responses in one
dataset and 19 in another are adequate for the statistical tests
of hypotheses presented here, but future research can
certainly seek to investigate similar variables and effects in
the setting of larger samples and differing contexts.

A specific limitation to the design and analysis related to
the specification and testing of our hypotheses pertaining to
learning effectiveness is that we did not index outcomes
against teaching effectiveness measures for the two
instructors. Given that both samples produced increased
learning over the course of the semester, and in view of the
fact that both courses were designed around a consistent
syllabus, text, and lecture materials (even if one section
merely had access to the lectures slides instead of
experiencing them in class), we think this may not be a
serious problem. However, it is a legitimate regarding any
potential differences seen between alternative sections
employing differing teaching methods and should be
considered in further examinations of the effects we
demonstrate here.

A final limitation of this study regards the extent to
which our results can be generalized. Our data were
produced from convenience samples derived from the
student choice of which section to enroll in. There was no
practical way in this convenience sample to control sampling
in support of investigating potential covariates and mediators
of learning processes arising from demographic
characteristics such as gender and age, or prior education.
Moreover, factors such as time spent on the course, the
extent of peer assistance with assignments, and individual
learning styles are variables with potential impact on the
learning process and should be considered in further
applications of the findings we demonstrate here.
Longitudinal studies of student learning patterns and
outcomes could also serve to better bolster generality of the
results we demonstrate here.

5. CONCLUSION

Teaching an introductory programming course to IS students
is a challenge for instructors; effective learning in such
courses is a challenge to students, as well. The personal
preferences of instructors will lead to a variety of teaching
approaches applied across courses (Saulnier et al., 2008), of
which active engagement is but one approach that might be
considered.

This study compared the effects of the two teaching
approaches on learning performance – instructor-centric
lecture and exercise approaches, as compared to student-
centric exercise only approaches. Results indicate that, when
executed by competent instructors and compared across
sections with consistent syllabi, examinations, and study
materials, either approach can produce effective learning

outcomes. But, the student-centered active learning approach
is shown to have clear advantages, in that it is more effective
than instructor-centric approaches. When optimal learning
outcomes are desired by instructors and administrators of IS
departments, active learning approaches provide a means to
achieving the best learning performance from among the
portfolio of teaching techniques available for delivering
introductory classes on programming.

Goode et al. (2007) suggest that educators should
leverage the potent influence that student control over and
active participation in their learning processes has on
outcomes. The active learning approach will be particularly
applicable to situations where students lack motivation,
engagement, and self-directedness, and can increase student
perceptions of self-control and engagement for producing
more positive learning outcomes (Law, 2007). Through
active and problem-based learning, students become more
interested in technical course materials and engage more in
learning; this, in turn, improves their learning performance.
As we consider the combined roles of instructor
encouragement and choice of pedagogical approaches along
with beneficial results of student engagement and active
participation in programming classes, both students and their
teachers can realize important and beneficial outcomes in the
classroom experience where the active learning approach is
used.

6. REFERENCES

Abrahams, A. S. and Singh, T. (2010). An active, reflective

learning cycle for e-commerce classes: Learning about e-
commerce by doing and teaching. Journal of Information
Systems Education, 21(4), 383-390.

Bakke, S. and Faley, R. H. (2007). A student-centric
approach to large introductory IS survey courses. Journal
of Information Systems Education, 18(3), 321-328.

Beise, C., Myers, M., VanBrackle, L., and Chevli-Saroq, N.
(2003). An examination of age, race, and sex as predictors
of success in the first programming course. Journal of
Informatics Education Research, 5(1), 51-64.

Blumenfeld, P. C., Kempler, T. M., and Krajcik, J. S. (2006).
Motivation and cognitive engagement in learning
environment. In R.K. Sawyer (Ed.), The Cambridge
Handbook of the Learning Sciences (pp. 475-488). New
York, NY: Cambridge University Press.

Bonwell, C. C. and Eison, J. A. (1991). Active learning:
Creating excitement in the classroom. ERIC Digests
(ED340272, pp. 1-4). George Washington University,
Washington D.C.: ERIC Clearinghouse on Higher
Education.

Chou, H. W. (2001). Effects of training method and
computer anxiety on learning performance and self-
efficacy. Computers in Human Behavior, 17(1), 51-69.

Cordes, D. and Parrish, A. (1996). Active learning in
technical courses. Proceedings of the 17th Annual
National Educational Computing Conference (pp. 105-
110). Minneapolis, MN, June 11-13.

Deitel, P. and Deitel, H. (2007). C: How to program (5th
ed.). Upper Saddle River, NJ: Pearson/Prentice Hall.

Journal of Information Systems Education, Vol. 24(2) Summer 2013

153

Fredricks, J. A., Blumenfeld, P. C., and Paris, A. H. (2004).
School engagement: Potential of the concept, state of the
evidence. Review of Educational Research, 74(1), 59-109.

Gallagher, S. (1997). Problem-based learning: Where did it
come from, what does it do, and where is it going?
Journal for Education of the Gifted, 20(4), 332-362.

Gill, T. G. and Holton, C. F. (2006). A self-paced
introductory programming course. Journal of Information
Technology Education, 5, 95-105.

Goode, S., Willis, R. A., Wolf, J. R., and Harris, A. L.
(2007). Enhancing IS education with flexible teaching and
learning. Journal of Information Systems Education,
18(3), 297-302.

Harris, R. B. and Vaught, K. L. (2008). The recovery care
and treatment center: A database design and development
case. Journal of Information Systems Education, 19(3),
277-280.

Hasan, B. and Ali, J. M. H. (2004). An empirical
examination of a model of computer learning
performance. Journal of Computer Information Systems,
44(4), 27-33.

Law, W. K. (2007). Frontiers for learner-centered IS
education. Journal of Information Systems Education,
18(3), 313-320.

Lippert, S. K. and Granger, M. J. (1997). Peer learning in an
introductory programming course. Proceedings of the 12th
International Academy for Information Management
Annual Conference (pp. 123-130). Atlanta, GA, December
12-14.

Major, C. H. and Palmer, B. (2001). Assessing the
effectiveness of problem-based learning in Higher
Education: Lessons from the literature. Academic
Exchange Quarterly, 5(1), 4-11.

McConnell, J. J. (1996). Active learning and its use in
computer science. ACM SIGCSE Bulletin, 28(SI), 52-54.

Miller, J., Groccia, J., and Wilkes, J. (1996). Providing
structure: The critical element. In T. Sutherland and C.
Bonwell (Eds.), Using Active Learning in College
Classes: A Range of Options for Faculty (pp. 17-30). San
Francisco, CA: Jossey-Bass.

Neufeld, D. and Haggerty, N. (2001). Collaborative team
learning in information systems: A pedagogy for
developing team skills and high performance. Journal of
Computer Information Systems, 42(1), 37-43.

Norman, G. R. and Schmidt, H. G. (1992). The
psychological basis of problem-based learning: A review
of evidence. Academic Medicine, 67(9), 557-565.

Pendergast, M. O. (2006). Teaching introductory
programming to IS students: Java problems and pitfalls.
Journal of Information Technology Education, 5, 491-515.

Perkins, D. N. (1991). Technology meets constructivism: Do
they make a marriage? Educational Technology, 31(5),
18-23.

Poindexter, S. (2003). Assessing active alternatives for
teaching programming. Journal of Information
Technology Education, 2, 257-265.

Prince, M. (2004). Does active learning work? A review of
the research. Journal of Engineering Education, 93(3),
222-231.

Saulnier, B. M., Landry, J. P., Longenecker Jr., H. E., and
Wagner, T. A. (2008). From teaching to learning: Learner-

centered teaching and assessment in information systems
education. Journal of Information Systems Education,
19(2), 169-174.

Schiller, S. Z. (2009). Practicing learner-centered teaching:
Pedagogical design and assessment of a Second Life
project. Journal of Information Systems Education, 20(3),
369-381.

Simon, S. J. and Werner, J. M. (1996). Computer training
through behavior modeling, self-paced, and instructional
approaches: A field experiment. Journal of Applied
Psychology, 81(6), 648-659.

Szajna, B. and Mackay, J. M. (1995). Predictors of learning
performance in a computer-user training environment: A
path-analytic study. International Journal of Human-
Computer Interaction, 7(2), 167-185.

Vernon, D. and Blake, R. (1993). Does problem-based
learning work? A meta-analysis of evaluative research.
Academic Medicine, 68(7), 550-563.

Williams, J. and Chinn, S. J. (2009). Using Web 2.0 to
support the active learning experience. Journal of
Information Systems Education, 20(2), 165-174.

Williamson, S. and Chang, V. (2009). Enhancing the success
of SOTL research: A case study using modified problem-
based learning in social work education. Journal of the
Scholarship of Teaching and Learning, 9(2), 1-9.

Wilson, B. (1995). Metaphors for instruction: Why we talk
about learning environments. Educational Technology,
35(5), 25-30.

Woszczynski, A. B., Guthrie, T. C., and Shade, S. (2005a).
Personality and programming. Journal of Information
Systems Educations, 16(3), 293-299.

Woszczynski, A. B., Haddad, H. M., and Zgambo, A. F.
(2005b). An IS students worst nightmare: Programming
courses. Proceedings of the Southern Association of
Information Systems Conferences (pp. 130-133).
Savannah, GA, February 25-26.

AUTHOR BIOGRAPHIES

Xihui Zhang is an Assistant Professor of Computer

Information Systems in the
College of Business at the
University of North Alabama. He
earned a Ph.D. in Business
Administration with a
concentration in Management
Information Systems from the
University of Memphis. His
teaching and research interests
include the human, social, and
organizational aspects of

Information Systems. His research has appeared in the
Journal of Strategic Information Systems, Journal of
Database Management, Journal of Computer Information
Systems, Journal of Organizational and End User
Computing, e-Service Journal, Journal of Information
Systems Education, Journal of Information Technology
Management, Journal of Information Technology Education,
and other leading journals.

Journal of Information Systems Education, Vol. 24(2) Summer 2013

154

Chi Zhang is an Assistant Professor of Information
Technology in the School of
Computing and Software
Engineering at Southern
Polytechnic State University. She
received her Ph.D. in Information
Technology from the University
of Nebraska at Omaha. Her
current research involves Health
Information Technology and
Electronic Health Record
Systems adoption & use, best

practices of technology-mediated learning, and IT education.
She is a member of Association for Information Systems
(AIS), Special Interest Group for IS education (AIS-SIGED),
Special Interest Group for Information Technology in
Healthcare (AIS-SIGhealth), and ACM group for
Information Technology Education (ACM-SIGITE).

Thomas F. Stafford is Professor of Management

Information Systems for the
Fogelman College of Business
and Economics at the University
of Memphis, and past Editor of
ACM Data Base for Advances in
Information Systems. He holds
doctorates in MIS from
University of Texas – Arlington,
and in Marketing from University
of Georgia. His research spans
issues of human computer

interaction and technology adoption, and has appeared in
journals such as Decision Sciences, Communications of the
ACM, and IEEE Transactions on Engineering Management.

Ping Zhang is an Associate Professor in the Department of

Mathematical Sciences at Middle
Tennessee State University. She
received a Ph.D. in Mathematics
from the University of Memphis,
as well as an M.S. in
Mathematics from Yangzhou
University, China. Her current
research interests include
developing stochastic and state
space models for AIDS and
Cancer, Diabete study,
Proteomics study, and

Informatics Education. Her work has been published in
Education and Information Technologies, Journal of
Nephrology, and Deterministic and Stochastic Models for
AIDS Epidemics and HIV Infection with Interventions. She
has presented papers at the ENAR Spring Meeting, AMS,
and Joint Statistical Meeting.

Journal of Information Systems Education, Vol. 24(2) Summer 2013

155

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2013 by the Education Special Interest Group (EDSIG) of the Association of Information Technology Professionals.
Permission to make digital or hard copies of all or part of this journal for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial use. All copies must bear this notice and full citation.
Permission from the Editor is required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use.
Permission requests should be sent to the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

