

Teaching Information Systems Development via Process

Variants

Wee-Kek Tan
Department of Information Systems

National University of Singapore
Singapore, Singapore 117417, Singapore

tanwk@comp.nus.edu.sg

Chuan-Hoo Tan
Department of Information Systems

City University of Hong Kong
Kowloon Tong, Kowloon, Hong Kong SAR

ch.tan@cityu.edu.hk

ABSTRACT

Acquiring the knowledge to assemble an integrated Information System (IS) development process that is tailored to the
specific needs of a project has become increasingly important. It is therefore necessary for educators to impart to students this
crucial skill. However, Situational Method Engineering (SME) is an inherently complex process that may not be suitable for
students to apply in a classroom IS development project. SME is defined as the systematic creation of new methods from parts
of existing methods, i.e., the method fragments, by taking into account the specific business situation of each IS development
project. A less complex pedagogical approach is to teach students how to design an IS development process variant that
incorporates the building blocks of various existing processes in order to leverage the advantages of each individual process.
This paper first proposes a framework for teaching students the designing of process variants, followed by a preliminary
empirical study conducted in a genuine classroom setting to determine whether the framework benefits students. Through the
preliminary study, we discuss how the student IS development project teams had successfully applied our framework to design
and use their own process variants. The initial observations obtained from the study also suggest that students who designed
their own process variant appeared to consistently outperform those who did not, i.e., students which opted to use the
traditional waterfall model.

Keywords: Information Systems Development, System Process Models, Curriculum Design

1. INTRODUCTION

The development of an information system (IS) has always
been a complex process necessitating the use of
methodological approaches such as the systems development
life cycle, which is a systematic process of creating a system
(Carroll, 2003; Necco et al., 1987). Hence, numerous
methods have been proposed in the past two decades (Van
Vliet and Pietron, 2006). The number of methods is now a
colossal figure, thus creating the challenge of how to go
about choosing the appropriate one(s) for a given IS
development situation (Jeyaraj and Sauter, 2005; Wynekoop
and Russo, 1995). A viable solution to this problem is to
apply method engineering (Iivari et al., 2000-2001) to
customize an appropriate IS development method based on

the characteristics and needs of a project. Method
engineering refers to the systematic creation of new methods
from the parts of existing methods that are known as method
fragments (Brinkkemper et al., 1998). Through the
application of method engineering, a software firm could
obtain greater process flexibility that leads to increased
competitive performance (Nidumolu and Knotts, 1998).

Although having a well-designed development method
could improve the quality of an IS (Necco et al., 1987),
many IS graduates are not sufficiently well-trained with
respect to using method engineering for effective system
analysis, design and development (Kim et al., 2006). A
significant cause of this pedagogy gap is largely attributable
to the inherent complexity of method engineering. Thus,
while some pedagogical attempts have been made to teach

159

Journal of Information Systems Education, Vol. 21(2)

some of the latest agile methods in many schools (Schneider
and Johnston, 2003), there remains a significant educational
need to train students in selecting and tailoring an IS
development process (used interchangeably with method)
suiting their specific needs.

This paper, hence, presents a novel approach that is built
upon the designing of an IS development process variant
(Gnatz et al., 2001; Henderson-Sellers and Serour, 2005;
Song and Osterweil, 1998) to address the gap between the
existing knowledge and skills of students and the foundation
required for practicing method engineering. A process
variant incorporates the building blocks of various existing
processes in order to leverage the advantages of each
individual process (Gnatz et al., 2001). From a
terminological point of view, process variant designing is
similar to method engineering. But from an operational point
of view, process variant designing is less radical and
consequently, implementing it is less complex. Moreover,
process variant designing is more apt for use in classroom
teaching as educators are better able to define the IS
development processes and the specific parts of each process
that meet two criteria: 1) applicability to their IS
development projects; and 2) familiarity to their students.
Essentially, students should be able to confidently master the
basic concepts of method engineering through process
variant designing.

The research objectives of this paper are twofold. First, a
framework for designing an IS development process variant
is conceptualized as a viable pedagogical tool for teaching
students the prerequisite knowledge to practice method
engineering. Second, a small, preliminary empirical
investigation is conducted in a real classroom setting with
undergraduate students taking an Enterprise System
Development (ESD) course in our University to determine
whether the framework is beneficial to students. Our
observations suggest that it is possible for students to learn
how to customize their own IS development process variants
which are tailored to the unique requirements of their
projects. More importantly, we find that students who used a
tailored process variant appeared to perform better, i.e.,
obtained a better letter grade for the course, compared to the
students who did not do so, but instead used the traditional
waterfall model.

2. THEORETICAL BACKGROUND

2.1 Situational Method Engineering
Before the advent of method engineering, researchers had
noted the importance of selecting the correct IS development
methods in order to ensure that an IS could be developed at a
lower cost and in a shorter period of time while concurrently
meeting the needs of the users (Davis et al., 1988).
Consequently, different techniques were developed to aid IS
developers in the methods selection process. For instance,
Alexander and Davis (1991) organized IS process models
into a three-level hierarchical classification and then defined
a total of twenty criteria together with a mathematical model
for selecting the most appropriate one for a particular
project. Despite these herculean efforts, predefined methods
could either be too generic or contain parts which were
incompatible with real projects’ characteristics (Brinkkemper
et al., 1998).

The Situational Method Engineering (SME) discipline
has thus emerged as an approach to addressing the increasing
demand for complex enterprise-level systems in
organizations by taking into account the specific business
situation of each software development project (Harmsen et
al., 1994; Henderson-Sellers, 2003; Ralyté, 2002). SME is a
method engineering paradigm that builds on the supposition
that a method is conceived as not being a single intertwined
and interdependent entity but rather as one incorporating a
set of distinct fragments (Brinkkemper, 1996). A method is
defined as a standard and systematic way in which a task is
accomplished (Brinkkemper, 1996). Developers using the
SME would select and combine existing parts of a method,
i.e., the fragments and not the entire method itself, to form an
integrated set of method fragments (Harmsen et al., 1994).
Such an approach allows developers to formulate the unique
development method that specifically caters to the business
needs, and more importantly, the needs of a project.

Numerous techniques, models and theories can be found
in the extant literature that address how SME may be
implemented (Brinkkemper et al., 1998). For instance, the S4
theoretical model suggests that the situation factors and
performance indicators of an IS development project
collectively describe the criteria determining the success of
the project, i.e., the project scenario, which is then used to
determine the method fragments to be selected (Klooster et
al., 1997). This theory synergizes the more traditional SME
approach that considers only the project’s situation factors
(Slooten and Brinkkemper, 1993) together with the risk
analysis and management approach that emphasizes the
importance of including certain IS development activities in
order to reduce the overall risk of failure (Charette, 1989).
The risk management aspect is manifested in the S4 theory
as the performance indicators, which help to identify when a
project might be in danger of failure.

Even with the aid of the various theoretical models, the
entire SME process, from method selection, to method
construction and to tool adaption, is an inherently complex
process necessitating the incorporation of an array of
intricate method knowledge (Harmsen, 1997; Mirbel and
Ralyté, 2006; Tolvanen, 1998). In fact, the metamodeling
process itself that precedes the actual SME requires the
method engineer to perform numerous tasks such as
identification of the techniques in the methods,
determination of the object type’s properties, determination
of relationships, and many others (Tolvanen, 1998). A deep
understanding of the relevant business domains and
processes of the protagonist organization is also a
prerequisite to deciphering the particular situation for
applying the SME. For these reasons, at least, we reason that
it is not feasible to impart in students a sufficient working
knowledge of SME without overwhelming their intellectual
ability and interest.

It is thus hardly surprising that despite the increasing
importance attached to the use of the correct method tailored
to the specific needs of an IS development project, many
educators have continued to focus on the definitions and
usage of selected methods in their entirety. In particular,
recent literature has mainly focused on the use of agile
methods (see Schneider and Johnston, 2003, for instance).
Even the notable few exceptions such as Lemmen et al.
(1999), who examined the educational effects of SME, have

160

Journal of Information Systems Education, Vol. 21(2)

not been able to incorporate SME into an actual classroom IS
development project and assess its effectiveness. Our present
research endeavor attempts to address this knowledge gap by
not utilizing SME itself but rather a different approach based
on IS development process variant designing.

2.2 Designing of Information System Development
Process Variant
The available IS development processes, such as the
traditional waterfall model, the spiral model and the unified
software development process, each has its own distinctive
advantages and disadvantages (Gnatz et al., 2001). To this
extent, the ability to combine the advantages and
disadvantages of each existing process to construct a new
integrated process variant tailored to a particular IS
development project has been proposed using process
patterns, i.e., individual activities or parts of a process
(Ambler, 1998, 1999; Bergner et al., 1998; Carroll, 2003;
Carroll et al., 2006). Process patterns can be thought of as
being equivalent to method fragments in SME. Essentially,
process patterns describe and document the various
development activities in a structured, well-defined and
modular manner that facilitates reuse within a process
framework for integrating different process models (Gnatz et
al., 2001). Within this framework, each process pattern
prescribes the required activity to be performed, which, upon
completion, leads to the generation of some work product,
i.e., the tangible output, which can be modeled using
notational symbols. For instance, Cameron (2002) put forth
the Work Product Descriptions (WDP) framework that
specifies how work products may be joined together in some
temporal order to create an IS development process variant.

Although conceptually similar to the end state of SME
(Firesmith and Henderson-Sellers, 2002), using process
patterns within the process framework is less tedious (Becker
et al., 2007). On the one hand, SME typically requires an
elaborate set of procedures and representations to model the
method fragments (Brinkkemper et al., 1998). Moreover,
SME is closely guided by method assembly rules that are
grounded on mathematical principles and these rules are
often expressed in complex, first order predicate logics
(Brinkkemper et al., 1998; Serour and Henderson-Sellers,
2004). On the other hand, a process-based approach uses
textual description to narrate factual information about the
method fragments (Gnatz et al., 2001). Process variant
assembly is based on contextual requirements of the
particular IS development project such as the need to
perform a certain activity in order to generate a required
output artifact (Gnatz et al., 2001). The method fragments
for each contextual requirement are then joined together
based on their temporal precedence into the final completed
process variant (Noll, 2003).

In the same vein, Song and Osterweil (1998) applied
process programming to customize a precise software
development process for specific development projects.
Using the Object Modeling Technique (Rumbaugh et al.,
1991) and the APPL/A process coding language (Sutton et
al., 1990), the authors successfully tailored the Booch Object
Oriented Design Method (Booch, 1991) for different project
requirements based on various project properties such as the
type of programming language, required documentation and
experience of the development team.

Beyond project properties, the features of the IS, i.e.,
“the coherent and identifiable bundle of system functionality
that helps characterize the system from the user perspective”
(Turner et al., 1999, pp. 3), can also play an important role in
the development process (Turner et al., 1999). Specifically,
features can be thought of as forming a bridge linking the
problem domain to the solution domain. Each feature
represents a logical module of user requirements that is
represented by various process artifacts, e.g. class diagrams
and test cases. Collectively, these artifacts realize the system
design for implementing a particular feature in the solution
domain.

Additionally, features also impact upon several process
activities such as requirement engineering, system design
and architecture, and testing. As a concrete example, Van
Gurp et al. (2001) used features to represent variability in the
development of software product lines and proposed a
framework based on how design decisions in the
development process can be affected by software features.

3. FRAMEWORK FOR DESIGNING AN
INFORMATION SYSTEM DEVELOPMENT

PROCESS VARIANT

In this section, we present a framework for IS development
process variant designing that is contingent on the properties
and features of the specific IS development project. The
general thesis underlying both SME and process variant
designing is such that the derivation of a set of methods for a
project can be achieved in three steps: 1) understanding and
defining the project situation (i.e., in our case, students were
asked to consider the project properties and features) as well
as the method requirements, 2) selecting the method
fragments that fulfill the requirements of the project (Aydin
et al., 2005), and 3) assembling the method fragments in
order to form an integrated method (Ralyté, 2002; Tolvanen,
1998). While this approach resembles the software
development process approach in Motorola (Fitzgerald et al.,
2003; Fitzgerald et al., 2006), our pedagogical objective was
not SME itself but rather more closely aligned to a simpler
case of designing an integrated process variant from existing
processes that the students had previously learnt. Our own
approach towards IS development process variant designing
is depicted in Figure 1. This approach is grounded on the
same three steps used in SME but without much of the
complexity involved.

3.1 Project Situation Definition
Step 1 of SME typically involves the consideration of
numerous situation-independent and situation-dependent
criteria (Tolvanen, 1998). The former include generic criteria
independent of a specific IS development situation such as
ease of use and ease of learning. The latter criteria focus on
choosing method fragments that are most appropriate for a
specific IS development situation and include factors such as
the target organization’s hierarchical structure. In our
process variant designing framework, we only consider two
situation-dependent criteria, namely project properties (Song
and Osterweil, 1998) and system features (Turner et al.,
1999). These two criteria are deemed to be more salient to
the students when they analyze the project specifications,
which document the business requirements of the protagonist
organization.

161

Journal of Information Systems Education, Vol. 21(2)

Figure 1. Framework for Designing an IS Development Process Variant

The project properties considered in our framework

include the degree of difficulty, familiarity, complexity and
scale of the system to be developed (Song and Osterweil,
1998). In addition, a crucial and major project property taken
into consideration was the degree of coupling between the
system’s functionalities. This property refers to whether the
system functionalities are loosely or tightly interrelated or
interdependent on each other for the completion of a
business process or service. In particular, functionalities that
support business processes cutting across functional or
departmental boundaries can be expected to be closely
coupled with other related functionalities. This property is
also important because it is closely related to the features of
the system which are deemed to be at a higher level of
encapsulation for related system functionalities (Turner et
al., 1999). From the features perspective, our framework
focuses on the feature breadth versus feature depth of the
particular IS to be developed. An IS with multiple but simple
features can be considered as possessing high feature breadth
but low feature depth, whereas another one with fewer
features but that is of higher complexity can be considered as
possessing low feature breadth but high feature depth.

Collectively, the two situation-dependent criteria in our
framework are closely related to the two sources of
complexity that are commonly associated with IS (Iivari and
Koskela, 1987). The scope of the application domain, e.g.
the number of transaction types processed by the IS, is
mapped to the feature breadth versus depth dimension. The
inherent multidimensionality of the IS involving an
interaction between technical requirements, organizational
structure requirements and social communication
requirements is mapped to the functional coupling property.
The feature criterion and the functional coupling property
also have a major impact on the size and scope of the IS,
which would in turn affect other project properties.

3.2 Method Fragments Selection
Step 2 of SME involves the selection of appropriate method
fragments classified along many dimensions such as
perspective, abstraction and layer of granularity
(Brinkkemper et al., 1998). Our process variant designing
framework focuses only on the perspective dimension, which
classifies method fragments along the two sub-dimensions of
process, i.e., the task to be executed, and the product, i.e., the
deliverables upon completion of the task. The perspective

dimension is easier for the students to grasp since they would
have learnt the theoretical knowledge of each method
fragment and actually created some of the associated
products in the prerequisite courses., The required method
fragments would be selected, depending on the situation-
dependent criteria of the IS to be developed. To illustrate, a
small development team working on an IS for a familiar
industry with few features of low functional depth would
only need to undergo a simple business analysis rather than
complex process modeling. The former only involves
speaking to the end business users to gather their
requirements whereas the latter would require a lengthy
period of modeling various business processes in the
organization.

Additionally, our process variant designing framework
restricted the method fragments to those compatible with the
object oriented analysis, design and programming paradigms
in order to be consistent with the use of the object oriented
Java language. Our framework also removes redundant
method fragments that performed similar tasks (Fitzgerald et
al., 2006). These techniques reduce the ambiguity and
conflict involved in the method fragments selection. For
instance, it is illogical to assemble a traditional data flow
diagram with an Unified Modeling Language (UML) activity
diagram since the former is for structured system analysis
and design whereas the latter is for object oriented system
analysis and design. Moreover, both method fragments are
essentially performing the same task of system process
modeling, and selecting both fragments would result in
redundancy.

In conjunction with our framework, a method base of
carefully chosen method fragments was created. One of the
key criteria for choosing the method fragments was that
students needed to possess the theoretical knowledge,
acquired from prior prerequisite courses, to apply them. The
method fragments were organized in the method base along
the perspective dimension, i.e., in terms of process and
product. The method base is shown in Table 1.

3.3 Process Variant Assembly
Step 3 of SME typically involves complex assembly rules
(Brinkkemper et al., 1998) and our process variant designing
framework opts to skip these rules in favor of the temporal
precedence heuristic (Gnatz et al., 2001) that is more
manageable for the students to adopt. Briefly, our framework

162

Journal of Information Systems Education, Vol. 21(2)

Development
Activity

Method Fragment
Process Product

Project
Management

Project Management: Resource allocation and scheduling with setting of milestones. Gantt Chart and Resource Usage.

Business
Analysis

Requirement Analysis: Understanding the business and functional requirements. Requirement specification report
with list of assumptions.

Process Modeling: Business domain analysis and in-depth organizational business
process analysis.

UML activity diagram and process
descriptions.

System
Analysis

Use Case Modeling: Structured view of system functionality using OOAD and UML. Use case diagrams and
descriptions.

Domain Modeling: Construct initial model of real-world system using OOAD and
UML.

Class diagrams (without attributes
and methods).

System Design
(Logical)

Class Modeling: Construct complete model of real-world system using OOAD and
UML.

Class diagrams (with attributes and
methods).

Interaction Modeling: Model component interaction using OOAD and UML. Sequence and collaboration
diagrams.

Screen Flow Modeling: Model the screen flow using structured walk-through of
system from user view using agile modeling.

User interface flow diagrams or
storyboard.

System Design
(Physical)

State Behavior Modeling: Model objects state-dependent behavior using OOAD and
UML.

Statechart diagrams.

System Architecture Design: Modeling components and sub-components division,
connection, interaction and interfacing.

System architecture diagrams.

Data Modeling: Model the data requirements of system using the relational model. Entity relationship diagrams and
data dictionary.

User Interface Design: Design the graphical user interfaces using the User Centered
Design (UCD) philosophy.

User interface prototypes.

Algorithm Design: Design the various algorithms for performance of
computationally complex tasks.

Pseudo codes of algorithms.

Implementa-
tion

Prototyping: System development broken down into smaller logical groups of related
functionalities and developed in phased increments.

Working prototypes of system for
users’ evaluation.

Risk Analysis: Risks are explicitly assessed and resolved throughout the process. Risk analysis reports.
Testing: Develop and execute unit and integration testing strategies and plans. Test plans and results.

Testing User Acceptance Testing: Testing against specifications and system walk through
with user versus requirement specifications.

Test plans and results.

Table 1. Method Base Used in the Framework

Method Description
Traditional
Waterfall

Sequential development process for unambiguous and well understood user requirements where the business
environment is relatively stable. Suitable for projects that require little change. Possible to move back to previous stage,
1 step at a time.

Incremental
Waterfall

Entire system is broken down into multiple increments with each increment delivering part of the system features. The
development of each increment is a mini-waterfall. However, all user requirements are fixed before the start of the first
increment and no change can be made subsequently.

General
Prototyping
Process

Identify problem and gather initial problem to develop prototype. Implement and use the prototype. If prototype is
efficient and effective, transit to operational system. Otherwise reanalyze the problem and make revisions to enhance
the next prototype.

Rapid Application
Development

Iterative and incremental development process focusing on developing prototype (extreme prototyping). Use
concurrently with various techniques to speed up system development.

Spiral Model Evolutionary (iterative) approach of system development in which the same set of prescribed activities is repeated over
a number of cycles. Basically incorporates design and prototyping work in stages instead of at the beginning of the
development.

Rational Unified
Process

Iterative software development process framework that is highly adaptive. Project teams can tailor the framework to
select the elements of the process that are appropriate for their needs. In other words, they are not bound to a single
pattern of their developing system.

General Agile
Methodology

Focus on a small set of software development principles such as being adaptive to changes in user requirements, small
team development, rapid and multiple development iteration, to deliver system in an incremental fashion.

eXtreme
Programming

One of the most common forms of agile methodology that emphasizes collocation of a development team with end
users, informal solicitation of user requirements using story cards and multiple iteration of analysis, design, coding,
testing and integration, using pair programming. Each cycle cumulates in the release of a working system.

Table 2. IS Development Methods Used in the Framework

teaches students to assemble the method fragments in the
order of the system development activities that should be
executed (Noll, 2003) with respect to well known methods
learnt in the prerequisite courses.

The complete list of methods used in our framework is
shown in Table 2. Taking the traditional waterfall model as a

reference point, the students should then assemble method
fragments relating to analysis, design, coding and testing in
that order. While it is plausible to skip some steps or insert
additional ones that are relevant to the particular IS
development situation, it would not make sense to assemble
design-related fragments before analysis-related fragments.

163

Journal of Information Systems Education, Vol. 21(2)

Emphasis was also placed on the appropriate use of iterations
and increments that are commonly found in modern IS
development processes such as incremental waterfall,
general prototyping process and the spiral model (Aydin et
al., 2005). Nevertheless, the assembly process is closely
guided by the two situation-dependent criteria of the IS
development project. As an illustration, a simple IS can be
developed in a single iteration whereas a complex IS would
require multiple iterations of prototyping and testing.
Moreover, a complex and unfamiliar project would require a
dedicated risk management process, possibly at the end of
each iteration.

4. RESEARCH METHODOLOGY

4.1 Research Design
To determine whether our framework is indeed beneficial to
students, we conducted a preliminary empirical study in a
natural classroom setting (Neuman, 2006). Undergraduate
students taking an ESD course in our University over a 13-
week semester were taught the framework and subsequently
applied process variant designing in their project. We next
analyzed the process variants designed by the students as
well as the post-hoc performance, i.e., the final letter grade
obtained, to assess whether the students had benefited from
our framework. The main advantage of this approach was
that all the students were taught the same approach and thus
none was disadvantaged in the assessment. Moreover, the
authors together with the teaching teams had the opportunity
to observe throughout the semester how the students had
applied the process variant designing framework.

4.2 Course Structure
ESD is an advanced course offered in our IS bachelor
program. Students taking the degree are required to pass the
course, i.e., obtain a minimum letter grade of D, and
typically enroll for ESD in their 3rd-year of study. The
objective of the course is to offer a suitable avenue for the
students to apply what they have learnt in prior introductory
courses taken at a cursory level, which include the
fundamentals of software engineering, system analysis and
design, database systems, and Java programming. Students
taking ESD are therefore expected to possess adequate
programming skills and related software engineering
knowledge. These include common development methods
such as the traditional waterfall model, incremental waterfall
model and the spiral model. This course allows the students
to experience, for the first time, a simulated IS development
environment with a sufficiently high degree of realism, i.e.,
the business context is written by referring to market
practices and business operations. In addition, they are
exposed to potential group dynamics and conflicts (in the
event that they should arise).

Considering the complexity of fulfilling the course
requirements, students are awarded two times the number of
credits than those awarded to the usual courses the
University offers. The course presents an opportunity for the
University to assess the capacity of the students to build an
enterprise-level IS within a semester of 13 weeks. During the
first week of the semester, students would form teams of five
to six and the project specification would be distributed
during the first lecture. Teams meet formally with their

project advisors, who act as system users, for an hour each
week to clarify the system requirements and to report on
their progress. The scope of the project normally requires
teams to meet outside of regular classes and consultation
times. The teams are required to submit an initial system
proposal in Week 03 and a final system analysis and design
report in Week 11. There are altogether three incremental
system releases that the teams must deliver: 1) first system
release in Week 07; 2) second system release in Week 10;
and 3) the final system release in Week 13.

In order to inject realism and to minimize copying of
work across semesters, we changed the project
specifications, i.e., the business domain and the associated IS
to be developed, every semester. This approach actually
complements the pedagogical objective of our process
variant designing framework since it would compel the
students to design the best process variant that would cater to
the different system development needs. The selection and
drafting of the project specification are executed rigorously.
The choice of the system depends on 1) the complexity of
the analysis, 2) the current market demand, and 3) the
feasibility of developing the system within 13 weeks. Inputs
and comments from the industry with respect to the system
to be developed are highly sought after. Such an attempt
enables the course to be better aligned to the development
and practice of industry in general.

4.3 Overview of Study and Subjects
The study was conducted in the semester which ran between
January and May, 2008. The project specification requested
the students to develop an Integrated Resort Management
System (IRMS) to support the various business operations of
a large scale resort. Furthermore, students were required to
implement the standard administrative functions typical in a
large-scale organization and factor in adequate security
controls. To encourage the creation of variability from a
single project specification, the students were allowed to
“reconfigure” the required modules based on their own
business assumptions which were subjected to approval by
their respective project advisors. Specifically, the business
operations were split into four main business areas, namely
hotel, casino, convention center and shopping mall. The
functional requirements were divided at a finer granularity
into 10 core feature modules consisting of security, hotel
room, casino, shopping mall tenant, entertainment,
convention center, banquet, event, employee and automatic
alerting system.

The students were told that the choice of feature breadth,
(i.e., the number and variety of features,) and depth, (i.e., the
complexity of the features), was entirely theirs as long as the
basic features were included. The emphasis was on
analyzing, designing, and implementing an integrated system
coherent with the organizational business objectives. For this
purpose, the students were presented with the case situation
that emphasized the delivery of a reliable high-end hotel and
resort management system specifically tailored to the unique
requirements of the client. Students were also specifically
told that they would be assessed on their documentation,
project management, graphical user interfaces and other soft
skills such as presentation and minute-taking during
consultations.

164

Journal of Information Systems Education, Vol. 21(2)

The descriptive statistics of the students taking the ESD
course are listed in Table 3. Altogether, 151 students took
the course and they were grouped into 25 teams of between
five to seven students per team with the average team-size
being 6.04 (δ = 0.351). The gender proportion of the students
reflected the general demographic trend of IS majors in our
University, with more males than females. The majority of
the students were 3rd year undergraduates.

Item Breakdown Statistics
Gender of Students Male 87 (57.62%)

Female 64 (42.38%)
Year of Study 3rd Year 128 (84.77%)

4th Year 23 (15.23%)
Table 3. Descriptive Statistics of Students

4.4 Research Procedure
The IS development process variant designing framework
was taught to the students during a series of pre-semester
workshops along with other materials pertaining to IS
development using the chosen development platform, i.e.,
Java Platform, Enterprise Edition (Java EE). The importance
of designing and utilizing an appropriate process variant in
aiding their project work to develop an effective IS was
emphasized to the students during the workshops. In brief,
the students were taught to begin by defining the properties
and features of the system that they proposed to develop.
Based on the unique properties and features, each team then
proceeded to select the appropriate method fragments from
the common method base shown in Table 1, and to assemble
them into their own customized process variant.

The knowledge on process variant designing was put into
practical application during the first two weeks of the
semester when the students went about designing their own
process variants for developing their respective IRMS. This
was done concurrently with the other project tasks. The
students received further guidance from their respective
project advisors during the consultation sessions in walking
through each of the three steps of the designing process. The
students were required at the end of Week 02 to explain the
design rationale for their team’s respective process variant as
well as its feasibility, given the scope of the project, i.e., the
features that the students proposed to be implemented. The
process variant was not cast in stone and students were
encouraged to make modifications along the way. Teams
were expected to finalize their process variant by Week 03
and document the process variant in the system proposal.

No specific tools were adopted, unlike in SME where a
Computer-aided Methods Engineering (CAME) tool is
typically used (Tolvanen, 1998). This was intended to reduce
the associated learning curve. Instead, the students were
instructed to develop their own process variant using
standard word-processing software that supported flowchart
drawing. In other words, the final process variant was
represented using the standard flowchart notations that the
students were familiar with. The correctness of the process
variant was then verified by the project advisors.

The results of the study are discussed in the following
two sections. We first present a qualitative analysis of the
process variants designed by the students to illustrate how
our framework was applied by the students. This is followed
by an initial quantitative assessment of the viability of

process variant designing based on our framework in aiding
students in their IS development endeavor.

5. PROCESS VARIANT DESIGN IN ACTION

Based on our observations, the students generally designed
their process variants contingent on whether they had
decided to develop a system that supported numerous
business features but with fewer complexities or details,
compared to one that supported fewer but more advanced
business features. Consequently, the functional coupling
property and feature depth/breadth criteria were used as the
primary dimensions to classify the process variants designed
by the students. The following discussion on the different
types of process variants designed by the students will be
structured along these two dimensions.

The process variants designed by the students could be
broadly classified into three categories: 1) breadth and
loosely coupled, 2) depth and tightly coupled, and 3) breadth
plus depth and moderately coupled. Furthermore, while the
process variants developed for each category were not
entirely similar, they closely resembled one another and
could be collapsed into a single generic variant for each
category to facilitate our discussion. Another interesting
observation was that some of the teams opted to fall back on
the traditional waterfall model regardless of the complexities
of their proposed systems. The implications of this
observation will be discussed in Section 6.

5.1 Breadth and Loosely Coupled
This category involved a proposed system that provided only
basic features for each of the 10 modules in the
specifications. Such a system was designed to provide the
bare minimum support for the four business areas of the
resort and there were few interactions between each area.
One of the evaluators commented that although this category
of systems was technically easier to implement and thus
unlikely to suffer from technical errors; the system however
viewed the resort as functional silos and suffered from poor
creativity that limited future expansion of the resort’s
business processes and services.

Most of the teams with projects of this nature opted to
assemble the method fragments into an incremental
waterfall-like process variant shown in Figure 2. The
common reason given was that such a process variant
allowed them to “break down” the system into three
increments consistent with the two prototypes and the final
deliverable mandated by the course requirements. Since the
functional coupling was minimal, the teams could then
deliver parts of the required features with each increment.
This was also the main reason teams using this process
variant did not perform process modeling compared to teams
in the latter two categories. Some of the teams split the
increments bearing in mind the priority of feature modules,
i.e. releasing the more important modules in their entirety
first. The remaining teams tackled all feature modules
concurrently but focused on the more important sub-tasks
within each module. Either way, the process variant shown
in Figure 2 provided the flexibility for the teams to work on
the feature breadth of the system. However, using this
process variant prevented the teams from making changes to
the features in the later increments since the requirements
were fixed at the beginning of the project.

165

Journal of Information Systems Education, Vol. 21(2)

Figure 2. Generic Version of the Process Variant Adopted by Students Classified Under Breadth and Loosely Coupled

System

Figure 3. Generic Version of the Process Variant Adopted by Students Classified under Depth and Tightly Coupled
System

5.2 Depth and Tightly Coupled
The proposed systems under this category are meant to focus
on one particular business area of the resort and develop
advanced features around it. The remaining business areas
and modules were given basic to moderate attention. The
general challenges faced by the teams included: 1) the need
for the system architecture to be sound, 2) the need for team
members to have a detailed understanding of each other’s
work, and 3) the requiring of intensive coding for the
advanced features. Consequently, the process variants
assembled by the teams (see Figure 3) closely resembled
those of the programmer-centric Extreme Programming (XP)
method which focuses primarily on the programming aspects
of system development (Beck, 2000; Schuh, 2005).

The programming iterations were relatively short, each
lasting about 1-3 weeks with the norm being between two

weeks. Each of the iterations involved system design,
intensive programming and testing. Based on observations
from the project advisors, each team typically sub-divided
themselves into various small groups of 1 or 2. For instance,
once the team had finished the system designing, 2-3 persons
were assigned to the programming work while the remaining
team members were responsible for formal documentation
and development of test cases. Each of the short iterations
cumulated into an executable release which was put through
the required integration testing to ensure compatibility with
the previous releases. The team members then conducted a
risk analysis before proceeding with the next iteration. The
number of iterations was typically greater than the mandated
three system releases as the teams preferred to break the
programming tasks into more manageable portions.

166

Journal of Information Systems Education, Vol. 21(2)

Figure 4. Less Agile Generic Version of the Process Variant Adopted by Students Classified Under Breadth Plus Depth

and Moderately Coupled System

5.3 Breadth plus Depth and Moderately Coupled
This category included proposed systems that attempted to
implement relatively advanced and interlinked features for
almost all of the business areas and modules. These teams
typically had many long discussion sessions with their
project advisors on how to implement a comprehensive
system capable of supporting business processes and services
that cut across different business areas or functional
departments of the resort. All the evaluators generally
reached a consensus that this category of systems was the
most technically and logically demanding of the three
categories. Teams that developed systems in this category
generally faced problems from both the first two categories
in addition to a more complex set of business requirements.
Thus, we did not find it surprising that the teams developed
process variants that were slightly similar to the first two
categories. We further noticed that the process variants
developed by the teams could be sub-divided into less agile
and more agile variants. By more agile, we refer to a closer
resemblance to one or more of the agile methods (see Schuh,
2005, for example).

We will first discuss the less agile process variant, (see
Figure 4), which resembled a heavily redesigned adaptation
of the incremental waterfall model. By and large, the teams
adopting the less agile approach assembled their method
fragments into a coherent process variant that exhibited two
characteristics: 1) it was a hybrid of the traditional waterfall
model and the incremental waterfall model; and 2) it
comprised three increments (i.e., iterative loops)
corresponding to two intermediate prototypes and the final
system. Like the breadth and loosely coupled category, this
approach enabled the project advisor to monitor the progress
of each team and assess their continual efforts, thus
discouraging teams from deferring developmental work to
the last weeks of the semester that would often result in a
rushed job. Hence, this approach was still in accordance with
agile software development in which the emphasis is on
early and continuous delivery of the software product.
However, the lower agility was a consequence of the

inherent weakness in the strict incremental waterfall model
which compelled students to execute all the intermediate
methods thus plausibly exhausting precious time, given the
tight dateline. To compensate for this weakness, some of the
teams incorporated optional method fragments into their
process variants. The dashed arrow connectors in increments
2 and 3 of Figure 4 indicate that the component intermediate
method fragments are optional. In other words, students
might skip certain method fragments if the particular
prototype revision did not require changes to be made to
them.

Whenever possible, students also tried to include
concurrent execution of method fragments to enable optimal
utilization of the limited human resources. During the system
design (physical) phase, the teams were encouraged by the
project advisors to sub-divide themselves into pairs based on
the expertise of individual members to work on separate
method fragments. The same concurrent execution could be
found in the implementation phase. In a strictly incremental
waterfall model, students would be compelled to execute all
the method fragments sequentially. Another interesting
observation is that students attempted to incorporate all of
the method fragments embedded in the method base into
their process variant. A plausible explanation was that given
the substantial challenges posed by the feature breadth and
depth and the intricacies of the businesses processes,
students might have felt more confident following a more
rigorous albeit a more tedious process variant.

The more agile process variant (see Figure 5) resembled
the XP iteration model in the depth and tightly coupled
category. However, three key distinctions made it more
useful for teams that attempted systems with both breadth
and depth together with moderate functional coupling. First,
this process variant featured more method fragments
resulting in a more rigorous process variant compared to that
presented in Figure 3. This is similar to the rationale of the
less agile process variant in Figure 4. However, the current
process variant gained agility because of the concurrent
method fragments for performing screen flow modeling, user

167

Journal of Information Systems Education, Vol. 21(2)

Figure 5. More Agile Generic Version of the Process Variant Adopted by Students Classified Under Breadth Plus

Depth and Moderately Coupled System

interface design and data modeling, which was the second
distinction. Third and most importantly, the current process
variant allowed concurrent programming iterations along the
lines of the Feature-Driven Development (FDD) agile
methodology (Schuh, 2005). In other words, teams were
better able to sub-divide their members into mini-
development groups to tackle tasks of a finer granularity than
the complete prototype release catered for by the process
variant shown in Figure 4. For instance, each group of
students could undergo multiple iterations in delivering the
features for a single prototype. This facilitated a more
effective integration with features created by other groups.

The fact that the students had designed and applied three
different categories of process variants was a clear indication
that our framework is a viable pedagogical tool for aiding
students in learning IS development process variant
designing. Given the close similarity between process variant
designing and SME, we believe that process variant
designing, being the easier technique to apply, could serve as
a useful starting point for students to acquire the knowledge
and practical experience to eventually practice SME. A
logical next step is to determine whether process variant
designing indeed leads to better IS development
performance, i.e., whether process variant designing benefits
students.

6. ASSESSING THE BENEFIT OF PROCESS
VARIANT DESIGNING FOR STUDENTS

The authors and the teaching team generally agreed that it
was difficult to assess the effectiveness of the various
process variants developed by the students. Consequently,
the task of determining whether process variant designing
benefited the students is a non-trivial one. This was because
the grading of the project systems was based on a checklist
that emphasized the match between proposed business
requirements and actual implemented system features as well
as the level of complexity, integration and technical errors.
The appropriate design and use of the IS development

process variant was not an explicit assessment criterion since
this was not the main objective of the ESD course. Thus, it
was entirely possible that a team using the traditional
waterfall model could deliver a better system than a team
using any of the four generic process variants discussed pre-
viously. In fact, this was indeed the case with one team that
used the traditional waterfall model obtaining a B+ grade.

Nonetheless, we deduced that if the teams had designed
an appropriate process variant tailored to their specific needs,
it should aid them in the development process, thus leading
to the delivery of an overall better system compared to those
who simply used the traditional waterfall model. Thus the
final letter grade awarded to the teams was used as a
surrogate measure of relative effectiveness. This approach
provided us with initial objective figures to ascertain the
benefit of process variant designing for the students. The fact
that there were teams who opted to use the traditional
waterfall model provided a control group for comparing
against those teams that applied process variant designing.
This mitigated the weakness of the non-experimental design
adopted for the study. The grading criteria used are shown in
Table 4. We used the final letter grade that included the
documentation assessment instead of solely evaluating the
development aspect because documentation is an inseparable
part of IS development. In fact, the output of most method
fragments collectively constituted the bulk of the contents of
the report.

In addition, during the dialog sessions held at the end of
the semester, the students were asked to rate individually
their perception of the usefulness of the IS development
process variant designing framework that they had used for
the project (using a 7-point scale). Presumably, students who
designed their own process variant should find them more
useful compared to the traditional waterfall model. We also
solicited feedback from the students which were tape-
recorded during the dialog session. The summary of the
findings are discussed in the following paragraphs.

The final team grade was translated into the respective
grade point on a 5-point scale with A+/A being equivalent to

168

Journal of Information Systems Education, Vol. 21(2)

Assessment
Component

Weight Breakdown

System Proposal 10% N.A.
System Analysis
and Design Report

20%

First System
Release

10% Conformance to Business
Requirements and System
Proposal = 30%
Feature Breadth = 30%
Feature Depth = 40%

Second System
Release

10%

Final System
Release

50%

Table 4. Course Assessment Criteria

5.0 and each subsequent half-grade step on a decreasing
interval of a 0.5 grade point. The lowest team grade awarded
was D+ and no team failed the course. The cross-tabulation
of the final team grade against the process variant categories
is shown in Table 5. The mean grade point of teams who
used the traditional waterfall model was 2.625 (δ = 1.0308)
and lower compared to those that designed their own process
variants, which was 3.762 (δ = 0.1746). An independent-
samples t test however indicated that the mean difference
only approached but did not reach statistical significance,
assuming unequal variance (∆Mean = -1.137, t = -2.089, p =
0.110). This was most likely due to the smaller number of
teams who used the traditional waterfall model and the fact
that one of them obtained a good grade. Although teams that
designed their own process variant generally obtained a
better grade point compared to those that did not, this
inference did not reach statistical significance.

Among the four different categories of process variants,
there was no significant difference in the mean grade point.
This was indicated by a one-way analysis of variance
(ANOVA) test (F (3, 17) = 0.382, p = 0.767). Thus, teams
that designed their own process variants obtained
comparably grade points. Interpreting these two findings
together, we conclude teams that designed their own process
variants appeared to consistently outperform teams that did
not, although caution should be exercised in drawing this
conclusion due to the non-significance of the first finding.

It was entirely possible that the better performance
obtained by teams who designed their own process variants
was attributable to their inherent capabilities instead of the
actual process variant used. In the absence of any suitable
measures on the students’ capabilities, we analyzed the
amount of development effort expended by each team with
respect to the final letter grade obtained. Development effort
was operationalized as the mean man hours reported by each
team for the entire project. This figure was calculated using
the total man hours expended by each team member as
reported in the Gantt chart of the system analysis and design
report. It is imperative to note that these are reported man
hours and teams could expend more than this amount of time
on the project on their own. We assume that the students
worked on the project only during the weekdays and
expended a maximum of 6 hours per day. This takes into
consideration the normal lesson hours and the possibility that
the students needed to prepare for other courses. Throughout
the entire 13-week semester, the maximum man hour a
student could expend was thus 390 man hours. However, the
actual reported man hours ranged from a low of 205 man

hours to a high of 405 man hours with a mean of 292.53 (δ =
40.058) man hours. The mean man hours expended for each
team is shown in Table 6.

A two-way ANOVA test on the mean man hours
expended by each team with the category of process variant
and the final letter grade as the independent variables was
conducted. The results indicated that there was no significant
difference in the mean man hours across the different
categories of process variant used (F (4, 5) = 1.932, p =
0.244) and the final letter grades obtained (F (6, 5) = 3.285, p
= 0.106). The interaction effect was also not significant (F
(9, 5) = 2.471, p = 0.166). We may therefore conclude that
the final letter grade obtained by the team was not affected
by the development effort expended by each team.

The mean rating of process usefulness among students
who used the traditional waterfall model was 4.320 (δ =
1.3760) and lower compared to those that designed their own
process variants, which was 5.120 (δ = 1.177). An
independent samples t test indicated that the mean difference
was statistically significant, assuming unequal variance
(∆Mean = -0.799, t = -2.713, p = 0.011). Furthermore,
among the four different categories of process variants, there
was no significant difference in the mean rating (F (2, 123) =
0.306, p = 0.737). Thus, students who designed their own
process variants consistently found it to be more useful
compared to those who merely used the traditional waterfall
model.

Moreover, through the verbal discussion held during the
dialog session, we believe that imparting in students the
ability to design their own process variants was generally
effective in improving their performance in the course. On
the one hand, teams that managed to complete their proposed
systems in a planned, orderly fashion generally satisfied
three criteria. First, these teams mentioned that they were
able to articulate the specific situations of their project and
develop a coherent business case as the basis for subsequent
system development activities. Second, these teams told us
that they were able to assemble together a set of method
fragments that they perceived to be suitable for the specific
variation of their proposed system which was identified
earlier. Lastly, most of the 21 teams that designed their own
process variant were able to execute diligently the process
variant as they had planned it, throughout the entire 13-week
semester. It should however be noted that, based on the
feedback from the project advisors, there were indeed a few
teams that required their project advisors to exercise
additional supervision in order to follow through with their
respective process variants.

On the other hand, the handful of 4 teams that opted to
follow the traditional waterfall model commented that they
had tended to fall behind project milestones because of the
inability to overcome the scale and complexity of the project
specification. Furthermore, most of these teams admitted that
they had had to scale down the feature levels of their final
delivered systems due to various intermediate programming
difficulties and integration problems.

Generally, the teams that opted to spend more time
during the first two weeks on developing their process
variants appeared to be rewarded with a systematic IS
development process variant tailored to their specific needs.
This aided them in their subsequent development activities,
including the facilitation of short programming iterations,

169

Journal of Information Systems Education, Vol. 21(2)

Process Variants
Final Team Grades

A+/A A- B+ B B- C+ C D+ Total
Traditional Waterfall Model
(Did not design own process
variant)

0 0 1 0 0 2 0 1 4 (16%)

Breadth and Loosely Coupled 0 1 1 2 1 1 0 0 6 (24%)
Depth and Tightly Coupled 2 1 0 2 2 1 0 0 8 (32%)
Breadth plus Depth and
Moderately Coupled (Less
Agile)

0 1 1 1 0 0 0 0 3 (12%)

Breadth plus Depth and
Moderately Coupled (More
Agile)

1 1 0 1 1 0 0 0 4 (16%)

Total 3
(12%)

4 (16%) 3 (12%) 6 (24%) 4 (16%) 4 (16%) 0 (0%) 1 (4%) 25

Table 5. Cross-tabulation of Process Variants and Final Team Grade

Team Grade Process
Variant

Mean Man Hours Team Grade Process
Variant

Mean Man Hours

1 C+ 2 242.83 (δ = 15.012) 14 C+ 1 268.33 (δ = 11.377)
2 B 3 298.71 (δ = 17.168) 15 B 2 311.50 (δ = 6.526)
3 B- 3 290.17 (δ = 27.142) 16 B- 3 277.50 (δ = 12.013)
4 A+/A 5 331.67 (δ = 20.194) 17 C+ 3 280.00 (δ = 5.916)
5 D+ 1 274.00 (δ = 20.940) 18 B 3 281.67 (δ = 18.859)
6 C+ 1 294.17 (δ = 19.469) 19 B 5 337.50 (δ = 10.062)
7 A- 2 293.33 (δ = 11.450) 20 B- 5 261.83 (δ = 9.765)
8 A- 3 315.00 (δ = 8.931) 21 B+ 1 290.00 (δ = 10.408)
9 A- 4 283.33 (δ = 21.082) 22 B+ 2 313.33 (δ = 15.202)

10 B+ 4 302.17 (δ = 16.817) 23 A+/A 3 301.50 (δ = 13.137)
11 B 4 254.83 (δ = 7.346) 24 A+/A 3 311.00 (δ = 9.798)
12 B 2 278.33 (δ = 10.775) 25 A- 5 305.00 (δ = 16.833)
13 B- 2 307.67 (δ = 12.534) Process Variant: 1 = Traditional Waterfall Model, 2 = Breadth and

Loosely Coupled, 3 = Depth and Tightly Coupled, 4 = Breadth plus Depth
and Moderately Coupled (Less Agile), 5 = Breadth plus Depth and
Moderately Coupled (More Agile)

Table 6. Mean Man Hours Expended for Development Activities

This aided them in their subsequent development activities,
including the facilitation of short programming iterations,
concurrent methods and optional method fragments. It
appears that the appropriate use of process variant designing
built upon the three decisive factors identified earlier could
have a positive impact on students’ performance in the ESD
course. Coupled with the fact that the students had found
process variant designing to be useful, we may draw a
preliminary suggestion that process variant designing could
be beneficial to students.

7. CONCLUDING COMMENTS

We believe that, owing to the explicit injection of IS
development process variant designing framework into ESD,
the majority of the students were generally able to assemble
an integrated process variant appropriate for tackling a multi-
tier enterprise system development project. In particular,
preliminary observation suggests that a process variant
tailored to the specific needs of a project could be effective
in improving students’ performance in a course compared to
the use of the traditional waterfall model (caution should be
exercised here since part of the quantitative statistical
analysis results was not significant). In other words, process
variant designing can benefit students invaluably. This is a

noteworthy achievement given that the project was set in an
unfamiliar business domain context, and the students were
under the pressure of severe time constraints as well as the
demand for a high standard of skills requirements. On a
separate note, we initially conceived the injection of process
variant designing into the course curriculum with the broader
pedagogical objective of equipping the students with the
necessary prerequisite knowledge to eventually learn and
apply SME. We firmly believe that this objective has been
achieved and that students would be better equipped to tackle
SME when they enter the industry after graduation.

We hope that our experience would be useful for other
educators for application in their own courses. The gist of
our framework may be replicated in other IS development
courses of a similar nature to our ESD course. For instance,
if structured system analysis and design is being used with a
non-object oriented development platform, then our
framework may be modified by replacing our method base in
Table 1 with the appropriate method fragments and
removing those methods in Table 2 that are not suitable for
the structured approach. The Rational Unified Process that is
intended to be used with the object oriented UML diagrams
may be dropped, as an example. Even when the object
oriented system analysis and design is being used, educators

170

Journal of Information Systems Education, Vol. 21(2)

can still customize the method base according to their
respective needs.

One of the key limitations of the study is the small
sample size due to the fact that the statistical analysis was
performed at the team level and for only one semester of
students. This intrinsic limitation is difficult to address
because IS development, and consequently process variant
designing, is fundamentally a collaborative effort involving
all team members. Future research can attempt to address
this limitation if the course enrollment size proves
sufficiently large. Another limitation is that the final letter
grades awarded to the teams might not be solely attributable
to the choice of process variant. Although we had shown that
development effort did not affect the final letter grade, there
could be other underlying factors not examined in our
present study. Future research can also focus on how our
process variant designing framework may be refined to
provide an even more realistic training to prepare students
for SME. Finally, it would be useful to develop appropriate
matrices to explicitly assess the viability of process variant
designing in improving the IS development performance of
students.

8. ACKNOWLEDGEMENTS

The authors would like to thank all members of the teaching
team who gave invaluable assistance throughout the entire
semester. The authors would also like to express their
appreciation to the anonymous reviewers and editors for
their insightful comments on an earlier version of this paper.

9. REFERENCES

Alexander, L. C. and Davis, A. M. (1991) “Criteria for

Selecting Software Process Models,” in Proceedings of the
15th International IEEE COMPSAC, pp. 521-528.

Ambler, S. W. (1998) Process Patterns: Building Large-
Scale Systems Using Object Technology, Cambridge
University Press.

Ambler, S. W. (1999) More Process Patterns: Delivering
Large-Scale Systems Using Object Technology,
Cambridge University Press.

Aydin, M. N., Harmsen, F., Van Slooten, K and Stegwee, R.
A. (2005) “On the Adaptation of an Agile Information
Systems Development Method,” Journal of Database
Management, Vol. 16, No. 4, pp. 24-40.

Beck, K. (2000) Extreme Programming Explained, Addison-
Wesley.

Becker, J., Janiesch, C. and Pfeiffer, D. (2007) “Reuse
Mechanisms in Situational Method Engineering,” in Pro-
ceedings of the IFIP WG8.1 Working Conference, Situa-
tional Method Engineering Fundamentals and Experiences
(ME’07), Ralyté, J., Brinkkemper, S. and Henderson-
Sellers, B. (eds.), IFIP International Federation for Infor-
mation Processing, Vol. 244, Springer, Boston, pp. 79-93.

Bergner, K., Rausch, A., Sihling, M. and Vilbig, A. (1998)
“A Componentware Development Methodology based on
Process Patterns,” in Proceedings of the 5th Annual
Conference on the Pattern Languages of Programs.

Booch, G. (1991) Object-Oriented Design with Applications,
Benjamin/Cummings.

Brinkkemper, S. (1996) “Method Engineering: Engineering
of Information Systems Development Methods and

Tools,” Information and Software Technology, Vol. 38,
No. 4, pp. 275-280.

Brinkkemper, S., Saeki, M. and Harmsen, F. (1998)
“Assembly Techniques for Method Engineering,” in
Proceedings of the 10th International Conference on
Advanced Information Systems Engineering (CAiSE
1998), Lecture Notes in Computer Science 1413, Thanos,
C. (ed.), Springer-Verlag, Berlin, Heidelberg, pp. 381-400.

Cameron, J. (2002) “Configurable Development Processes,”
Communications of the ACM, Vol. 45, No. 3, pp. 72-77.

Carroll, J. (2003) “The Process of ISD Methodology
Selection and Use: A Case Study,” in Proceedings of the
11th European Conference on Information Systems (ECIS
2003), Naples, Italy, Paper 50.

Carroll, J., Rowlands, B., Standing, C., Frampton, K. and
Smith, R. (2006) “A Framework for Redesigning ISDMs
to Enhance Global Information Infrastructure,” in
Proceedings of the 2006 European and Mediterranean
Conference on Information Systems (EMCIS 2006), Costa
Blanca, Alicante, Spain, Paper C31.

Charette, R. N. (1989) Software Engineering Risk Analysis
and Management, McGraw Hill, New York.

Davis, A., Bersoff, E. and Comer, E. (1988) “A Strategy for
Comparing Alternative Software Development Life Cycle
Models,” IEEE Transactions on Software Engineering,
Vol. 14, No. 10, pp. 1453-1460.

Firesmith, D. and Henderson-Sellers, B. (2002) The OPEN
Process Framework: An Introduction, Addison-Wesley.

Fitzgerald, B, Hartnett, G. and Conboy, K. (2006)
“Customising Agile Methods to Software Practices at Intel
Shannon,” European Journal of Information Systems, Vol.
15, pp. 200-213.

Fitzgerald, B., Russo, N. L. and O’Kane, T. (2003)
“Software Development Method Tailoring at Motorola,”
Communications of the ACM, Vol. 46, No. 4, pp. 65-70.

Gnatz, M., Marschall, F., Popp, G., Rausch, A. and
Schwerin, W. (2001) “Towards a Software Development
Process Based on Process Patterns,” in Proceedings of the
8th European Workshop on Software Process Technology
(EWSPT 2001), Lecture Notes in Computer Science 2077,
Ambriola, V. (ed.), Springer-Verlag, Berlin, Heidelberg,
pp. 182-202.

Harmsen, F. (1997) “Situational Method Engineering,”
Unpublished Dissertation, Moret Ernst & Young
Management Consultants, the Netherlands.

Harmsen, F., Brinkkemper, S. and Oei, J. L. H. (1994)
“Situational Method Engineering for Information System
Project Approaches,” in Proceedings of the IFIP WG8.1
Working Conference on Methods and Associated Tools
for the Information Systems Life Cycle, pp. 169-194.

Henderson-Sellers, B. (2003) “Method Engineering for OO
Systems Development,” Communications of the ACM,
Vol. 46, No. 10, pp. 73-78.

Henderson-Sellers, B. and Serour, M. K. (2005) “Creating a
Dual-Agility Method: The Value of Method Engineering,”
Journal of Database Management, Vol. 16, No. 4, pp. 1-23.

Iivari, J., Hirschheim, R. and Klein, H. K. (2000-2001) “A
Dynamic Framework for Classifying Information Systems
Development Methodologies and Approaches,” Journal of
Management Information Systems, Vol. 17, No. 3, pp.
179-218.

Iivari, J. and Koskela, E. (1987) “The PICO Model for

171

Journal of Information Systems Education, Vol. 21(2)

Information Systems Design,” MIS Quarterly, Vol. 11,
No. 3, pp. 401-419.

Jeyaraj, A. and Sauter, V. L. (2005) “Information System
Development Methodologies as Learning Systems,” in
Proceedings of the 11th Americas Conference on
Information Systems (AMCIS 2005), pp. 3091-3095.

Kim, Y., Hsu, J. and Stern, M. (2006) “An Update on the
IS/IT Skills Gap,” Journal of Information Systems
Education, Vol. 17, No. 4, pp. 395-402.

Klooster, M., Brinkkemper, S., Harmsen, F. and Wijers, G.
(1997) “Intranet Facilitated Knowledge Management: A
Theory and Tool for Defining Situational Methods,” in
Proceedings of the 9th International Conference on
Advanced Information Systems Engineering (CAiSE
1997), Lecture Notes in Computer Science 1250,
Springer-Verlag, Berlin, Heidelberg, pp. 303-317.

Lemmen, K., Mulder, F. and Brinkkemper, S. (1999) “An
Empirical Study on the Educational Effects of a Course in
Method Engineering for Information Systems,” Education
and Information Technologies, Vol. 4, No. 2, pp. 181-202.

Mirbel, I. and Ralyté, J. (2006) “Situational Method
Engineering: Combining Assembly-based and Roadmap-
driven Approaches,” Requirements Engineering, Vol. 11,
No. 1, pp. 58-78.

Necco, C. R., Gordon, C. L., and Tsai, N. W. (1987)
“Systems Analysis and Design: Current Practices,” MIS
Quarterly, Vol. 11, No. 4, pp. 461-470.

Neuman, W. L. (2006) Social Research Methods: Qualitative
and Quantitative Approaches, 6th Edition, Allyn and
Bacon, Boston, MA, pp. 246-271.

Nidumolu, S. R. and Knotts, G. W. (1998) “The Effects of
Customizability and Reusability on Perceived Process and
Competitive Performance of Software Firms,” MIS
Quarterly, Vol. 22, No. 2, pp. 105-137.

Noll, J. (2003) “Flexible Process Enactment Using Low-
Fidelity Models,” in Proceedings of the 7th IASTED
International Conference on Software Engineering and
Applications, ACTA Press, Anaheim, CA, pp. 675-680.

Ralyté, J. (2002) “Requirements Definition for the
Situational Method Engineering,” in Proceedings of the
IFIP WG8.1 Working Conference on Engineering
Information Systems in the Internet Context, pp. 127-152.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F. and
Lorensen, W. (1991) Object Oriented Modeling and
Design, Prentice Hall, Englewood Cliffs, NJ.

Schneider, J. G. and Johnston, L. (2003) “eXtreme
Programming at Universities – An Educational Perspec-
tive,” in Proceedings of the 25th International Conference
on Software Engineering (ICSE 2003), pp. 594-599.

Schuh, P. (2005) Integrating Agile Development in the Real
World, Charles River Media.

Serour, M. K. and Henderson-Sellers, B. (2004) “Introducing
Agility: A Case Study of Situational method Engineering
Using the OPEN Process Framework,” in Proceedings of
the 24th Annual International Computer Software and
Applications Conference (COMPSAC 2004), IEEE
Computer Society Press, Los Alamitos, CA, pp.50-57.

Slooten, K. van and Brinkkemper, S. (1993) “A Method
Engineering Approach to Information Systems
Development,” in Proceedings of the IFIP WG8.1
Conference on Information Systems Development
Process, North-Holland, Amsterdam.

Song, X. and Osterweil, L. J. (1998) “Engineering Software
Design Processes to Guide Process Execution,” IEEE
Transactions on Software Engineering, Vol. 24, No. 9, pp.
759-775.

Sutton, S. M., Heimbigner, D. and Osterweil, L. J. (1990)
“Language Constructs for Managing Change in Process-
Centered Environments,” in Proceedings of the 4th ACM
SIGSOFT Symposium on Software Development
Environments, Irvine, CA, pp. 206-216.

Tolvanen, J.-P. (1998) “Incremental Method Engineering
with Modeling Tools: Theoretical Principles and
Empirical Evidence,” Unpublished Doctoral Dissertation,
University of Jyväskylä, Retrieved January 15, 2009, from
http://users.jyu.fi/~jpt.

Turner, C. R., Fuggetta, A., Lavazza, L. and Wolf, A. L.
(1999) “A Conceptual Basis for Feature Engineering,”
Journal of Systems and Software, Vol. 49, pp. 3-15.

Van Gurp, J., Bosch, J. and Svahnberg, M. (2001) “On the
Notion of Variability in Software Product Lines,” in
Proceedings of the Working IEEE/IFIP Conference on
Software Architecture (WICSA 2001), pp. 45-54.

Van Vliet, P. J. A. and Pietron, L. R. (2006) “Information
Systems Development Education in the Real World – A
Project Methodology and Assessment”, Journal of Infor-
mation Systems Education, Vol. 17, No. 3, pp. 285-293.

Wynekoop, J. L. and Russo, N. L. (1995) “System
Development Methodologies: Unanswered Questions and
the Research-Practice Gap,” Journal of Information
Technology, Vol. 10, No. 2, pp. 181-190.

AUTHOR BIOGRAPHIES

Wee-Kek Tan is an instructor and Ph.D. candidate at
National University of Singapore. He
holds a B.Comp. in Information
Systems (First Class Honors) from the
National University of Singapore. His
research interests include social
computing, the design of online
decision aid, human-computer
interaction, and information systems
development and education. His
research has been published in

conferences such as ACM SIGMIS Computer Personnel
Research Conference, IFIP Working Group 8.2 Working
Conference, European Conference on Information Systems,
and Americas Conference on Information Systems.

Chuan-Hoo Tan is an assistant professor of Information

Systems at City University of Hong
Kong. He holds a Ph.D. in Information
Systems from the National University
of Singapore. His research interests
include the design and evaluation of
consumer-based decision support
interfaces, electronic commerce, and
technology adoption. His work has
been published in journals such as

Information Systems Research, IEEE Transactions on
Engineering Management, Annals of Operations Research,
Information & Management, Electronic Markets, and
Communications of the ACM as well as conferences such as
International Conference on Information Systems.

172

Journal of Information Systems Education, Vol. 21(2)

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2010 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

