Journal of Information Systems Education, Vol. 20(4)

Interpreting Beyond Syntactics: A Semiotic Learning
Model for Computer Programming Languages

Jeffrey May
Computer Information Systems Department
James Madison University
Harrisonburg, VA 22807 USA
mayjl@jmu.edu

Gurpreet Dhillon
Information Systems Department
Virginia Commonwealth University
Richmond, Virginia 23284 USA
gdhillon@vcu.edu

ABSTRACT

In the information systems field there are numerous programming languages that can be used in specifying the behavior of
concurrent and distributed systems. In the literature it has been argued that a lack of pragmatic and semantic consideration
decreases the effectiveness of such specifications. In other words, to simply understand the syntactic features of a
programming language alone does not provide an adequate foundation for students, programmers and designers to learn or to
create robust and efficient programs. As a result, this paper will present a fresh approach for both teaching and understanding
programming languages. The approach presented in this paper uses semiotics as a theoretical lens for identifying the important
issues that transcend syntax issues alone and creates an organized conceptual model that will force instructors to facilitate a
deeper understanding of programming constructs to their students.

Keywords: Programming Instruction, Conceptual Model, Semiotics, Language Construct Analysis

1. INTRODUCTION

For many college students, learning a new programming
language and using that language to solve complex problems
in an efficient manner can be a difficult or even seemingly
impossible task (Robins et al., 2003). For introductory
computer programming classes, student failure rates of
greater than 50% are not uncommon. Similarly, it is not
uncommon for organizations to spend countless education
dollars on existing programmers to learn a new programming
language only to find that many employees are not capable
of making successful transitions from one language to the
next (i.e. COBOL to Java). Thus, it could be argued that
these high failure rates result from inadequate approaches to
teaching new programming languages.

This paper argues that current approaches for teaching
new programming languages tend to concentrate too much
effort on syntactical issues and not enough organized or
explicit attention to other important issues. Such a position is
supported by Wing (1990) where she argues that a lack of
pragmatic and semantic consideration results in poor
programming output. Similar conclusions have been reached

by Wiedenbeck and Ramalingam (1999) where they report
that students from programming classes have a strong
comprehension of program function, but are weak in their
ability to comprehend deep-rooted issues such as control
flow and other important efficiency-related issues. In other
words, current programming instruction tends to create an
environment where students focus their attention on the
syntax of various programming constructs such as structure,
shape, logic, and the appearance of the actual code without
explicitly understanding other important issues such as
efficiency, meaning, purpose, and proper usage of such code.
Thus, Robins et al. (2003) concluded that a strategy for
improving student comprehension of programming
constructs needs to be explicitly presented to the
programming community.

As a result, this paper will present such a strategy using a
fresh and organized approach for learning new programming
languages. The approach presented in this paper uses
semiotics as a theoretical lens for identifying the important
issues that go beyond syntax issues alone and creates a
conceptual model that could be used in both universities and
organizational settings as a learning tool. The goal of this

431

Journal of Information Systems Education, Vol. 20(4)

model is to create an organized approach for instructors that
will force the explicit understanding of all surface level and
deep rooted issues associated with various programming
language constructs to their students. A student with a richer
understanding of programming language constructs via an
organized conceptual model may then be more capable of
learning and adapting to the introduction of new languages in
the future and will be more capable of creating elaborate and
efficient programs.

To present such an approach this paper will first discuss
semiotic concepts. This paper will then use semiotics as the
governing theory to conduct a semiotic analysis in the
context of learning a new programming language where the
output of this analysis is an organized conceptual model.

2. SEMIOTICS

Semiotics is the study of signs where a sign is defined as
anything that has meaning to somebody in some respect or
capacity (Pierce, 1948; Stamper, 1973). More specifically,
semiotics can be defined as the discipline that helps in
studying information, information flow (communication),
and culture. In other words, semiotics enables an accurate
interpretation of meanings through acts of signification
(Barley, 1983; Manning, 1992; Falkenberg).

The field of semiotics was first introduced by the
American philosopher Charles Morris in 1901 where he
introduced the notion that a sign can be broken down into
three levels of abstraction known as syntactics, semantics,
and pragmatics (Zemanek, 1966). In his book, Signs,
Language and Behavior, Morris (1955) defined these three
levels as: (1) pragmatics — deals with the origin, uses and
effects of signs within the behavior in which they occur; (2)
semantics — deals with the signification of signs in all modes
of signifying; and (3) syntactics — deals with combination of
signs without regard for their specific significations or their
relation to the behavior in which they occur.

The semiotic ladder, an analytical tool that was later
developed from the field of semiotics, represents the study of
signs at six different layers of abstraction (Stamper, 1973;
Liebenau and Backhouse, 1990). The semiotic ladder (Table
1) consists of physical, empiric, syntactic, semantic,
pragmatic, and social layers. The six layers can further be
classified into two levels - technical and human, pertaining
to information flows.

Braf (2001) suggests the purpose of the semiotic ladder
is to provide a framework for understanding the many
different usages of information from technical to human
considerations. The purpose of a programming language is to
provide a means that allow communication of information
between computers, from humans to computers, and also
from humans to humans. Thus, learning a new programming
language requires knowledge of both technical and human
considerations. As a result, the semiotic ladder shown in
Table 1 provides a theoretical tool that can be used to
uncover the deep rooted and surface level issues that pertain
to understanding how to leam and to use a computer
programming language.

As with any framework, much confusion is often found
when one attempts to completely distinguish between the
individual layers. That is, many issues could be interpreted at
more than one layer. Obviously, this confusion indicates that

distinct boundaries between the layers of the semiotic ladder
do not always appear for every design issue, especially when
one is dealing with the human layers of the semiotic ladder
(Kitiyadisai, 1991). However, one must attempt to find some
place in the semiotic ladder for all the concepts and issues
that pertain to the subject matter if one is planning to
undertake a semiotic analysis. As a result, the remainder of
this section will address the distinctions between the layers
of the semiotic ladder shown in Table 1. These distinctions
will be made in the context of an information system based
on published research. Section 3 of this paper will then
conduct a semiotic analysis in the context of leamning a
programming language using the Java language as an
example.

TECHNICAL LEVEL
Physical Layer (Physical World) — signals, traces,
physical distinctions, hardware

Empiric Layer — noise, entropy, pattern, variety,
noise variety, redundancy, codes, efficiency

Syntactic Layer — formal structure, logic, data,
records, files, computer language

HUMAN LEVEL
Semantic Layer — meanings, propositions, validity,
truth, signification, denotation

Pragmatic Layer — communications,
conversations, negotiations, intentions

Social Layer (Social World) — cultural norms,
beliefs, expectations, commitments, culture,
contracts, values, shared models of reality, attitudes

Table 1. Semiotic Ladder

2.1 Technical Level

The technical platform of any information system includes
hardware, telecommunications, and software (Falkenberg et
al., 1998). When dealing with these three components of any
IS technical platform, Falkenberg et al. (1998) state that
generally hardware maps to the physical layer,
telecommunications maps to the empiric layer, and software
maps to the syntactic layer of the semiotic ladder. These
three layers require research mainly from the mathematics
and natural science perspective and each individual layer of
the technical level is well defined in the literature (Morris,
1964).

More specifically, the physical layer of the semiotic
ladder is mainly concerned with modeling the properties of
information as input to and output from any physical
component of an information system. At the physical layer,
the term information is generally defined as a collection of
tokens that have both dynamic and static properties. A
dynamic token is referred to as a signal and a static token is
referred to as a mark. The physical layer is thus concerned
with modeling these tokens in terms of their sources,
destinations, and routes over which they are transmitted.

In contrast to the physical layer, the empiric layer views
information in terms of its availability and usability. That is,
the empiric layer is mainly concerned with the properties
dealing with the transmission of tokens across chamnels of

432

Journal of Information Systems Education, Vol. 20(4)

communication. Clearly the engineering principles of noise,
entropy, pattern, variety, noise variety, redundancy, codes,
and efficiency would all be addressed at the empiric layer
(refer to Table 1).

In contrast to the empiric layer, the syntactic layer is not
concerned with any empirical or statistical properties of
information; rather the syntactic layer is concerned with the
form and shape of this information. That is, the syntactic
layer is mainly concerned with the structure and form of
tokens. This structure and form is generally expressed as
syntax and requires generally agreed upon rules and
formulations for consistency.

2.2 Human Level

Designers who limit themselves to only technical
considerations are capable of understanding the importance
of each technical layer and how they interact with each other.
However, these layers generally disregard any human
considerations. As a result, any designer who confines his
attention to these layers alone typically will not address the
business requirements and human considerations of an
information system. As a result, information systems that are
designed solely based on technical requirements generally
fail (Dhillon and Backhouse, 1996). Hence, understanding
the human level layers of the semiotic ladder is paramount to
the success of any information system design.

As shown in Table 1, the semantic layer lies at the
interface of the technical and human levels of the semiotic
ladder. The semantic layer is mainly concerned with
meanings and is not concerned with what language is used,
how the message is encoded, or by what medium any
message is transmitted on. Meaning can be interpreted by
two very different semantic principles (Falkenberg et al.,
1998). The first principle known as the objectivistic
principle, assumes that meanings are mappings from
syntactic structures onto objective features of a real world.
The objectivistic principle assumes a perfect world scenario
because it considers the real world to be the same for
everyone and one that everyone knows independently of
language. The second principle or constructivist principle
has a more realistic orientation. It assumes that meanings are
constructed and continuously tested and repaired. These
repairs are made by the actions of people when using any
syntactic structure. This involves an evaluation of language-
action relationships. Of course, a well thought out semantic
analysis would attempt to address and correct any potential
failures before implementing any type of information system
thus limiting the repair work that would need to be done after
implementation. Semantic analysis would then consider
various concepts such as propositions, validity, truth,
signification, and denotation to uncover a rich understanding
of meaning to all concerned with a particular information
system.

In contrast to the semantic layer, the pragmatic layer is
not concerned with semantic meaning; rather pragmatics is
concerned with the intentions of both the sender and receiver
in context. In other words, the pragmatic layer recognizes
that meanings do not provide accurate or intended upon
actions or reactions when taken out of context. At the

pragmatic level, communication is studied intensively and is
considered to be successful when a meaningful utterance is
passed by a sender with a certain intention and is interpreted
by the receiver of this utterance with the same intention. As a
result, pragmatic analysis tends to deal with conversations,
negotiations, and intentions of the social arena of an
information system. Pragmatic analysis also helps in
interpreting the patterns of behavior and obligation afforded
by different stakeholders.

In contrast to the pragmatic layer, the social layer of the
semiotic ladder deals with the consequences or outcomes of
pragmatic communication. That is, when a meaningful
utterance has occurred, the social layer would identify the
social norms that would be changed, altered, or affected in
some way. As shown in Table 1, some examples of these
cultural norms might include: beliefs, expectations,
functions, commitments, law, culture, contracts, values,
shared models of reality, and attitudes.

3. A SEMIOTIC FRAMEWORK FOR ANALYZING
PROGRAMMING CONSTRUCTS

The semiotic ladder shown in Table 1 provides a theoretical
lens that can be used to uncover the surface level and deep
rooted issues that pertain to various computer programming
languages. Thus, this section conducts a semiotic analysis in
the context of learning a new computer programming
language. To conduct this analysis the conceptual model
shown in Figure 1 was created by relating the semiotic
concepts discussed earlier in this paper with the various
nuances of leaming a programming language. In other
words, the conceptual model shown in Figure 1 was created
by coupling semiotic concepts with the experience of the
authors of this paper that has been gained from teaching
various college level classes and professional seminars in
programming. The goal of the conceptual framework shown
in Figure 1 is to provide a conceptual model that forces a
richer and more organized understanding of wvarious
programming languages and their associated constructs.

As shown in Figure 1, the conceptual framework is
broken down into 2 separate types of analyses that include a
physical layer analysis and multiple language construct
analyses. The physical layer analysis is not required when
dealing with the variety of language constructs offered by
various programming languages. Hence, a physical level
analysis is only required one time for individual
programming languages. However, when dealing with
specific language constructs, separate language construct
analyses are required where each of these analyses require
empiric, syntactic, semantic, pragmatic, and social layer
investigations.

The remainder of this section will present the rationale
behind the creation of the conceptual framework shown in
Figure 1 along with illustrations of how to use it as a
learning tool. It should be noted that the following analyses
in this section will use the object oriented language of Java
for illustration purposes. However, the conceptual
framework presented in Figure 1 is intended to be scalable to
all programming languages.

433

Journal of Information Systems Education,

Physical Layer Analysis
(Required One Time Up Front)

Language Construct Analysis

(Required Multiple Times for the

Various Language Constructs of

h 4

any Programming Language)

v

h 4

Vol. 20(4)
Semiotic Layer Programming Issues
Physical IDE, Programming
Empiric Efficiency, Redundancy of
Syntactic Structure, Shape, Logic,
Semantic Meaning of Code
Pragmatic Purpose, Usage of Code
Social Language ancl. Tabbing
Conventions

Figure 1. Semiotic Framework for Analyzing a Computer Programming Language

3.1 Physical Layer Analysis
As previously mentioned, physical layer analysis is mainly
concemed with modeling the properties of information as
input to and output from any physical component of an
information system. In the context of computer
programming, physical layer issues include: the type of
environment, the actual integrated development environment
(IDE) to be used, and the technical platform that the
language supports. Obviously, physical layer issues should
be addressed up front before attempting to understand
language constructs.

For example when attempting to learn Java, Figure 2
illustrates the typical Java environment. As shown in Figure
2 information flow passes through a series of 5 steps.

STEP 4

nyProgran. java

STEP 1

My
Program
ol -

="

STEP 3

b nyProgran. class

STEP 2

Figure 2. Java Environment

The 5 steps shown in Figure 2 are detailed in the
following list:

1. Source code generation. Requires the selection of an
appropriate Integrated Development Environment
(IDE). For Java, various IDEs exist such as JCreator,
JBuilder, Notepad etc. Obviously, a working
knowledge of how to use the IDE of one’s choice is
important before attempting to apply any language. As
shown in Figure 1, source code in Java is saved with a
Jjava extension.

2. Java Compiler. In this step the source code is passed
to the java compiler to be converted into bytecode.
The result of compilation at this stage produces a
binary file with a .class extension. All Java
applications and applets are considered classes in the
Java language.

3. Java Interpreter. With step three, the .class file is
loaded into the Java interpreter. In order to do this, the
entire contents of the .class file are placed into
memory. Depending on whether one is making a Java
application or applet, the class bytecode will be
handled by the Interpreter for applications or by a Java

Virtual Machine (JVM) and a browser for applets.

4. Java Security. With applets, the JVM runs a security
check through the bytecode verifier to ensure that no
language security rules are broken.

5. Execution of Code. For step 5, the bytecode is passed
from the Interpreter to the local machine, one line at a
time, as the interpreter parses the bytecode into
machine language.

In terms of the technical platform, Java is considered
platform independent as shown in Figure 3. That is, because
local machines come equipped with a Java interpreter, code
will run on any type of machine regardless of the type of
operating system. Many other programming languages are
platform dependent and require an upfront investigation of
the stipulations of the language to be used versus that type of
operating system.

-~ Gorerer

Hellodorldipp ., Java

TWin3z

MacOs

Solaris

Figure 3. Java Technical Platform

3.2 Language Construct Analysis

When attempting to learn the vast array of language
constructs that any programming language offers, this paper
argues that a 5 layer semiotic analysis should be conducted.
For the purposes of illustration, this paper will investigate
the simple if/else selection structure of Java and conduct a 5
layer semiotic analysis using the conceptual model shown in
Figure 1.

3.2.1 Syntactic Layer: As mentioned earlier, the syntactic
layer is concemed with the structure and form of
information. For computer programming, this structure and
form is generally expressed as syntax and requires generally
agreed upon rules and formulations for consistency. This
paper argues that because the syntactic layer provides a
visual of how a programmer can communicate with a
computer, then syntactic layer analysis of any language
construct should obviously come first. However, once
syntactic layer analysis is complete, careful attention must be

434

Journal of Information Systems Education, Vol. 20(4)

given to the other 4 layers before one should attempt to write
code using any particular language construct.

Most programming languages are organized by using
basic syntactic structures for decision making (selection
structures) and handling repetition (loops). However, the
exact syntax across different programming languages usually
differs to some degree. In Java, the syntax of the if/else
selection structure is shown in Figure 4.

if (conditionl is true) Example condition:
statementl; iflx==3)
else if (condition2 is true)
{
statement2; Example statement:
statement3; System.out. printn("hello");
}
else
statementd;

Figure 4. Syntax of if/else Selection Structure in Java

3.2.2 Semantic Layer: The semantic layer is mainly
concerned with meanings and is not concerned with what
language is used, how the message is encoded, or by what
medium any message is transmitted on. Hence, semantic
layer analysis for programming language constructs consists
of describing the meaning of how a particular syntactic
structure works.

For the if/else structure in Java, several issues or rules
must be addressed at the semantic layer. For example one
must understand that when the computer encounters the code
shown in Figure 4, it finds the first true condition and
executes the statement or multiple statements associated with
that if condition. However, once the first true condition is
found and the statement or multiple statements are executed,
the structure is no longer evaluated. If no condition is true,
then the else condition executes.

At the semantic layer, the meaning of semicolons and
brackets shown in Figure 4 require additional analysis. A
semicolon is used to indicate that a statement is complete.
And brackets are used to indicate membership. For example,
statement? and statemeni3 in Figure 4 only execute if
condition2 is true. Hence, these two statements belong to
condition2 and brackets are used to indicate this
membership.

3.2.3 Pragmatic Layer: The pragmatic layer is not
concerned with semantic meaning; rather pragmatics is
concerned with the intentions of both the sender and receiver
in context. In other words, the pragmatic layer recognizes
that meanings do not provide accurate or intended upon
actions or reactions when taken out of context. For
programming language constructs the sender is the
programmer and the receiver is the compiler or interpreter
used by a particular language. Hence, the pragmatic layer is
concerned with the purpose and usage of a particular
language construct.

The purpose of the if/else selection structure shown in
Figure 4 is to provide a means for decision making where an
intended result or selection is made based on the truth of
some type of condition. For example, if a program asks a
user to enter a number that corresponds to a menu option,
then the result of the user input will determine the result of
the computer output. Since Java employs the use of Boolean

logic, decisions must be made in the crisp domain of
true/false.

3.2.4 Social Layer: The social layer is concerned with the
social consequences or outcomes of pragmatic communi-
cation. That is, when a meaningful utterance has occurred,
the social layer would identify the social norms that might
influence the pragmatic layer or the social norms that might
be changed, altered, or affected in some way as a result of
the pragmatic layer. For programming language constructs,
social layer analysis would mainly concentrate on how the
social layer influences the pragmatic layer. Hence, the social
layer would be concerned with the tabbing and language
conventions of a particular language construct. That is, social
layer analysis is concerned with the look and feel of
programming code from the perspective of the human
observer and is not concerned with how this impacts the
computer.

For example, the code shown in Figure 4 could all be
written on one single line with no negative consequences for
the computer. However, as shown in Figure 4, the code is
written in a modular manner where the individual pieces use
only one line. This is done so that humans who read this
code can understand it more easily. Additionally for
readability purposes, if a statement can only be executed if a
condition is true, then that statement or multiple statements
should be tabbed over.

In the human world the notion of tabbing code is exactly
the same as tabbing an outline for a written paper and is
often times disregarded by newcomers as trivial. Yet, social
layer analysis reminds us that if we as humans are going to
communicate with each other via a particular programming
language, then the social norms that dictate the way in which
this language is written must be followed exactly.

3.2.5 Empiric Layer: As shown in Figure 1, the empiric
layer is concerned with the efficiency and redundancy of
code. Hence, empiric layer analysis attempts to find the most
efficient manner in which to employ language constructs
where enhanced computer performance is the ultimate goal.

For the if/else selection structure, efficiency concemns
relate to using the if/else structure over using multiple if
statements. For example, Figure 5 illustrates two separate but
syntactically correct program statements that will do exactly
the same thing. However if conditionl is false, Code2 must
evaluate 2 separate conditions whereas Codel only has to
evaluate 1 condition. Thus, Codel is more efficient and will
result in faster computer performance.

Codel: Efficient VS Code2: Not Efficient

if (conditionl is true) if (condition! is true)

statementl, statementl;
else if (condition2 is true)
statement?2; statement2;,

Figure 5. Empiric Analysis of if/else Selection Structure

3.2.6 Summary of Language Constructs and Pedagogical
Advice:

Table 2 illustrates the results of the language construct
analysis conducted in this section using the if/else selection

435

Journal of Information Systems Education, Vol. 20(4)

structure of Java. As shown in Table 2, using the conceptual
model shown in Figure 1 as a theoretical lens for
investigating the if/else selection structure forces one to
uncover and organize all of the pertinent issues that should
be addressed before one attempts to employ the use of this
particular language construct. Obviously, this same type of
analysis could be conducted for the various other language
constructs in Java such as the switch structure, repetition
structures, methods, arrays, objects, inheritance,
polymorphism, etc. And, this same type of analysis could be
conducted for any other programming language. In other
words, the conceptual model shown in Figure 1 is scalable
across the various programming constructs of a particular
language and across multiple languages.

To summarize, Table 2 provides a single instantiation of
what might emerge via a language construct analysis as
shown in Figure 1. Thus, an instructor could go through a
similar exercise in the classroom where the finished product
would be an organized table that easily allows students to
truly have an enriched understanding of various language
constructs. After one language construct analysis has been
conducted by the instructor, students could then be asked to
provide similar analyses of other constructs that could be
turned in as part of an actual programming assignment. We
argue that forcing this type of exercise on a student will

facilitate a deeper understanding of programming constructs
thus providing the foundation for constructing more elegant
and efficient programs.

4. CONCLUSIONS

This paper argued that simply understanding the syntactic
features of a programming language alone does not provide
an adequate foundation for students, programmers and
designers to learn or to create robust and efficient programs.
Thus, many programming language construct issues that are
certainly important may be overlooked when an individual
attempts to employ these constructs for various program
design scenarios. As a result, this paper investigated a fresh
approach to learning programming languages. The approach
presented in this paper used semiotics as a theoretical lens
for identifying the important issues that go beyond syntax
issues alone and created an organized conceptual model
shown in Figure 1 that could be used in both universities and
organizational settings to force instructors to facilitate a
deeper understanding of programming constructs to their
students.

This paper then investigated the simple if/else selection
structure in Java to illustrate how the conceptual model
shown in Figure 1 could be used as an explicit

Semiotic Layer

Language Construct Issues

e Visual representation of language construct

if (condition is true)
statement,
(condition is true)
{
statement,
statement;
}
else
statement,

1. Syntactic

else if

Example condition:
if(x==13)

Example statement:
System.out.printin("hello");

Visual understanding of semicolons, brackets etc.

2. Semantic

used

When encountering this code, the computer finds the first true condition and
executes the statement or multiple statements associated with that if.

e Once the first true condition is found, and the statement or multiple
statements are executed, the structure is no longer evaluated

e Ifmore than one statement is associated with an if, then brackets must be

e Semicolons indicate the end of a statement

3. Pragmatic (True/False)

e Used for decision making where decisions are made based on Boolean Logic

4, Social

e If astatement can only be executed if a condition is true, then that statement
or multiple statements should be tabbed over for readability purposes

5. Empiric .

Use if else rather than multiple if statements

Table 2. Language Construct Analysis using if/else Selection Structure

436

Journal of Information Systems Education, Vol. 20(4)

learning tool that would undoubtedly force a richer
understanding of various programming language constructs.
This richer understanding that can be brought about through
the organized conceptual model shown in Figure 1 could
certainly improve learning curves of individuals faced with
learning a new pogramming language for the first time and
could certainly increase an existing programmer’s ability to
create more elaborate and efficient programs. Additionally,
because this approach is scalable across multiple languages,
then it should follow that if one were capable of leaming a
first language using this approach, then one should be able to
more quickly adapt to the nuances of any new languages
thereafter.

5. FUTURE RESEARCH

To further extend the work of this paper, a number of future
research opportunities exist. For example, a tool that
identifies and is able to summarize the common practices
used by a majority of programming instructors across a
broad spectrum of universities should be created. Providing
such information would then allow the research community
to establish a baseline to compare the output of current
approaches versus the modified approach presented in this
paper. Thus, a further research question might then arise on
how would we measure this output? Can we simply measure
a student’s comprehension of programming constructs via
the programs they create or do we need to find alternative
methods? In other words, is a program that does the job good
enough?

6. REFERENCES

Barley, S.R. (1983), “Semiotics and the Study of
Occupational and Organizational Cultures.”
Administrative Science Quarterly, Vol. 28, No. 3, pp.
393-413.

Braf, E. (2001), Knowledge or Information — What Makes
the Difference? In Liu, K., Clarke, R. J., Andersen, P. B.,
Stamper, R. K. (eds.), Organizational Semiotics —
Evolving a Science of Information Systems, Kluwer
Academic Publishers, pp. 119-132.

Dhillon, G., and Backhouse, J. (1996), “Risks in the use of
information technology within organizations.”
International Journal of Information Management, Vol.
16, No. 1, pp. 65-74.

Falkenberg, E., Hesse, W., Lindgreen, P., Nilsson, B., Oei,
H., Rolland, C., Stamper, R., Van Assche, F., Verrijn-
Stuart, A., and Voss, K. (1998), “A Framework of
Information System Concepts.” Laxenburg, Austria:
International Federation for Information Processing
(IFIP).

Kitiyadisai, K. (1991), “Relevance and information
systems,” Unpublished PhD Thesis, London School of
Economics, University of London.

Liebenau, J., and Backhouse, J. (1990), Understanding
Information. Basingstoke: Macmillan.

Liu, K. (2004), Virtual, Distributed and Flexible
Organisations - Studies in Organisational Semiotics,
Deventer, The Netherlands: Kluwer Academic
Publishers.

Manning, P. (1992), Organizational Communication. New
York: Aldine de Gruyter.

Morris, C. (1955), Signs, Language, and Behavior. G.
Braziller, New York.

Morris, C. (1964), Signification and significance - a study of
the relation of signs and values. Cambridge, Mass.: MIT
Press.

Peirce, C. S. (1948), Collected Papers. Four Volumes.
Harvard University Press.

Robins, A., Rountree, J. and Rountree, N. (2003), “Learning
and Teaching Programming: A Review and Discussion.”
Computer Science Education, Vol. 13 No. 2, pp. 137-
172.

Stamper, R. (1973), Information in Business and
Administrative Systems. London, Batsford.

Wiedenbeck, S., & Ramalingam, V. (1999), “Novice
Comprehension of Small Programs Written in the
Procedural and Object-oriented Styles.” International
Journal of Human-Computer Studies, Vol. 51, pp. 71-87.

Wing, J.M. (1990), “A Specifier's Introduction to Formal
Methods.” Computer, Vol. 23, No. 9, pp. 8-24.

Zemanek, H. (1966), “Semiotics and Programming
Languages.” Communications of the ACM, Vol. 3, pp.
139-143.

Author Biographies

Jeffrey May is an instructor of Computer Information
Systems in the College of
Business at James Madison
University and holds a PhD in
Information ~ Systems from
Virginia Commonwealth
University. Dr. May has taught
programming courses in C++ and
Java for 7 years and is currently
teaching Business Statistics and
- introductory IS classes at JMU.
ﬂ His research interests include
multi-objective decision analysis techniques, organizational
IS security, and programming and logical design.

Gurpreet Dhillon is Professor of Information Systems in the
College of Business at Virginia
Commonwealth University,
Richmond, USA and a Guest
Professor at ISEG, Universidade
Téchnica De Lisboa, Portugal.
He holds a Ph.D. from the
London School of Economics
and Political Science, UK. His

research interests include
management of information
security, ethical and legal

implications of information technology. His research has
been published in several journals including Information
Systems Research, Information & Management,
Communications of the ACM, Computers & Security,
European Journal of Information Systems, Information
Systems Journal, and International Journal of Information
Management among others. Gurpreet has authored six books

437

Journal of Information Systems Education, Vol. 20(4)

including Principles of Information Systems Security: text
and cases (John Wiley, 2007). He is also the Editor-in-Chief
of the Jouwrnal of Information System Security. Gurpreet
consults regularly with industry and government and has
completed assignments for various organizations
internationally.

438

ISCCID Evsic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2009 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

	1OP80343.tif
	1OP80344.tif
	1OP80345.tif
	1OP80346.tif
	1OP80347.tif
	1OP80348.tif
	1OP80349.tif
	1OP80350.tif

