
Journal of Information Systems Education, Vol. 18(1)

Teaching Tip

CFC (Comment-First-Coding) – A Simple yet Effective
Method for Teaching Programming to Information

Systems Students

Arijit Sengupta
Information Systems and Operations Management

Wright State University
Dayton, OH 45435, USA

arijit.sengupta@wright.edu

ABSTRACT

Programming courses have always been a difficult part of an Information Systems curriculum. While we do not train
Information Systems students to be developers, understanding how to build a system always gives students an added
perspective to improve their system design and analysis skills. This teaching tip presents CFC (Comment-First-Coding) – a
method for assisting students with information systems design and development tasks where a significant portion of the goal is
to actually build the system using a programming language and development environment. CFC uses a scaffolding strategy for
building programs where the using the comment construct of the programming language. In CFC, the first step students
perform is to describe the programming task via plain English (or any other natural language) inside comments. The CFC
process strategically and incrementally builds on this method to gradually add functionality and complexity to the program,
while allowing the student to compile and test every individual step. In multiple offerings of a sophomore level data structures
course, this method has provided evidence of improved student performance.

Keywords: Programming, Application Development, Scaffolding, Coding, Assisted Program Design.

1. INTRODUCTION

Building information systems is a significant component of
any Information Systems curriculum. There are two aspects
of building information systems – (a) design and (b)
development. Most Information Systems curricula include a
Systems Analysis and Design course, with potential follow
up courses such as Object-Oriented Design, Database
Design, etc. While colleges of business do not aim to
produce programmers, the knowledge of programming
provides business analysts with a better insight towards the
actual efforts needed for developing an information system
solution. Besides, the accrediting bodies for the colleges of
business realize the necessity for application development
knowledge in an Information Systems curriculum.
Specifically, the ABET Information Systems accreditation
requirements include the knowledge of at least one
programming language in the Information Systems programs
(ABET, 2008). The IS2009 curriculum, a joint venture
between the Association of Computing Machinery and
Association of Information Systems also recommend one or
more application development courses, and even an
application development track in the IS curriculum (Topi, et

al., 2009), demonstrating clearly the importance for IS
faculty to teach application development topics in courses.

One of the most difficult aspects in teaching application
development strategies to students is to help them move from
a problem description to logic, and finally from logic to
programming code. To reduce the complexity of the
programming structure, different types of design
methodologies have been introduced, such as the Object-
Oriented Design (OOD) and Aspect-Oriented Design
(AOD). A number of visual tools exist that help application
developers build the skeletal structures of their applications,
(e.g., Rational Rose Data Modeler (http://www-01.ibm.com/
software/awdtools/developer/datamodeler/). Many diagram-
ming tools such as DIA (http://live.gnome.org/Dia) and
Microsoft Visio (http://office.microsoft.com/en-us/visio/)
also include similar capability. While these tools can be used
to create the object structure, they do not help with the final
phase of translating specification into logic and then into
code.

Application designers use logic design methods such as
Flow charts (IBM, 1969) that to capture program structure,
including loops, decisions, procedures and branches.
However, a flow chart for even a moderately complex
program can become exceedingly complex. Tools such as

393

mailto:arijit.sengupta@wright.edu
http://www-01.ibm.com/%20software/awdtools/developer/datamodeler/
http://www-01.ibm.com/%20software/awdtools/developer/datamodeler/
http://live.gnome.org/Dia
http://office.microsoft.com/en-us/visio/

Journal of Information Systems Education, Vol. 20(4)

FlowC (Gill, 2004) help reduce some complexity by
reducing the drawing overhead of flow charts. Nassi and
Shneiderman (1973) developed the Nassi-Shneiderman
diagram (NSD) that allowed program structures to be
represented in a more compact form. Scandura (1990)
generalized and extended NSD using Flowforms, and
enabled visual programming by allowing the development of
programs via a semi-textual interface. Stone (1987) proposed
various instructional techniques for using Flowforms in
introductory Computer Science instruction.

Visual and guided programming has shown to improve
programming efficiency and code performance, while
preserving program comprehension (Naharro-Berrocal,
Pareja-Flores, Urquiza-Fuentes, & Velazquez-Iturbide,
2002). Visualizations are especially useful for the purposes
of debugging (Baecker, DiGiano, & Marcus, 1997) and other
post-development tasks. While several design tools that
provide visual methods to complex development tasks are in
existence, most of these tools require additional costs or
learning time that adds to the difficulty of designing courses
with a significant development component. While there are
many tools that help programmers design and create
applications, students learning the concept of programming
need a technique that help in the process of gradually move
from specification into logic, and finally from logic into
actual code. This is the motivation for the teaching tip
presented in this paper, which we introduce next.

2. CFC (COMMENT-FIRST-CODING)

In order to gradually build a structure, construction workers
need a form of support to develop the structure from the
specification and raw materials. In construction, such
structures are called “scaffolding”. In instructional design,
the concept of scaffolding has been very successfully used in
helping students develop language skills such as reading and
writing (Applebee & Langer, 1983). Scaffolding in the form
of screencasts (video screen captures of visual development
tools) have been shown to be effective means for teaching
object-oriented design concepts (Lee, Pradhan, & Dalgarno,
2008). The issue with scaffolding is that the assistive
methods are temporary and are discarded during the final
development stage. We expand on the success of the
scaffolding theory in a method we call Comment-First-
Coding, where comments or code documentation fragments
are used as the assistive tool, and developed systematically
over levels, but are actually incorporated into the final result
as well.

In the CFC method, the students are taught to write
code by starting with only comments, and incrementally
adding functionality to it. Instructors should prohibit students
from writing any code until they have thought the whole
design task through, and documented their understanding of
the task by writing down the different steps of the task in
English (or their native language, if the development
environment allows it). Once the students have described the
whole system (and most likely, have revisited previous steps
as they think through subsequent steps), they can then start
incrementally adding further semantics to their program by
including more code, more comments, or additional
structures. To keep things consistent, I will assume that the

students are using an object-oriented language like Java,
although the method can be used for any programming
language in which application logic needs to be implemented
using program code.

We now present the details of the CFC technique. As in
scaffolding, the methodology is developed in stages, starting
with an object-oriented (or module-based) design, followed
by logic development, structure development, and finally
code development.

STAGE A. Pre-CFC
1. Design the application using an object-oriented design

method or tool. The class structure should already be
designed before CFC. This can be done by an object-
oriented design tool like Rational, or just by hand. CFC
is not a method for designing application architecture,
but for designing logic for individual programming tasks.

2. Identify one of the tasks that need to be implemented.
This can be a method in a class with a clearly defined
and understood semantics. The task should have clear
specifications as to what will be available as input, and
what should be generated as output.

STAGE B. LOGIC DEVELOPMENT
3. This is the first actual step in the CFC process, where

the entire logic for the current method being developed
is written in English. However, instead of using a free
flowing paragraph, the students describe the program in
logical steps. No programming is needed in this step,
except for the class and method declarations. The CFC-
3 comments go inside the body of the methods that are
to be implemented.

STAGE C. STRUCTURE DEVELOPMENT
4. For each step created in Step 3, add basic code blocks

only to build the overall program structure. Such code
blocks should only include the following:

a. Variable declaration and initialization (with
descriptive comments and which steps they will likely
be used)

b. Basic program structure (if-else, for/while loops,
switch-case). The internals of the structures should be
empty, only the required parts of the structures should
be completed in this step.

c. Ensure that the comments are properly enclosed in the
structures in which they belong. Expand the comments
to provide additional details if necessary.

5. For any step that requires sub-steps, repeat steps 3 and
4, until all steps are fully expanded.

STAGE D. CODE DEVELOPMENT
6. Finally, fill in the empty structures, starting from the

most obvious (and easiest) steps and pre-requisite steps
if any. Compile and test after each section.

The above four stages and six steps provide a rigorous

method for developing programs using any development
environment or source code editor. I typically refer to a
program implementing the above steps with the step number,
such as CFC-3, CFC-4, etc. A program is CFC-3 if no part of
the program implements CFC step 4. Instructors looking for

394

Journal of Information Systems Education, Vol. 20(4)

a more compact option may also use the stages as CFC-A,
CFC-B, CFC-C and CFC-D.

3. ADVANTAGES OF CFC

There are several advantages for using CFC:
1. First of all, CFC is independent of programming

languages. Every programming language has a comment
syntax, and CFC takes advantage of this aspect of the
programming language. The comments use only natural
language text and no proprietary graphical constructs,
and hence do not require any specialized tool or
software. Any IDE or source code editor can be used for
CFC.

2. Comments are guaranteed to compile – students only
need to worry about comment markers. While this may
sound trivial, in my experience many novice
programmers use a linear approach to programming, and
do not attempt to compile the code in steps. As is
common with compilation errors, one error may lead the
compiler to generate several error messages, so often
students are distracted by multiple error messages. Since
comments never generate error messages, the step-by-
step approach in CFC ensures that the students can
compile their work at each step and ensure no new
compilation errors are found, and if the code does not
compile, they know immediately which step caused this
error.

3. Once finished, the source code is well-documented,
ensuring readability and reusability of the code. The
comments can also be used to generate code
documentation using a tool like Javadoc™ (SUN, 2002).

4. CFC allows different possibilities for assigning
programming tasks to students. Students may be asked to
start from Step 1 or possibly an intermediate step (such
as Step 3 or 4). For a complex programming project, the
instructor may provide the students with CFC-3 (and
possibly CFC-4 code) that the students have to complete.

5. Results from an initial use of CFC suggest that more
students submit code that actually compile, so they can
be tested easily by the grader.

6. Since students only need to write in English in CFC-3
(and much of CFC-4), often this infuses more creativity
in the students, resulting in potentially interesting
solution strategies.

4. USING CFC IN A COURSE PROGRAMMING

PROJECT

In order to use CFC effectively in a course, the instructors
will need to add a little more rigor to programming
assignments. Simply stating the task will likely not force the
students to use CFC, and they may be tempted to start
programming the way they are used to, and add comments
later, in order to fulfill the requirements of the task and
giving a false illusion to the grader that they did follow the
CFC guideline. To paint a complete picture, I will describe
an example of an assignment that I have used in a 200 level
data structures course, where students need to use stacks.

The following assignment asks the students to build a
non-recursive program that uses a stack to find goal

conditions in a virtual game tree that can solve many
different types of problems. The task is shown in Figure 1.

Figure 1. The MazeGame Task

“You are going to design a simple maze game. A maze
can be thought of as an m x n grid of cells. Each grid cell
is like a room with 4 sides: north, east, south, and west.
A side of the room is either a complete wall or a wall

with an open door (entry way). You can assume that the
four walls can be represented as North, South, East and

West. One or more of these walls must have a door
(none of the doors will lead outside the maze, so every
door will lead to one other room in the maze. Assume

that there is light in each room so you can see. A mouse
is initially placed in some room and a slice of cheese is

placed in another (far from the mouse). Can you help the
mouse get to the cheese?”

To develop the solution for this problem, the students

first need to complete Stage A (CFC steps CFC-1 and CFC-
2) where they develop the object-oriented design for the
solution, with a Maze data structure, a MazeReader class that
reads the maze from a text file representation, and the
MazeGame class that plays the game. In the MazeGame
class, they build a method (say, called, run) that actually runs
the solver. This is where the actual CFC process CFC Stage
2 starts with the CFC-3 comments. As mentioned above, the
comments should be written with explicit steps describing
the logic entirely in English with no programming needed at
this stage except for the method declaration. Details of these
stages for this example are described below.

4.1. Developing CFC Exercises
CFC exercises need more up-front work from the instructors.
Instead of assigning a single programming assignment, the
assignment needs to be developed in stages. The stage
deliverables can follow the CFC stage levels as described
earlier, with the first deliverable being CFC-3 (Stage B),
followed by CFC-4 and CFC-5 (Stage C) and finally the
completed program (Stage D).

In the first step, the instructor provides the students with
the problem statement, and asks the students to build the
CFC-3 solution for the problem (See Figure 2 for the CFC-3

395

Journal of Information Systems Education, Vol. 20(4)

solution for the Maze Game task, showing only the run
method). In this stage, the instructor should ask the students
not to be concerned about file structures, I/O and other
auxiliary tasks. No part of the problem should be
implemented at this point. The students should only identify
the constituent steps in the code (CFC-3). The instructor
should provide feedback to the students regarding their logic
depicted in CFC-3 before they begin working on the next
stage.

4.2. Phase 2 – Completing the Exercise
In the next phase of the assignment, the instructor asks the
students to build on the CFC-3 they created in the first stage,
to include variable declarations and basic program structures
and sub-structures (CFC-4 and CFC-5). If necessary, the
instructor may also provide his or her own CFC-3 solution
for students to start with, ensuring all students start in the
same place for this part of the exercise, regardless of their
performance in the first step. Figure3 shows the CFC-3 code
created for part of the Maze game strategy. The changes are
highlighted. Notice how the required variables are declared,
and the structures are created. Also note that one or two lines
of comments are translated into a few lines of code, but each
code segment only implements the comment immediately
preceding it. The students are encouraged to only write code
that is described in the comment before it.

Figure 4 shows the CFC-5 expansion (substeps) for the
maze game strategy. CFC-5 is essentially repetition of CFC-
3 and CFC-4 steps for any sub-steps.

In the final step, the students complete the code and
build the fully completed CFC-6 solution, which is a
completed solution of the original problem with fully

expanded documentation describing the logic and the
implementation of the logic for each step. Figure 5 shows the
CFC-6 expansion for a part of the Maze game problem. This
is the final code, although the amount of change from the
previous step is quite manageable. The changes from the
previous step are highlighted in Figure 5.

01 public void run(String filename) {
02 // Declare variables – what do we need to remember?
03 // Strategy
04 // Step 1. Read in the maze and populate a 2D array of Rooms
05
06 // Step 2. Create an instance of a stack.
07
08 // Step 3. Place a Location or a Room in the stack - it doesn't really matter
09 // which one you place, but you should create the stack accordingly.
10 // Place the Room/Location corresponding to the mouse position in the stack.
11
12 // Step 4. Now use the following strategy.
13 // While there is something in the stack
14 // Peek at the top room of the stack.
15 // If this room is not visited, do the following:
16 // Mark it to be visited.
17 // If the room location is the same as the cheese location, then you are done.
18 // display the route and exit.
19
20 // If not, find all the rooms that are accessible from this top room
21 // that are not visited
22 // (you can use a specific order, or random order - it does not matter).
23 // Push all the neighboring un-visited rooms in the stack.
24 // If the top room is already visited, pop it off the stack. Continue with Step 4.
25
26 // Step 5. If the stack becomes empty, there is no solution to the problem.
27
28 // Step 6. Find a way to show the solution - Hint - the solution is in the stack
29 }

5. RESULTS OF USING CFC IN A COURSE

I have used CFC successfully several times in my offering of
a 200 level undergraduate data structures course. Although
the course is numbered as a 200 level course, many students
often delay taking this course until their junior or senior
years because they know of the programming aspects of the
course. This results in a fairly diverse group of students in
the class, making it harder for an instructor to teach at an
appropriate level. Using CFC, I have found that students in
all different levels are able to stay with the pace of the course
and not fall behind. Since the initial CFC-3 or CFC-4 task is
an actual graded assignment, students get feedback from
their first attempt, and can correct it, or actually look at or
use the CFC-3 or CFC-4 code provided for the follow-up
task. Table 1 shows data from three offerings of this course.
In the first offering, CFC was not used. I introduced the
concept of CFC out of frustration of the students giving up
and submitting code that did not even compile. The first
offering shown in Table 1 shows that as many as 40% of the
students submitted code that did not compile correctly in
Assignment 1, so an automatic testing could not even be
applied.

In the second offering (term 2), I introduced students to
the CFC concept midway in the class, and noticed a substantial

Figure 2. A CFC-3 representation of the traversal strategy for the maze problem

396

Journal of Information Systems Education, Vol. 20(4)

12 // Step 4. Now use the following strategy.
13 // While there is something in the stack
13a while(!mystack.empty()) {
14 // Peek at the top room of the stack.
14a Room top = null; // The top room
15 // If this room is not visited, do the following:
15a if (!top.isVisited()) {
16 // Mark it to be visited.
17 // If the room location is the same as the cheese location, then you are d
17a if (top.getLocation().equals(cheeseloc)) {
18 // display the route and exit.
19
19a }
19b else {
20 // If not, find all the rooms that are accessible from this top room
21 // that are not visited
22 // (you can use a specific order, or random order - it does not matter).
23 // Push all the neighboring un-visited rooms in the stack.
24 // If the top room is already visited, pop it. Continue with Step 4.
24a }
24b }

Figure 3. CFC-4 expansion for lines 12-24 (Step 4) in Figure 2.

12 // Step 4. Now use the following strategy.
13 // While there is something in the stack
13a while(!mystack.empty()) {
14 // Peek at the top room of the stack.
14a Room top = null; // The top room
15 // If this room is not visited, do the following:
15a if (!top.isVisited()) {
16 // Mark it to be visited.
17 // If the room location is the same as the cheese location, then you are done.
17a if (top.getLocation().equals(cheeseloc)) {
18 // display the route and exit.
19
19a }
19b else {
20 // If not, find all the rooms that are accessible from this top room
21 // that are not visited
22 // (you can use a specific order, or random order - it does not matter).
23 // Push all the neighboring un-visited rooms in the stack.
24 // If the top room is already visited, pop it. Continue with Step 4.
24a }
24b }

Figure 4. CFC-5 expansion for lines 19b-24a in Figure 3.

change in the number of students submitting syntactically
correct code – the percent of students submitting correctly
compiled code increased from 57% in assignment 1 to 86%
in the first cfc step of assignment 2, and to 100% in the final
step. I in the third offering, i introduced cfc right from the
beginning, and although the correctly compiling code were
85% and 90% in assignment 1, the percentage went up to
95% and 100% in assignment 2.

Readers, please note that this was not a rigorous user-
study but just based on the outcome of student performance

with the use of a different teaching strategy. I intend to
perform an actual study for effectiveness of this teaching
method as a potential future work. The data represent just a
compilation of scores after the courses were taught, and were
not collected with the intention of eventually comparing the
results, so I am not making a claim that other factors (such as
experience and improved teaching skills) did not cause the
slight improvement of the scores. However, the percentage
of students with no compilation errors did significantly im-
prove, which was one of the goals of this teaching strategy.

397

Journal of Information Systems Education, Vol. 20(4)

12 // Step 4. Now use the following strategy.
13 // While there is something in the stack
13a while(!mystack.empty()) {
14 // Peek at the top room of the stack.
14a Room top = mystack.peek(); // The top room
15 // If this room is not visited, do the following:
15a if (!top.isVisited()) {
16 // Mark it to be visited.
16a top.setVisited(true);
17 // If the room location is the same as the cheese location, then you are done.
17a if (top.getLocation().equals(cheeseloc)) {
18 // display the route and exit.
18b this.displaySolution(mystack) // Display the solution route
18c break; // We can get out of the loop
19
19a }

Figure 5. Final CFC-6 expansion for lines 12-19a in Figure 3.

Term
N

A1CFC A1 A2CFC

Interestingly, students find CFC useful not only for the
assignments in the course, but also for development work for
their subsequent course projects, or even at work. The
following excerpt from an email message from an ex-student
suggests some evidence of effectiveness of this method:

“I remembered a while back you suggested doing
comments first then coding (CFC). It's actually worked
really well for this game tree problem. I implemented a
hash table, using a hash of each sparse matrix as a key,
but performance is still absolutely horrible. The raw
complexity of this problem is n! - so for 17 values (a
very small map) there are 355687428096000 iterations
to test!”

6. CONCLUSIONS AND FUTURE WORK

CFC is a simple addition to any existing course that involves
one or more development tasks. CFC is based on the well-
accepted learning strategy of scaffolding. However, with
CFC, the comments that are used for scaffolding purposes do
not have to be discarded when the task is complete, but
serves as a documentation strategy for the application.
Students benefit by learning in stages, and accomplishing the
task first by understanding and elaborating the logic,
followed by the program structure, and finally the actual
application code. The instructor also benefits from the fact
that more students submit code that compile correctly, and
hence can be tested via an automatic testing method. As in
any learning-oriented strategy, this method requires more
effort from the instructors’ behalf, and instructors need to
use a strategy similar to the FIDeLity strategy (Frequent,
Immediate, Discriminating and Loving) for providing
feedback after each stage of the tasks (Fink, 2003).

With CFC, the instructor adds one or more intermediate
deliverables to every programming assignment, in which the
students submit a completed program structure with no real
code, but only filled with comments describing their
implementation strategy. I believe that if this method is
implemented with rigor, involving at least one CFC-4
assignment prior to all programming assignments, it will
improve students’ ability of writing code that is well-
documented, free of compilation errors, and actually work.
While I have not performed a rigorous user study to analyze
the effectiveness of this strategy, results from initial use of
this technique in a course suggests that this technique helps
students think through their implementation and write code
that can be tested properly. The rigor in the programming
process enables students to identify areas of complexity and
incremental development methods, thereby reducing
common programming errors. A well-planned user study
involving a control group of students should allow better
evaluation of this technique.

7. REFERENCES

ABET (2008). Criteria for accrediting computing programs -

Effective for evaluations during the 2009-2010
accreditation cycle. Retrieved from http://abet.org
/Linked%20Documents-UPDATE/Criteria%20and%20P
P/C001%2009-10%20CAC%20Criteria%2012-01-08.pdf

Applebee, A. N., & Langer, J. A. (1983). Instructional
Scaffolding: Reading and Writing as Natural Language
Activities. Language Arts, 60(2), 168-175.

Baecker, R., DiGiano, C., & Marcus, A. (1997). Software
visualization for debugging. Communications of the
ACM, 40(4), 44-54.

A2 A3CFC A3
%comp Avg %comp Avg %comp Avg %comp Avg %comp Avg %comp Avg

1 10 - - 60 39 - - 70 44 - - 80 42
2 7 - - 57 42 86 45 100 43 100 45 100 42
3 20 85 43 90 44 95 45 100 45 100 46 100 44
Table 1. Results from using CFC in a 200 level data structure course. (%comp: percent of students submitting

code that compile without errors, Avg: average score out of 50)

398

Journal of Information Systems Education, Vol. 20(4)

399

Fink, L. D. (2003). Creating Significant Learning
Experiences: An Integrated Approach to Designing
College Courses: Jossey Bass Higher and Adult
Education Series.

AUTHOR BIOGRAPHY

Arijit Sengupta is an Associate Professor of Information

Systems and Operations
Management in the Raj Soin
College of Business at Wright
State University He received his
Ph.D. in Computer Science from
Indiana University. Prior to
joining Wright State, Dr.
Sengupta served as faculty at
Kelley School of Business at

Indiana University and the Robinson College of Business at
Georgia State University. Dr. Sengupta's current primary
research interest is in the efficient use and deployment of
RFID (Radio Frequency Identification) for business
applications. His other research interests are in databases and
XML, specifically in modeling, query languages, data
mining, and human-computer interaction. He has published
over 30 scholarly articles in leading journals and
conferences, as well as authored several books and book
chapters.

Gill, T. G. (2004). Teaching Flowcharting with FlowC.
Journal of Information Systems Education (JISE), 15(1),
65-78.

IBM (1969). Flowcharting Technique: IBM Data Processing
Techniques C20-8152-1.

Lee, M. J. W., Pradhan, S., & Dalgarno, B. (2008). The
Effectiveness of Screencasts and Cognitive Tools as
Scaffolding for Novice Object-Oriented Programmers.
Journal of Information Technology Education, 7, 61-80.

Naharro-Berrocal, F., Pareja-Flores, C., Urquiza-Fuentes, J.,
& Velazquez-Iturbide, J. A. (2002). Approaches to
comprehension-preserving graphical reduction of pro-
gram visualizations. Paper presented at the Proceedings
of the 2002 ACM symposium on Applied computing.

Nassi, I., & Shneiderman, B. (1973). Flowchart Techniques
for Structured Programming. ACM SIGPLAN Notices,
8(8), 12-26.

Scandura, J. M. (1990). Cognitive approach to systems
engineering and re-engineering: Integrating new designs
with old systems. Journal of Software Maintenance:
Research and Practice, 2(3), 145-156.

Stone, D. C. (1987). A modular approach to program
visualization in computer science instruction. ACM
SIGCSE Bulletin, 19(1), 516-522.

SUN (2002). Javadoc - The Java API Documentation
Generator., from http://java.sun.com/j2se/1.4.2/docs/
tooldocs/windows/javadoc.html

Topi, H., Valacich, J. S., Kaiser, K., Nunamaker Jr., J. F.,
Sipior, J. C., de Vreede, G. J., et al. (2009). IS 2009 -
Curriculum Guidelines for Undergraduate Degree
Programs in Information Systems: Bentley College.

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2009 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

