CIS Educator Forum
Volume 2, Number 3

SOFTWARE ENGINEERING EDUCATION IN

COMPUTER SCIENCE PROGRAM-*

by Elmer Raydean Richmond
Computer Science Department
Tarrant County Junior College
Fort Worth, Texas 76119

ABSTRACT: The need for software engineers has grown with the increased use of
software and computers in our society. Presently, formal education of software
engineers is being conducted at the graduate degree level. There are pressures to
extend this education to other academic levels; in fact, many baccalaureate degree
programs today include one or more software engineering courses. Difficulties
confronting software engineering education at the associatedegree level include:
limited educational and experience backgrounds of the students; faculty whose own
education did not include software engineering; and severe time and content
constraints imposed on such two-year programs. The author concludes that the two-
year associate-degree-level vocational/technical computer science program should
continue to focus on producing graduates with sound programming and problem-
solving skills. Once thesegraduates gain entry-level employment, they can then build
upon these fundamental skills, with experience and further education, toward a
software engineering career. Software engineering education in the two-year vocational/
technical program, therefore, should berestricted to that which directly enhances the
development of these basic skills; specific recommendations are offered for
consideration.

KEYWORDS Software Engineering, Education, Associate-Degree, Two-Year College, Vocational/
Technical, Computer Science

THE ASSOCIATE-DEGREE-LEVEL VOCATIONAL/TECHNICAL

INTRODUCTION

The demand for software engineers
has paralleled the increasing use of
software and computers in our society.
To meet this demand, both in industry
and in the educational community,
software engineering and software
engineering education have grown
markedly since the inception of the
discipline in the late 1960s. As this

discipline matures, educational programs
are being developed and implemented.
The role of the two-year vocational/
technical computer science program in
this educational process also needs to be
considered. This paper examines that
role, identifies potential problems, and
offers recommendations to bound the
expectation of software engineering
education from such programs.

BACKGROUND

Software Engineering

At the heart of any definition of
software engineering (SE) is a recognition
of software as a product to which the
same care and discipline must be applied
during its construction, operation, and
modification as would be given a more

* This article first appeared in the SIGCSE Bulletin, Volume 21, Number 4, December 1989.

Page 13

CIS Educator Forum
Volume 2, Number 3

tangible physical product. Rodjak’s (1)
definition, then, summarizes and
characterizes SE as:

technical, managerial, and
communicative skills to produce high
quality software products that are on
schedule, within budget, and meet user
requirements.”

Software Engineering Education

Fairley (2) outlines the ideal scenario
for software engineering education (SEE)
as one which would include: an
undergraduate degree; one to two years
of programmer-level experience; a
masters-level software engineering degree;
one to two years professional-level
apprenticeship; and for some, a doctoral
degree. In his article, Fairley classifies
the programmer-level work experience
as imperative. Without that experience,
Fairley argues, the undergraduate has no
basis for understanding the importance
and relevance of the necessary knowledge
and skills of the software engineer.

Freeman (3) recently reaffirmed the
‘essential elements of SEE,’ first identified
in 1976, as a set of content areas that
should underlie any curriculum,
specifically, the areas of computer science,
management science, communications,
problem-solving, and design methodology.
Freeman also notes that emphasis should
be given to the integration of management
and technical issues into SEE.

Today, SEE is being formally
conducted through masters-level
programs at a small number of institutions,
including Texas Christian University in
Fort Worth, Texas (4). Additionally, as
reported by Mynatt and Leventhal (5),
many baccalaureate-level computer
science programs include one or more
software engineering courses.

The United States Department of
Defense -established a Software
Engineering Institute (SEI) at Carnegie
Mellon University in Pittsburgh,
Pennsylvania. The SEI (6) has been given
a specific role in education, that of
influencing SE curricula development

Page 14

across the educational spectrum. SEI
educational activity to date has
concentrated on a graduate curriculum
project, because, as Gibbs reports in (6),
“... the best education remains a solid
major in computer science followed by
graduate professional education....”

The SEI does recognize that industry
and government pressures for
undergraduate degrees will increase.

At the heart of any
definition of software
engineering (SE) is a
recognition of sofiware as
a product to which the
same care and discipline
must be applied duning
its construction, operation,
and modification as would
be given a more tangible
physical product.

Further, the large number of
undergraduate students suggests the
greatest impact SEI may have on SEE as
a whole is through such programs.

Anundergraduate SEE projecthas
been established within the SEI; specific
materials produced by that project include:
recommendations for a senior-level one-
semester project-based SE course; a
10,000-line Ada system for software
maintenance projects; and a workshop
and pilot studies of the use of Ada in
freshman courses. Also of interest should
be the results of a SEI-sponsored workshop
in the summer of 1989 at which the
undergraduate SE curriculum was the
topic of discussion.

Finally, industry-based professional
groups such as the Data Processing
Management Association (DPMA) and
the Association for Computing Machinery
(ACM) are also involved in SEE; their
principal contributions are curricular
recommendations such as (7), (8), and

9).

TWO-YEAR ASSOCIATE OF
APPLIED SCIENCE (AAS)
DEGREE PROGRAMS

Program Contents

In their recommendations (9), the
ACM identifies two critical areas to be
addressed within the two-year program.
One emphasizes in-depth programming
knowledge, techniques, and skills
supported by training in problem-solving
and logical analysis; a second deals with
the environment of the programmer during
the analysis, design, implementation, and
operation phases of an application project.
The ACM recognizes that software
engineering will impact the role of the
programmer but does not specifically
address that impact in their
recommendations.

Two of the DPMA associate-level
recommendations (8) are directed at
qualifying graduates for entry level
positions as programmers or in jobs
requiring integrated use of
microcomputers. A course to introduce
prototyping and fourth generation tools
is also included in these recommendations.

Both the ACM and DPMA curricula
models include a capsione project-
oriented systems development course.
Similarly, both acknowledge the
importance of courses which provide a
basic understanding of business and
industry; courses such as Introduction to
Business, Accounting, Economics,
Introduction to Engineering, etc., must
be a part of the AAS program.

An Example Program

The Texas Higher Education
Coordinating Board (10) describes AAS
programs as generally technical or
paraprofessional in nature, and designed
to prepare the graduate for immediate
employment and/or career advancement.
In Texas, the Board stipulates the length
of such programs be 60 to 72 semester
credit hours and contain a general
education core of 15 semester hours.

These general education
requirements, in turn, are mandated by

CIS Educator Forum
Volume 2, Number 3

the regional accrediting institution, the
Southern ‘Association of Colleges and
Schools (11). As a specific example of
the AAS degree, the Associate in Applied
Science in Computer Science Degree,
Business Applications Option, at Tarrant
County Junior College (TCIC) in Fort
Worth, Texas (12) is outlined in Table 1.

DIFFICULTIES FACING TWO-
YEAR PROGRAMS AND
SOFTWARE ENGINEERING
EDUCATION

Program Requirements and Time
Constraints

Referring to the TCIC computer
science degree program option presented
in Table 1, it is clear the addition of any
SEE course would require deletion of
some other (so not to violate the Texas
Higher Education Coordinating Board
guidelines). The decision as to which
course should be eliminated would not
be an easy one to make.

First, the 15-hour general education
requirement derives from state and
regional accrediting agencies. Next, the
15 hours devoted to business background
courses do not appear to be excessive,
Finally, the computer science content of
the degree compares favorably to the
guidelines available (e.g., the DPMA
recommendations); the total number of
credit hours, then, does not seem
unreasonable.

Student Preparation

The problem of student preparation
in terms of prior education and experience
isnotinconsequential. As noted earlier,
programmer-level experience is of
paramount importance to the
development of a software engineer. Yet,
most often, students attend the junior
colleges to gain the requisite language
skills so they may then enter, or move
into, entry-level programming positions.
Thus, the emphasis in AAS degree
programs is on programming and problem-
solving, still the skills which make such
graduates employable.

GENERAL EDUCATION
English Composition I

TABLELT: Associate in Applied Science in Computer Science
Business Applications Option
Turrant County Junior College in Fort Worth, Texas, 1988-89

HOURS

United States Government

College Algebra for the Social & Management Sciences ...

Business & Professional Communications

W WWwww

Interpersonal Communications
BUSINESS

Principles of Accounting I
Principles of Accounting 11

Approved Electives

O W W

COMPUTER SCIENCE
Fundamentals of Programming

BASIC (or Pascal) Programming
Assembly Language Programming

COBOL Programming I

COBOL Programming I1
Systems Analysis & Design

Systems Implementation

Operating Systems
Approved Electives

CHEWERARRAEEL

ot

TOTAL HOURS

~}
—

Evenat the four-year Management
Information Systems (MIS) degree level,
a recent survey by Seeborg and Ma (13)
of MIS graduates reported those graduates
ranked COBOL courses as most useful.
Also, a concern reported by Mynatt and
Leventhal in their survey of undergraduate
software engineering courses derives from
the difficult reading levels of computer
science journals and software engineering
textbooks; certainly in the AAS program
this problem is equally severe.

A final concern in the area of student
preparation, is the difficulty posed by the
project class. The limited experiences
and educational backgrounds of the two-
year students are constraining factors.
These factors, when combined with the
need to expose these students to the
software development process as a whole,
suggest the project class in a two-year
program is very difficult to carry out, and
less likely to be able to deal with large-
scale projects than those in baccalaureate-
level programs. Thus, the opportunities
for “programming-in-the-large” activities

(large systems developed by groups) at
the two-year level are severely limited, at
best, and are not very likely to be successful.

Faculty and Other Resources

Mynatt and Leventhal’s survey (5)
identifies staffing as a problem related to
the relative newness of the SE discipline.
Gibbs (6) also agrees that most teaching
faculty do not have a background in SE.
At the junior and community college
level, the competition for individuals with
SE backgrounds and education is
exacerbated by salarydifferentials and by
the more modest levels of computer
resources and support.

One advantage the two-year
technical/ vocational programs may enjoy,
however, relates to acquiring software
engineers for adjunct faculty positions.
In the vocational/technical AAS program,
emphasis is placed on experience, vis a
vis academic credentials, as a principal
qualification of the faculty.

Page 15

CIS Educaror Forum
Volume 2, Number 3

For example, in the state of Texas
(14), faculty qualifications for an AAS
vocational/technical program may be
summarized as follows: a combination of
education and experience; technical
competence in the teaching field; and at
least an associate degree (with higher
degrees preferred).

Nonetheless, staffing issues will limit
the near-term ability of two-year
vocational/ technical colleges to integrate
SEE. Time and significant resources will
be required to educate the present faculty
of these institutions. In terms of hardware
and software, resource acquisition is an
ever-present challenge to the educational
institution. The two-year program faces
the same difficulties identified by Mynatt

-and Leventhal, primarily due to serious
competition for limited funds.

GUIDELINES FOR TWO-YEAR
VOCATIONAL/TECHNICAL AAS
PROGRAMS

The “programming-in-the-small”
(individual) knowledge and experiences
provided by existing AAS programming
language courses are a necessary
foundation on which the software engineer
builds. What the AAS program should
provide its graduates then, first and
foremost, is the same facility with
programming which is of paramount and
fundamental importance to the software
engineer.

As noted by Carver (15), Werth
(16), Calhoun (17), and Tam (18), there
exists a set of software development skills
which are important no matter the size of
the software product. Emphasis on
structured development, structured
programming, software quality, and
complete documentation should be
consistently applied across the curriculum.

“Programming-in-the-large”, the
software life cycle, and alternative design
methodologies should be addressed by
the inclusion of a software engineering
overview in the two-year program. The
AAS program simply must allow room
for this introduction. A familiarity with
the entire software life ¢ycle is a necessary

component of. the AAS graduate’s
education; without it, the graduate’s view
of his or her role in an entry-level position
will be distorted. ‘

The one-or two-semester capstone
course(s) typically exposes the student to
the traditional life cycle phases and
activities of analysis, design,
implementation, testing, and maintenance.
Itshould remain the course in which the
student is exposed to the software
development process; therefore, it is
appropriate to include a SE overview
among the topics presented. Moreover,
it is the appropriate forum in which to
present, illustrate, and experiment with
the alternate design methods.

Many articles have appeared to
propose modification and integration of
the new “CASE” tools into such courses
(see (19)-(23) for specific examples);
however, one must be aware of the danger
presented there to make these tools the
focus of the course rather than the
underlying concepts themselves. Perrone’s
(24) definition of computer-aided software
engineering (CASE) states, “CASE
generally refers to the automation of any
software engineering task.” CASE tools
at the two-year college level present both
positive and negative opportunities.

It should be the principal goal of
the AAS program to build sound
programming skills. Therefore, those
CASE tools available which enhance the
programming phase (through integrated
programming environments, language-
sensitive editors, interactive debuggers,
etc.) should be introduced. Tools such as
Microsoft’s QuickBASIC (25), Borland’s
TurboPascal (26) and TurboC (27) must
become a part of the AAS graduate’s
repertoire; they are the productivity tools
of today’s programming environment.

Itisalsoagoal of the AAS program
to expose the student to software
development and the “programming-in-
the-large” nature of most real systems.
Therefore, it is tempting to make tools
such as Index Technology’s
EXCELERATOR (28), Ashton-Tate’s
dBASE 11+ (29) and Bytel’s GENIFER
(30), Oracle’s ORACLE (31), or

Microrim’s R:Base System V (32) the
center of these capstone courses.

The pitfalls associated with using
these tools are described in many papers,
including (22) and (33). Basically, the
“trap” results from the fact that these
tools are so powerful and broad, they
may consume enormous amounts of
preparation and class time at the expense
of the underlying concepts. The use of
any of these tools demands much from
the instructor and the students. Any tool
use, then, in the systems class must be
such that it enhances the presentation of
underlying software development
processes and methodologies.

SUMMARY AND
RECOMMENDATIONS

Software engineering has been
defined and software engineering
education (SEE) activities reviewed. The
two-year AAS degree has been
characterized and examined. Difficulties
presented by the desired integration of
SEE into the two-year associate-level
degree vocational/technical computer
science degree program have been
considered. Proposed guidelines for the
extent to which SEE can be, and should
be, integrated into the two-year program
have been discussed; following are specific
recommendations offered to implement
those guidelines.

1. An overview of software
engineering must be integrated
into the AAS program, with the
traditional systems course as the
most logical place for inclusion.
The 1987 SEI interim report (34)
recommends a top-down approach
to SEE, and includes an overview
which could be adopted. The
integration of a SE overview into a
systems analysis and design course
has also been addressed by Steward
(35); his book provides other
implementation ideas, as would the
curriculum modules and detailed
course descriptions available from
the SEI (6), (34).

2. The use of tools in the capstone

Page 16

CIS Educaror Forum
Volume 2, Number 3

course(s) of the two-year program
must be carefully controlled. First,
most AAS graduates will gain
employment in entry-level
positions which relate directly to
programming skills, not systems
analysis skills. Second, the
emphasis must remain on
presentation of the underlying
concepts, the structure by which
and within which software
solutions to problems are
developed.

. “Programming-in-the-large”
activities are generally beyond the
scope of the two-year program.
Nonetheless, communications
activities similar to those which
characterize SE can be, and should
be, integrated throughout the
curriculum by the requirement for
oral and written reports, and by the
use of activities such as code
inspections and structured
walkthroughs.

4. The two-year program must
concentrate on development of
programming and problem-solving
skills. The existing language
courses build the programming
expertise base upon which SE
rests, so they are critically
important. Those CASE tools
which specifically pertain to the
programming activities must
become a part of the AAS
graduate’s tool set. Moreover, as
the software industry moves
toward screen-oriented systems,
object-oriented solutions and
languages, and so forth, it is these
capabilities which the AAS
program must adopt and integrate
$0 that their program products,
graduates prepared for entry-level
positions, remain viable.

CONCLUSION

The author concludes that the

principal contribution of the community
and junior college vocational/technical
computer science degree programs
remains the production of graduates with

fundamentally sound programming and
problem-solving skills with which to enter
the workplace, and upon which software
engineering as a discipline rests. Software
engineering education content of the two-
year program, then, must be restricted to
that which directly supports the
development and production of such
graduates.

REFERENCES

1. Rodjak, D. J., unpublished lecture
notes for SODE 6113, Modern
Software Requirements and
Design Techniques. Fort Worth,
TX: Texas Christian University,
Spring Semester, 1986.

2. Fairley, R. E., “Software
Engineering Education: An
Idealized Scenario,” in Software
Engineering Education: The
Educational Needs of the Software
Community. New York: Springer-
Verlag, 1987, pp 52-60.

3. Freeman, P., “Essential Elements
of Software Engineering Education
Revisited,” in Software
Engineering Education: The
Educational Needs of the Software
Community. New York: Springer-
Verlag, 1987, pp 61-74.

4. Texas Christian University, Texas
Christian University Bulletin:
Graduate Studies 1987-88/1988-89,
Vol. 81, No. 2. Fort Worth, TX:
Texas Christian University, April
1987.

5. Mpynatt, B. and Leventhal, L.,
“Profile of Undergraduate
Software Engineering Courses:
Results from a Survey,” SIGCSE
Bulletin, Vol. 19, No. 1, February
1987, pp 523-528.

6. Gibbs, N. E., “The SEI Education
Program: The Challenge of
Teaching Future Software
Engineers,” Communications of
the ACM, Vol. 32, No. 5, May
1989, pp 594-605.

7. Data Processing Management
Association, CIS’86 The DPMA
Model Curriculum for

10.

16k

12t

13.

Undergraduate Computer
Information Systems. Park Ridge,
IL: DPMA, 1986.

Data Processing Management
Association, The Data Processing

Management Association (DPMA)

Academic Curriculum for
Associate-Degree-Level Studies in
Computer Information Systems.
Park Ridge, IL: DPMA, 1985.

Little, J. C. et alia (Eds),
“Recommendations and
Guidelines for an Associate Level
Degree Program in Computer
Programming,” in ACM Curricula
Recommendations for Related
Computer Science Programs in
Vocational-Technical Schools,
Community and Junior Colleges,
and Health Computing, Volume
III. New York: ACM, 1983, pp
207-229.

Texas Higher Education
Coordinating Board,
TECHNICAL AND
VOCATIONAL PROGRAM
GUIDELINES: A Manual of
Guidelines and Procedures For
State Funded Technical and
Vocational Programs in Texas
Public Post-secondary Institutions,
Effective January 1, 1989. Austin,
TX: Texas Higher Education
Coordinating Board, 1988.

Southern Association of Colleges
and Schools, CRITERIA FOR
ACCREDITATION: Commission
on Colleges, Approved by the
College Delegate Assembly
December, 1984-Atlanta, Georgia.
Atlanta, GA: Southern
Association of Colleges and
Schools, 1987.

Tarrant County Junior College.
Tarrant County Junior College
1988-1989 Catalog, Vol. XXI, No.
5. Fort Worth, TX: Tarrant
County Junior College, May 1988.

Seeborg, 1. S. and Ma, C. S., “MIS
Program Meets Reality: A Survey
of Alumni from an Undergraduate
Program, Interface, Vol. 10, No. 4,
Winter 1988/89, pp. 51-60.

Page 17

CIS Educator Forum
Volume 2, Number 3

14.

15.

16.

17.

18.

Texas Higher Education
Coordinating Board,
QUALIFICATIONS OF
TECHNICAL AND
VOCATIONAL PERSONNEL: A
Manual of Guidelines, Procedures,
and Personnel Qualifications For
State-Funded Technical and
Vocational Programs in Texas
Public Postsecondary Institutions,
Effective January 1, 1989. Austin,
TX: Texas Higher Education
Coordinating Board, 1983.

Carver, D. L., “Recommendations
for Software Engineering
Education,” SIGCSE Bulletin,
Vol. 19, No. 1, February 1987, pp
228-232.

Werth, L. H., “Integrating
Software Engineering into an
Intermediate Programming Class,”
SIGCSE Bulletin, Vol. 20, No. 1,
February 1988, pp 54-58.

Calhoun, J., “Distribution of
Software Engineering Concepts
Beyond the Software Engineering
Course,” SIGCSE Bulletin, Vol
19, No. 1, February 1987, pp 233-
237.

Tam, W. C., “A Multilevel
Approach to Undergraduate
Software Engineering Education,”
SIGCSE Bulletin, Vol. 17, No. 1,
March 1985, pp 332-334.

19.

20.

21.

22.

24.

25.

Fritz, J. M., “A Pragmatic
Approach to Systems Analysis and
Design,” SIGCSE Bulletin, Vol.
19, No. 1, February 1987, pp 127-
131.

Poole, B. J. and Callihan, H. D.,
“Systems Analysis and Design: An
Orphan Course About to Find a
Home,” SIGCSE Bulletin, Vol
20, No. 2, June 1988, pp 54-57,64.

Chrisman, C. and Beccue, B.,
“Updating Systems Development
Courses to Incorporate Fourth
Generation Tools,” SIGCSE
Bulletin, Vol. 17, No. 1, March
1985, pp 109-113.

Amadio, W. J., “Systems Courses
in the 1990s: The Promise of
CASE and 4GLs,” Interface, Vol.
10, No. 3, Fall 88, pp 14-18.
Bullard, C. L. et al., “Anatomy of a
Software Engineering Project,”
SIGCSE Bulletin, Vol. 20, No. 1,
February 1988, pp 129-133.
Perrone, G., “Low-cost CASE:
fomorrow’s promise emerging
today,” in New Product Reviews,
Computer, Vol. 20, No. 11,
November 1987, pp 104-110.

QuickBASIC, Microsoft
Corporation, Redmond,

" ‘Washington, 1987.

TurboPascal, Borland

27.

29.

30.

31.

32

33.

34.

35.

International, Scotts Valley,
California, 1987.

TurboC, Borland International,
Scotts Valley, California, 1988.

Excelerator, Index Technology
Corporation, Cambridge,
Massachusetts, 1987.

dBASE Il +, Ashton-Tate,
Torrance, California, 1986.

GENIFER, Bytel Corporation,
Berkeley, California, 1986.

ORACLE, Oracle Corporation,
Belmont, California, 1987.

R:Base System V, Microrim,
Incorporated, Redmond,

Washington, 1986.

Wilcox, R. E., “The Use of CASE
Software in a Course in Systems
Analysis and Design,” Interface
Vol. 10, No. 3, Fall 88.

Ford, G., Gibbs, N., and Tomayko,
J., Software Engineering
Education: An Interim Report

from the Software Engineering
Institute. Technical Report CMU/

SEI-87-TR-8. Pittsburgh, PA:
Carnegie Mellon University, May
1987.

Steward, D. V., Software

Engineering with Systems Analysis
and Design. Monterey, CA:

Brooks/ Cole, 1987.

Page 18

AUTHOR'S BIOGRAPHY

Raydean Richmond is an Associate Professor of Computer Science at Tarrant County
Junior College, South Campus, in Fort Worth, Texas. Raydean joined the College in 1982,
and has also served as Department Chair since 1984. He holds BSIE and MSIE degrees from
the University of Pittsburgh, Pittsburgh, Pennsylvania, and is a 1989 recipient of the Master
of Software Design and Development degree awarded by Texas Christian University, Fort

Worth, Texas.

ISCCID Epsi6

Serving Information Systems Educators

Information Systems & Computing
Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1990 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

