CIS Educator Forum
Volume 2, Number 2

DOES INSTRUCTION IN COMPUTER PROGRAMMING
IMPROVE PROBLEM SOLVING ABILITY?

by Craig A. VanLengen, EdD

Assistant Professor

Computer Information Systems and Accounting
Box 15066 - College of Business Administration
Northern Arizona University

Flagstaff, AZ 86011-5066

Telephone (602) 523-7392

and Cleborne D. Maddux, PhD

Chairman

Department of Curriculum and Instruction
College of Education ‘
University of Nevada-Reno

Reno, NV 89557-0029

Telephone (702) 784-4961

ABSTRACT: Many schools and colleges of business teach computer programming
in the introduction to computers course. The rationale for teaching computer
programming is that it aids in the development of critical thinking, problem solving,
and decision making skills. This contention is not supported by empirical data. An
experimental study was conducted to ascertain if instruction in computer programming
improved problem solving ability. The results of the study did not show support of
improved problem solving ability from instruction in computer programming.
Recommendations for changes in curriculum and teaching strategies are made as
possible ways to make instruction in computer programming effective as a means of
improving problem solving ability.

KEYWORDS: Computer Programming, Problem Solving, Critical Thinking, Introduction to CIS,
Computer Literacy, Teaching Methods, Curricula Development: Lower Division.

INTRODUCTION

Many schools and colleges of
business include computer programming
inintroductory computing courses. One
reason given for inchuding such instruction
is that programming helps students to
develop critical thinking, problem solving,
and decision making abilities. Many
educators support this belief [1, 2, 3, 4].
In addition Papert [5] maintains that

working with computers can hasten the
development of formal thinking. These
controversial views are based on little
empirical data, making the issue seem

dogmatic [6, 7].
EXAMINATION OF RESEARCH

Studies of computer programming
and problem solving have yielded mixed
results, Studies that failed to find a

relationship between computer
programming and problem solving had
various weaknesses in experimental design
andinstructional approach. Specifically,
many studies employed small samples [8,
12}, did not use random selection and/or
assignment of the subjects [8, 9, 10, 11],
or lacked control groups [9].

In addition, the main instructional
approach in the non-support studies was
non-directive (discovery) [8,9]. Program
Page 11

CIS Educator Forum
Volume 2, Number 2

planning, development, and debugging:

were notspecifically taught [8, 9]. This is
a problem, since using a non-directive
instructional approach with a limited
amount of treatment time does not appear
to be effective.

Another difficulty is that mastery
of programming was not measured [8, 12,
10, 11]. Without ensuring that
programming is mastered, it makes little
sense to talk of problem solving transfer
[13].

A number of other studies showed
some positive relationship between
computer programming and problem
solving ability. Some of these studies
used random selection and/or assignment
[14,15,16,12,17,18]. Randomselection
should result in sample groups that are
more closely related to the population.
Several studies were for longer periods
of time (semester or more) [19, 17, 20].
Longer studies should allow for more
treatment time. The instructional strategy
used in a number of these studies was
directed with specific instruction in
program planning and development [15,
16,12, 17, 18].

The results of some of the studies
are not conclusive since the programming
activities and dependent variables
appeared to be highly related [16, 18].
Even though the inferences were not clear-
cut, these studies are a beginning of an
experimental process directed at
investigating a possible link between
computer programming instruction and
general problem solving ability.

Recommendations included in this
study

Based on the review of related
literature this study was designed to use
strategies from the studies with positive
results and to avoid the criticisms of the
nonsupport studies.

1. Specifically, the study was conducted
over an entire semester to allow for
as much treatment time as possible
[21, 22, 23].

2. Adirectedinstructional strategy was
used [24] with program planning and
development explicitly taught for the
computer programming group within

aknowledge context [24] and linked
to other contexts [23]. Many
researchers have indicated the

importance of making the subjects

aware of their cognitive processing
during the problem solving process
[25, 26, 27, 28]. 1t is also considered
importantto teachstrategies used by
computer experts including templates
or analogies [25, 29, 26, 30]. The
strategies and principles used in a
computer context must then be
generalized and linked to other non-
computer problem solving contexts
[25, 30, 26, 28].

3. Atthe end of the study the students
were given a problem statement
similar to those used in the study.
The computer programming group
used a program logic chart to complete
a BASIC program. The software
package group specified the
commands, formulas, and functions
needed to complete a spreadsheet.
Only those subjects who achieved
mastery of their tool were compared
for differences in general problem
solving ability [13]. Mastery was
defined as a score of seventy-five
percent correct.

Research Methodology

The research hypothesis was that
instruction in computer programming
would not result in significant increases
in general problem solving ability for
college-level students enrolled in a course
on introduction to computers. To test
this hypothesis a random sample of sixty-
four subjects were chosen from a large
daytime lecture section of introduction
to computers in the College of Business
Administration at Northern Arizona
University. The majority of the subjects
had no computer experience. The subjects
with computer experience had a semester
or less of experience from secondary
school. Summary data on the subjects is
presented in the appendix. The subjects
were then randomly assigned to an
experimental (computer programming
instruction) and a control (no computer
programming instruction) group. All
subjects were administered the Watson-
Glaser Critical Thinking Appraisal as a

pretest measure of problem solving ability.

For two-thirds of the semester both
groups received the same instruction over
computer concepts and terminology,
hardware, software, and information
processing systems. The remaining one-
third of the semester was devoted to
problem solving activities. The same
problem exercises were used for both
groups. Both groups received
approximately fifty hours of problem
development and computer lab work over
anentiresemester. Class attendance was
required to obtain the specifications for
the problem exercises.

The experimental group was taught
a heuristic strategy for the development
ofa program from a problem statement.
A structured instructional strategy was
used to teach a heuristic that breaks down
the problem into smaller and smaller
problems until they are singular in
function. Alternative solutions were
formulated, evaluated, and implemented
for these single function problem
statements. The solutions to the single
function problem statements were used
on subsequent problems. Program
debugging was demonstrated for the
subjects to use in program development.

The control group solved the same
set of problems using electronic
spreadsheet and database management
software. The emphasis for the control
group was on the functions and commands
that were needed to solve the problems,
not problem solving strategies.

A section of the final examination
for the course was used to measure mastery
of the tool used by each subject. Mastery
was defined as seventy-five percent correct
on this section of the final examination.
Subjects were not allowed to use reference
materials during the examination.

The experimental group was given
an incomplete computer program.
Program specifications and a program
logic chart were included. The program
code was missing statements similar to
the templates solved during the semester.

The control group solved the same
problem as the experimental group. The
subjects were given a narrative description

Page 12

CIS Educator Forum
Volume 2, Number 2

of the problem and an incomplete
spreadsheet. The subjects used formulas,
commands and functions covered during
the semester to solve the problem.

Allsubjects were administered the
Watson-Glaser Critical Thinking Appraisal
as a posttest measure of problem solving
ability. Only those subjects who obtained
masteryon their tool were used to test for
differences in problem solving ability.
Statistical significance was tested with a
one-way analysis of covariance. The pretest
scores were used as the covariate.

The data was tested and met the
assumptions oflinearity, homogeneity of
variance, homogeneity of regression, and
reliability of covariate. Thirty-three of
the original sixty-four subjects obtained
mastery. Sixteen were in the experimental
group and seventeen were in the control
group. Asshown in Table 1, Analysis of
Covariance for Posttest Scores, no
statistically significant effect was found
for the treatment group.

DISCUSSION OF THE STUDY

Results

The results failed to reject the
hypothesis that computer programming
instruction would not improve problem
solvingability. Inaddition, nosignificant
differences were noted for increases in
problem solving for either the
experimental or the control group. The
level of significance was virtually the same
with or without the seventy-five percent
mastery cutoff. Possible reasons for no
significant differences in problem solving
ability for the experimental group include:
(1) short treatment time, (2) no teacher-

student test apathy, (4) non-use of problem
solving strategies, and (5) limited
sensitivity and specificity of the test
instrument.

Fifty hours of time was available,
during the semester, for in-class treatment,
assigned readings, and projects. This
amount of time may not offer the potential
for improvement of problem solving ability
with computer programming instruction.

The course does not have a required
lab section that would allow for teacher-
student interaction while problem solving
was taking place. Perhaps guiding the
student in the use of problem solving
strategies would assist in the development
of cognitive processes.

Students appear to be only interested
in activities that are part of the course
grade. Since pretest and posttest scores
were not part of the course grade students
may have given less than optimal effort.
During testing situations students cannot
be forced to use new problem solving
techniques and may revert to prior
strategies due to the stress of a testing
situation.

A last factor may be a lack of
sensitivity and specificity of the pre- and
posttest instrument. Problem solving
strategies taught during the experiment
match up with three out of the five areas
tested by the Watson-Glaser Critical
Thinking Appraisal. Evidently the specific
strategies taught in the programming
context and linked to other problems in
the introduction to computers course
did not transfer sufficiently to influence
total scores on the test instrument. An
extremely strong treatment for more than
onesemester may be necessary to causea

student interaction in a lab setting, (3) treatment effect [31]. Perhaps an
TABLE 1: Analysis of Covariance for Posttest Scores
Source of Variance Adjusted SS df MS F p
Treatment 2044 1 2044 089 035
Covariate 887.54 1 887.54 3874 0.00
Error 687.31 30 2291
Total BE576:00% +32 49.25

instrument that measures problem solving
gains within a specific subject domain
with a given knowledge base is needed to
show significant results.

EDUCATIONAL RELEVANCE

If a link between instruction in
computer programming and improved
problem solving ability is not proven,
then continued instruction in computer
programming will have to be justified on
some other basis. Other reasons, based
on personal beliefs and anecdotal evidence,
are that instruction in computer
programming: is necessary for computer
literacy, allows for a better understanding
of computer processing, provides an
appreciation for commercial software
development, increases social interaction
between teachers and students and
between students, increases self-
confidence from successful programming
efforts, provides freedom from repetitive
calculations, and provides the ability to
simulate complex and/or dangerous
situations in experiments and decision
making. If instruction in computer
programming is not justified an alternative
is to replace it with instruction in electronic
spreadsheet and database management.

IMPLICATIONS FOR FURTHER
RESEARCH

Even though this study failed to
support the contention that instruction
in computer programming improves
general problem solving ability it did point
out factors that need to be considered in
future studies. Instruction in computer
programming may be effective under
different instructional conditions and a
greater amount of treatment time.

Schools and colleges of business,
accreditation agencies, the Data
Processing Management Association and
the Association for Computing Machinery
need to examine the purpose of the
introduction to computers course. Current
methods of instruction and content may
not support improvement of problem
solving, critical thinking, and decision
making abilities. To accomplish more
than an introductory level of computer

Page 13

CIS Educator Forum
Volume 2, Number 2

knowledge and vocational skills a change
may be required in content and
instructional methods. Perhaps more
than one-third of the course needs to be
spent on computer problem solving efforts
for computer programming to be
successful as a cognitive amplifier.

Current instructional strategies of
lecture and demonstration, used in this
study, might be expanded to include guided
instruction in the use of problem solving
strategies. The guided instruction would
require a teaching lab facility which would
allow for teacher-student interaction
during the problem solving process.

The guided instruction in a teaching
labenvironmentwould allow the teacher
touseaquestioning dialogue to assist the
students in the application of the problem
solving strategies. The teaching lab
environment would also provide for better
monitoring of program planning,
documentation, and the actual use by
students of the problem solving strategies.

CONCLUSION

The results of this study failed to
reject the hypothesis that instruction in
computer programming would not
improve the general problem solving
ability of college-level introductory
computer students. Current research
efforts in this area have

indicated some potential for using
computer programming as a means of
improving problem solving ability [28].
Future studies need to increase the
strength of the treatment, increase time
spent on computer problem solving efforts,
use guided discovery in a lab setting to
increase teacher-student interaction, and
select or develop test instruments that
better measure problem solving in a
computer context. If future efforts do
not provide a link between computer
programming instruction and improved
problem solving ability it needs to be
justified for other reasons or be removed
from the introduction to computers course
content.

Page 14

1

REFERENCES

Davis, R. E., & Allen, J. R. (1984).
Quality and computer education.
Proceedings of the Western
Educational Computing
Conference. California
Educational Computing
Consortium, 94-97.

Wiechers, G. (1974).
Programming as an educational
tool. International Journal of
Mathematical Education in
Science and Technology, 5(4),
699-703.

Smart, J. R. (1984). A BASIC
programming course to satisfy a
general education requirement in
quantitative reasoning.
Proceedings of the Western
Educational Computing
Conference. California
Educational Computing
Consortium, 142-145.

Widmer, C. C., & Parker, J.
(1985). A study of characteristics
of student programmers.
Educational Technology, 25(10),
47-50.

Papert, S. (1980). Mindstorms:
Children, computers, and powerful
ideas. New York: Basic Books,
Inc.

Maddux, C. D. (1986). Computer
programming in special education:
The promise of Logo. Computers
in the Schools, 3(3/4), 159-171.

Turner, J. A. (1987). Familiarity
with new technology breeds
changes in computer-literacy
courses. The Chronicle of Higher
Education, 33(45), 9,12.

Pea, R. D., & Kurland, D. M.
(1984). Logo programming and

the development of planning skills.

(Technical Report No. 16.) New
York: Bank Street College of
Education, Center for Children
and Technology. (ERIC

10.

itk

12.

13.

14.

154

Document Reproduction Service
No. ED 249 930)

Kurland, D. M., & Pea, R. D.
(1983). Children’s mental models
of recursive Logo programs.
(Technical Report No. 10.) New
York: Bank Street College of
Education, Center for Children
and Technology. (ERIC
Document Reproduction Service
No. ED 249 929)

Jansson, L. C., Williams, H. D., &
Collens, R. J. (1987). Computer
programming and logical
reasoning. School Science and
Mathematics, 87(5), 371-379.

Battista, M. T. (1987). The
effectiveness of using Logo to
teach geometry to preservice
elementary teachers. School
Science and Mathematics, 87(4),
286-296.

Clements, D. H., & Gullo, D. F.
(1984). Effects of computer
programming on young children’s
cognition. Journal of Educational
Psychology, 76(6), 1051-1058.

Kinzer, C., Littlefield, J., Delclos,
V.R.,, & Bransford, J. D. (1985).
Different Logo learning
environments and mastery:
Relationships between
engagement and learning. In C. D.
Maddux (Ed.), Logo in the Schools
(pp- 33-43). New York: The
Haworth Press.

Clements, D. H., & Nastasi, B. K.
(1985). Effects of computer
environments on social-emotional
development: Logo and computer-
assisted instruction. In C. D.
Maddux (Ed.), Logo in the Schools
(pp- 11-31). New York: The
Haworth Press.

Mayer, R. E., & Fay, A. L. (1987).
A chain of cognitive changes with
learning to program in Logo.
Journal of Educational Psychology,
79(3), 269-279.

CIS Educator Forum
Volume 2, Number 2

16.

17.

18,

19.

21.

Black, J. B., Swan, K., & Schwartz,
D. L. (1988). Developing thinking
skills with computers. Teachers
College Record, 89(3), 384-407.

Clements, D. H. (1987).
Longitudinal study of the effects of
Logo programming on cognitive
abilities and achievement. Journal
of Educational Computing
Research, 3(1), 73-94.

Battista, M. T., & Clements, D. H.
(1986). The effects of Logo and
CAI problem-solving
environments on problem-solving

_ abilities and mathematics

achievement. Computers in
Human Behavior, 2(3), 183-193.

Kurshan, B., & Williams, J. (1985).
The effect of the computer on
problem solving skills. (ERIC
Document Reproduction Service
No. ED 259 714)

. Linn, M. C,, Sloane, K. D., &

Clancy, M. J. (1987). Ideal and
actual outcomes from precollege
Pascal instruction. Journal of
Research in Science Teaching,
24(5), 467-490.

Leron, U. (1985). Logo today:

26.

27.

Vision and reality. The
Computing Teacher, 12(5), 26-32.

. Pea,R. D., & Kurland, D. M.

(1984). On the cognitive effects of
learning computer programming,
New Ideas in Psychology, 2(2), 137-
168.

. Horner, C. M., & Maddux, C.D.

(1985). The effect of Logo on
attributions toward success. In C.
D. Maddux (Ed.), Logo in the
Schools (pp. 45-54). New York:
The Haworth Press.

Gallini, J. K. (1985). Instructional
conditions for computer-based
problem-solving environments.
Educational Technology, 25(2), 7-
11.

Kantowski, M. G. (1983). The
microcomputer and problem
solving. Arithmetic Teacher,
30(6), 20-21, 58-59.

Soloway, E. (1986). Learning to
program = learning to construct
mechanisms and explanations.
Communications of the ACM,
29(9), 850-858.

Shneiderman, B. (1985). When

28.

29.

30.

31.

children learn programming:
Antecedents, concepts and
outcomes. The Computing
Teacher, 12(5), 14-17.

Salomon, G., & Perkins, D. N,
(1987). Transfer of cognitive skills
from programming: When and
how? Journal of Educational
Computing Research, 3(2), 149-
169.

Dalbey, J., Tourniaire, F., & Linn,
M. C. (1986). Making

- programming instruction

cognitively demanding: An
intervention study. Journal of
Research in Science Teaching,
23(5), 427-436.

Pirolli, P. L., & Anderson, J. R.
(1984). The role of mental models
in learning to program. Arlington,
VA: Office of Naval Research,
Personnel and Training Research
Programs Office. (ERIC
Document Reproduction Service
No. ED 265 177)

McMillan, J. H. (1987).
Enhancing college students’critical
thinking: A review of studies.
Research in Higher Education,
26(1), 3-29.

AUTHORS' BIOGRAPHIES

- Craig A. VanLengen is an assistant professor of computer information systems/
accounting in the College of Business Administration at Northern Arizona University. He
holds a BS in Business with a major in accounting, an MBA with a major in information
sciences, and an Ed.D. in instructional computing. He has six years of industry experience
in the areas of accounting and systems analysis. A Certified Public Accountant licensed to
practice in Colorado and a Certified Systems Professional, he has been teaching at the
college level for eight years. His teaching responsibilities include systems analysis and
design, management information systems, introductory programming, and introduction to
computer information systems.

Cleborne D. Maddux is a professor and department chairman in the College of
Education, University of Nevada-Reno. He is the author of ten books and numerous journal
articles on the topics of computer education and special education. He is series editor for
an upcoming series of books on educational computing. Within computer education, he has
a special interest in the Logo programming language.

Page 15

CIS Educator Forum
Volume 2, Number 2

APPENDIX : SUMMARY DATA ON SUBJECTS .

The initial sample of sixty-four subjects is represented by the letter (I) and the subjects achieving mastery are represented by the -
letter (M).

TABLE 2: Gender by Group

Group : Male Female Total

I=Initial; M=Mastery 1 M I M I M
Computer Programming Instruction 19 9 16 7 35 16
No Computer Programming Instruction 13 7 16 10 29 17
Total . 32 16 32 17 64 33

TABLE 3: Class Level by Group

Group Freshman Sophomore Junior Senior Graduate Total

I=Initial; M=Mastery I M 1 M 1 M I M 1 M I M
Computer Programming Instruction 18 6 6 3 6 3 4 3 1 1 35 16
No Computer Programming Instruction 15 10 7 2 1 0 5 4 1 1 29 17
Total ' 3 16 13 5 7 3 9 71 2 2 64 33

TABLE 4: Major by Group |

Group : Business Nonbusiness = _Undeclared Total
I=Initial; M=Mastery I M 1 M 1 M 1 M
Computer Programming Instruction | 8 4 15 7 125 35 16
No Computer Programming Instruction 7 3 10 8 12 6 29 17

Total 15 7 25 15 24 11 64 33

TABLE 5: Means and Standard Deviations for Subjects

Pretest Posttest
Group Mean) Mean s)
(N=16) Computer Programming Instruction " 56.63 9.93 56.19 7.34 k
(N=17) No Computer Programming Instruction 53.29 816 55.82 6.92
(N=33) Total . , - 5491 9.08 56.00 7.02

Page 16

ISCCID Epsi6

Serving Information Systems Educators

Information Systems & Computing
Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1990 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

