Recursive Joinsto Query Data Hierar chiesin Microsoft Access
Dadashzadeh, Mohammad
Journal of Information Systems Education; Spring 2007; 18, 1; Research Library

pg. 5

Journal of Information Systems Education, Vol. 18(1)

Teaching Tip

Recursive Joins to Query Data Hierarchies in Microsoft
Access

Mohammad Dadashzadeh
Decision and Information Sciences Department
Oakland University
Rochester, Michigan 48309, USA

ABSTRACT

Organizational charts (departments, sub-departments, sub-sub-departments, and so on), project work breakdown structures (tasks,
subtasks, work packages, etc.), discussion forums (posting, response, response to response, etc.), family trees (parent, child,
grandchild, etc.), manufacturing bill-of-material, product classifications, and document folder hierarchies are all examples of
hierarchical data. Although relational databases can represent such hierarchical data with ease, relational query languages such as
Structured Query Language (SQL) and Query-By-Example (QBE) fail to support users in formulating natural queries involving
transitive closure of such hierarchical data (e.g., listing all descendants of an individual in a family tree scenario). This paper
presents a simple approach for teaching users how to overcome this shortcoming and formulate the required recursive joins in order
to query such data hierarchies in Microsoft Access.

Keywords: Database Management Systems, Hierarchical Data, SQL, Recursive Joins, Transitive Closure, Microsoft Access

L. INTRODUCTION The natural hierarchical structure defined by ReportsTo

relationship is, of course, more noticeable in the following

Hierarchical data occurs frequently in database development.
Consider the following table representing departments, their
employee count, and the department to which they report to
(Steinbach, 2003):

DEPT(DNO, Name, EmployeeCount, ReportsToDNO)

A sample instance of the table DEPT is shown below:

IDN Name |EmployeeCount]ReportsToDNO|
! 9 |Final Building 15 12
. 10 | Pre Building 18 12

11 Q&A 4 19

12 {Manufacturing 10 19
K West 10 18
14 South 7 18
C1s East 9 18
;16 North 7 18
17 IT 3 20

18 Sales 4 20
: 19 1 Production 3 20
20 |Samples & Co. 3

figures representing, respectively, the corresponding entity-
relationship diagram and the associated organizational chart
for the shown instance:

|
Department [DNO
1\ Name
OM |01 \--EmployeeCount

<> |

ReportsTo
Figure 1. Entity-Relationship Diagram depicting
ReportsTo relationship

Although relational databases can represent such
hierarchical data with ease, relational query languages such
as SQL and QBE do not support the most natural queries
against data hierarchies. To fix ideas, consider the request to
produce the output shown below (Exhibit 1) representing all
departments reporting at one level or another to the
“Production” department.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(1)

| Samples& Co. |
! : J
{
r t 1
T ' I 1 —
| Production | | Sales | | 1T |
%—l L_.T_l | E—
| r } T 1
| —— = —t— —t
| | North || East | | South | | West |
| | L)1 I]
|
I_‘_—l
1 I
f 1T 1
| Q&A | | Manufacturing |
L L J
T
!
r 1
! !
f 1 1
| Pre Building | | Final Building |
L oL 1
Exhibit 1. Organizational Chart

DNO] Name |[Levell
C11Q&A 1

12{Manufacturing 1
9{Final Building 2
10{Pre Building 2

Figure 2. ReportsTo data in the sample instance of DEPT
table in organizational chart format

Basically, the output requires successive joins of the
DEPT table with itself until no new rows can be added to the
result, reflecting the completed traversal of the tree starting
at the “Production” node. Standard SQL implementations
such as in Microsoft Access do not support the required
recursive joins. Oracle and DB2 have added proprietary
extensions to their implementations of SQL to support such
recursion. Specifically, the desired output is produced in
Oracle (Loney and Koch, 2002) using the following query:

SELECT DNO, level

FROM DEPT

CONNECT BY PRIOR ReportsToDNO = DNO
START WITH Name = “Production”

Oracle provides the built-in pseudo column /evel when
using CONNECT BY PRIOR. However, the starting node is
considered to be at level one and its immediate descendants
are considered to be at level two.

IBM’s DB2 (Melnyk and Zikopoulos, 2001) supports
recursive queries in an implementation similar, but not
identical, to that prescribed by the ANSI/ISO SQL-99
standard (Gulutzan and Pelzer, 1999). Specifically, the desired
output is produced in DB2 using the following recursive query:
WITH Temp{ DNO, ReportsToDNO, Level) AS

((SELECT root.DNO, root.ReportsToDNO, 1

FROM DEPT root

WHERE Name = “Production”)

UNION ALL

(SELECT child.DNQ, child.ReportsToDNO,
parent.level + 1

FROM DEPT child, Temp parent

WHERE child.ReportsToDNO = parent. DNO}))

SELECT *

FROM Temp;

In this Teaching Tip, we present a solution for providing
similar functionality in Microsoft Access. The solution is based
on building the transitive closure of the relationship (see Figure
3 below) using embedded SQL programming.

ReportsTo

IDNO|Reports ToDNOJLevel|
17 20{ |
18 20] 1
19 20 1
16 18 1
15 18] 1
14 18] 1
13 18] 1
1 19] 1
12 19] 1
10 12l 1
9 12 1
13 200 2
14 20 2
15 0] 2
16 20 2
12 20[2
11 20] 2
9 19] 2
10 9] 2
9 20 3
10 20 3

Figure 3. Transitive closure of ReportsTo relationship in the
sample instance of DEPT table

2. COMPUTING TRANSITIVE CLOSURE IN
MICROSOFT ACCESS

In mathematics, the transitive closure of a binary relation R on
a set X is the smallest transitive relation on X that contains R
(Wikipedia 2006). If X is the set of humans (alive or dead) and
R is the relation “parent-of”” so that xRy means that x is a parent
of y, then the transitive closure of R is defined recursively as

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(1)

the relation, S, “ancestor-of,” where xSz means that there exists
a y such that xRy and ySz.

Using our example, the DEPT table defines the following
relation:

DNO ImmediatelyReportsTo ReportsToDNO

In turn, the transitive closure of the relation can be defined
(and computed) recursively as 4 ReportsTo Z, if there exists a
row X in DEPT (such that X.DNO = 4 and X.ReportsToDNO
=B)and arow Y in ReportsTo table (such that Y.DNO = B and
Y.ReportsToDNO = 2).

The basic algorithm for computing a transitive closure
(such as ReportsTo) using iteration (instead of recursion) can be
sketched as follows:

/* Initialize the transitive closure table ReportsTo to contain all
reporting relationships at level 1 */

Let ReportsTo:=
SELECT DNO, ReportsToDNO
FROM DEPT

WHERE ReportsToDNO IS NOT NULL;
/* Initialize auxiliary table Temp to be the same as ReportsTo */
Let Temp:= ReportsTo;
Repeat

/* Compute all reporting relationships at the next level */
Let Temp: =
SELECT DEPT.DNO, Temp,ResportsToDNO
FROM DEPT, Temp
WHERE DEPT.ReportsToDNO =
Temp.DNO,

/* If Temp is not empty, then append it to ReportsTo */
If |Temp| <> 0 Then
Let ReportsTo:= ReportsTo Union Temp;

Until |Temp| = 0;

Stepping through the algorithm as implemented in
Microsoft Access (see Appendix A), we observe the partial
results shown in Figures 4-6 on the way to the final ReportsTo
table given earlier in Figure 3.

With the transitive closure table (ReportsTo) produced, it
is now possible to formulate queries against the data hierarchy
with ease in both SQL and QBE. For example, the following
Access SQL query will list all departments reporting at one
level or another to the “Production” department:

SELECT ReportsTo.DNO, DEPT .Name,
ReportsTo.Level

FROM (ReportsTo INNER JOIN DEPT
ON ReportsTo.DNO = DEPT.DNO)
INNER JOIN DEPT AS DEPT_1
ON ReportsTo.ReportsToDNO =
DEPT_1.DNO

WHERE DEPT_1.Name = "Production”

7

Departments Reporting to Production

| DNO Name | Level
11}Q&A 1
12{Manufacturing 1
9{Final Building 2.
10{Pre Building 2,

Similarly, to determine the total number of employees for
the “Production” department including all its sub-departments
the following Access SQL query can be employed to produce
the desired result:

Total Employee Count for Production Department.
TotalEmployeeCount .

0

SELECT Sum([Dept].[EmployeeCount]) +
[Dept_1].[EmployeeCount]
AS TotalEmployeeCount
FROM DEPT, ReportsTo, [Dept_1]
WHERE DEPT.DNO = ReportsTo.DNO
AND
ReportsTo.ReportsToDNO = DEPT_1.DNO
AND
DEPT_1.Name = "Production"”
GROUPBY DEPT_1.DNO,
DEPT _1.EmployeeCount

The solution presented above is based on computing the
transitive closure and storing it in a separate table. Therefore, as
the underlying data is updated, there is a need to re-compute the
transitive closure. To avoid expensive (time consuming) re-
computation, a more sophisticated incremental evaluation
system can be designed (Pang et al., 2005).

3. CONCLUSIONS

Embedded SQL programming is a standard topic of coverage in
the traditional course on database management systems in the
IS curricula. With the expressive power of SQL and QBE,
developing a motivating example of when embedded SQL
programming becomes necessary is difficult. This is especially
true in the context of retrieving data (via SELECT) as opposed
to update/data entry processing. In this paper, we have
presented an ideal opportunity to teach students the need for
embedded SQL programming using the Microsoft Access VBA
(Visual Basic for Applications) programming environment.

Computing the transitive closure of a relation is a
necessary operation for formulating queries against data
hierarchies that are often present in database design situations.
Whether we are capturing course pre-requisite relationships or
product/ subassembly bill-of-material relationships, the need
for computing the transitive closure of such inherently recursive
relationship types becomes quickly evident. The algorithm
presented in this paper and implemented as re-usable VBA
code in Appendix A provides a general solution to computing
transitive closures, thereby making queries against data
hierarchies a reasonably simple user undertaking in Microsoft
Access.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(1)

DEPT TEMP ReportsTo
EmployeeCount|ReportsToDNO DNOJReportsToDNO Level{]DNO ReportsToDNO Level]
15 g 12 I 17 20 1
18 1 18 | 20 1
1 Q&aA 4 19 ‘ I 19 | 20 I
12 Manufacturing 10 19 16 | 18 i 16 L8 I
13 West 10 18 15 | 18 b 15 18 1
14 South 7 18 14 18 1 14 18 i
15 East 9 ! 18 13 8 1 13 18 I
16 North 7 18 1 19 Pl 1 19 1
17 IT ! 3 20 12 19 Do 12 19 1
18 Sales 4 20 10 ! 12 1 10 12 1
19 Production 3 20 9 i 12 1 9 12 |
20 ;Samples & Co.| 3 13] 20 2
14 20 2
RESULT 15 20 2
{DNO] ReportsToDNO [Level 16 20 2
13 20 2 12 20 2
14 20 2 11 20 2
15 20 2 9 19 2
16 20 2 10 19 2
12 20 2
1 20 2
9 19 2
10 | 19 2
Figure 4. Results from the Initial Iteration
DEPT RESULT ReportsTo
[DNO] Name [EmployeeCountjReportsToDNO] IDNO[ReportsToDNO]Level] [DNOJReportsToDNO[Level]
9 |{Final Building 15 12 9 20 3 17 20 1
10 | PreBuilding | 18 12 10 20 3 18 20 1
T Q&A 4 19 19 30 1
12 {Manufacturing 10 1(5 16 18 1
13 West » 10 18 TEMP 15 18 1
14 South | 7 18 [DNOJReportsToDNOJLevel 14 18 I
15 East 9 18 13 20 2 13 18 1
16 North 7 18 12 20 3 1 19 1
17 IT 3 20 15 20 2 12 19 1
18 Sales 4 20 16 20 2 10 12 1
19 Production 3 20 12 20 2 9 12 1
20 [Samples & Co.! 3 N 30 37 13 20 2
9 19 3 14 20 2
10 19 2 15 20 2
16 20 2
12 20 2
1 20 2
9 19 2
10 19 2
9 20 3
10 20 3

Figure 5. Results from the Second Iteration

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(1)

DEPT RESULT ReportsTo

DNOJ[Name |EmployceCount]ReportsToDNO| [DNOJReportsToDNOJLevel] [DNOJReportsToDN
. 9 ||Final Building 15 12 Y 20 1
i 10 Pre Building 18 12 18 20 1
P11 Q&A 4 19 19 20 1
12 | IManufacturing 10 19 16 18 1
S 13 West 10 18 TEMP 15 18 1
14 South 7 18 |DNO[ReportsToDNO|Level| 14 18 1
15 East 9 18 -9 20 3 13 i8 1
16 North 7 18 10 20 3 11 19 1
17 IT 3 20 12 19 i
18 Sales 4 20 10 12 1
19 Production 3 20 9 12 1
720 |1 Samples & 3 13 20 2
' _ Co. 14 20 2
15 20 2
16 20 2
12 20 2
11 20 2
9 19 2
10 19 2
9 20 3
10 20 3

Figure 6. Results from the Third (final) Iteration
4. REFERENCES AUTHOR BIOGRAPHY

Gulutzan, P. and Trudy, P. (1999) SQL-99 Complete, Really.
CMP Books, Gilroy, CA.

Loney, K. and Koch, G. (2002) Oracle9i: The Complete
Reference. McGraw-Hill, New York, NY.

Melnyk, R. B. and Zikopoulos, P. C. (2001) DB2: The
Complete Reference. McGraw-Hill, New York, NY.

Pang, C., Dong, G., and Ramamohanarao, K. (2005)
“Incremental Maintenance of Shortest Distance and
Transitive Closure in First-Order Logic and SQL,” ACM
Transactions on Database Systems, 30(3), pp. 698-721.

Steinbach, T. (2003) “Migrating Recursive SQL from Oracle to
DB2 UDB,” http://www-
128.ibm.com/developerworks/db2/library/techarticle/0307s
teinbach/0307steinbach.html (7/4/2006).

Wikipedia (2006) “Transitive Closure,”
hitp:/Zen.wikipedia.org/wiki/Transitive_closure (7/4/2006).

9

Mohammad Dadashzadeh has been affiliated with University
of Detroit (1984-1989) and Wichita
State University (1989-2003)
where he served as the W. Frank
Barton Endowed Chair in MIS.
Since 2003, he has been serving as
Professor of MIS and Director of
the Applied Technology in
Business (ATiB) Program at

i il Oakland University. Dadashzadeh
has authored 4 books and more than 40 articles on information
systems and has served as the editor-in-chief of Journal of
Database Management.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 18(1)

APPENDIX 1
Microsoft Access VBA Subroutine to Build ReportsTo Transitive Closure Table

The VBA code given in this appendix re-builds the ReportsTo transitive closure table from the DEPT(DNO, Name,
EmployeeCount, ReportsToDNO) table. A generalized version with user-specifiable parameters identifying the input and output

tables and the parent and child columns is available from the author.

Sub BuildReportsTo()
'This VBA subroutine re-builds the ReportsTo table.
DoCmd.SetWarnings False

'Empty ReportsTo table if it exists ...

If TableExists(*“ReportsTo™) Then
DoCmd.RunSQL (“DELETE FROM ReportsTo™)
End If

'Initialize ReportsTo table with Level One ReportsTo data ...
If TableExists(*‘ReportsTo) Then

Let SQLcmd =
“INSERT INTO“ & _
“ReportsTo(DNO, ReportsToDNO, [Level]) “ & _
“SELECT DNO, ReportsToDNO, 1 “ & _
“FROM DEPT“ & _
“WHERE ReportsToDNO IS NOT NULL”
Else
Let SQLecmd =
“SELECT DNO, “ & _
“ReportsToDNO, 1 As [Level] “ & _
“INTO ReportsTo “ & __
“FROM DEPT “ & _
“WHERE ReportsToDNO IS NOT NULL”
End If
DoCmd.RunSQL (SQLcmd)

'Initialize auxiliary table Temp to be the same as ReportsTo
DoCmd.CopyObject , “TEMP”, acTable, “ReportsTo”

‘Compute all reporting relationships at the next level ...
Let CurrentLevel =2
Let Done = False

Do While Not Done

LetSQLemd =
“SELECT DEPT.DNO, “ & _
“TEMP.ReportsToDNO, “ &

Str(CurrentLevel) & “ AS [Level] “ & _

“INTO RESULT “ & _
“FROM TEMP, DEPT “ & _
“WHERE DEPT.ReportsToDNO = TEMP.DNO”

DoCmd.RunSQL (SQLcmd)

'If the Result of joining is not empty, then append all the
‘reporting relationships found to ReportsTo and continue
‘'with Temp as the results found ...

Set rst = CurrentDb.OpenRecordset(*RESULT"")

If rst.RecordCount = 0 Then

Let Done = True

Else

Let SQLecmd =

“INSERT INTO “ & _

“ReportsTo(DNO, ReportsToDNO, [Level]) “ & _
“SELECT DNO, ReportsToDNO, [Level] “ & _
“FROM RESULT”

DoCmd.RunSQL (SQLcmd)

DoCmd.RunSQL (“DELETE FROM TEMP"")

Let SQLcmd =
“INSERT INTO“ & _
“TEMP(DNO, ReportsToDNO, [Level]) “ & _
“SELECT DNO, ReportsToDNO, [Level] “ & _
“FROM RESULT”

DoCmd.RunSQL (SQLcmd)

End If

rst.Close

DoCmd.RunSQL (“DELETE FROM RESULT”)
Let CurrentLevel = CurrentLevel + 1

Loop

'Delete auxiliary tables produced ...
DoCmd.RunSQL (“DROP TABLE TEMP”)
DoCmd.RunSQL (“DROP TABLE RESULT”)

DoCmd.SetWarnings True
End Sub

Function TableExists(TableName As String) As Boolean
'Returns True if a table named TableName exists ...

Let ExistsFlag = False

On Error GoTo NotFound
DoCmd.OpenTable TableName, acViewNormal,
acReadOnly

Let ExistsFlag = True

DoCmd.Close

NotFound:
On Error GoTo 0 'Reset the error handler.

TableExists = ExistsFlag

End Function

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISCCID Evsic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2007 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

