An Exploratory Assessment of the Pedagogical Effectiveness of a Systems Development Environment
Meso, Peter;Liegle, Jens

Journal of Information Systems Education; Summer 2005; 16, 2; Research Library

pg. 157

Journal of Information Systems Education, Vol. 16(2)

An Exploratory Assessment of the Pedagogical
Effectiveness of a Systems Development Environment

Peter Meso
Jens Liegle
Dept. of Computer Information Systems
J Mack Robinson College of Business,
Georgia State University
35 Broad Street, Atlanta, GA 30303
pmesocis.gsu.edu jliegle(@cis.gsu.cdu

ABSTRACT

We employ the theory of technology acceptance to assess the suitability and fit of a new systems development environment,
the .NET suite of technologies, as a pedagogical tool for teaching a technical information system (IS) course. The performance
of students who adopted this technology for the completion of a class project requiring them to design and build an object-
oriented distributed-system is compared to that of students who opted for the more conventional technologies (J2EE). Results
of this study indicate that the factors that led to the selection of .NET over the other technologies were consistent with the
technology acceptance theory: Those project-teams that opted for NET performed as well as the J2EE teams on the
implementation/deployment part of the project, but reported significantly less technical difficulties than those who used the
conventional technologies. This study suggests the effectiveness of the technology acceptance theory and similar IT
innovation diffusion theories as approaches for assessing the pedagogical fit and suitability of specific IT for teaching specific

IS courses.

Keywords: Technology Acceptance Model, TAM, J2EE, .NET, Software Design

1. INTRODUCTION

The information technology revolution, an ongoing
evolution, has a direct bearing on the nature of instruction
provided to business students. This is especially true for
students of software engineering — be they in the business,
information sciences, or computer science disciplines. As
such, new computing technologies that promise to change
the computing landscape significantly are a constant concern
to software engineering educators. However, it is usually
cumbersome and difficult to determine whether or not to
adapt a new software engineering technology as a
pedagogical tool and when to undertake such an adoption
decision. For one, adopting the new technology requires
significant investments not only in the new technology itself,
but in the know-how and instructional material for the
technology. It also calls for a re-tooling and restructuring of
course content to fit the new technology. Further, care is
needed to ensure that the pedagogy does not migrate in focus
towards teaching the new technology, but is able to use the
new technology to expound and convey the core principles
of the subject area — say programming or systems design for
example.

As is the case in most scientific courses, the teaching of
software engineering courses requires the use of definite

technologies either within a laboratory setting or individually
outside of the classroom (Liegle and Madey, 2003).
However, whereas many scientific courses require
instructor’s attention to technical support only during the
class period, the nature of information technology (IT),
especially in the present Internet era, demands that an
Information Systems (IS) instructor attends to technical
problems and systems administration issues on an on-going
basis — even when not on duty. This tends to be the case even
where separate personnel are available to perform technical-
support duties, because students naturally communicate their
technical problems directly to the instructor. Further, the
perception that students have about the effectiveness of the
instructor — and the true worth of the course — are directly
affected by how effectively the course (pedagogical)
technology functioned in terms of its ease of use and its
usefulness in allowing the students to fulfill pertinent course
requirements (Meso and Liegle, 2003). The effectiveness
with which technology-related difficulties that the students
encounter are resolved also impacts their perception about
the course and its instructor. These perceptions have a direct
bearing on the instructor’s evaluation by students —
evaluations that are heavily relied upon at most institutions
to assess the teaching effectiveness of instructors (Liegle and
Johnson, 2003). Therefore, identifying useful, effective and
relevant IT pedagogical tools that are actually well received

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 16(2)

by the students is of significant importance to the instructor.
Such tools/technologies may leverage the performance and
effectiveness of the instructor.

The complexity of the technology, or its cumbersomeness,
may also mitigate the students’ ability to grasp and
understand the core body of knowledge being disseminated
in the course. According to pedagogical research, effective
teaching tools and technologies enhance the learning
capability of students and make the mastery of difficult
principles simpler (Liddle, Brown et al., 1995; Janicki and
Liegle, 2001). Research in this area also points out that the
teaching tools and technologies that prove to be effective in
most cases are those that:

1. are easy to use and easy to learn,

2. map a clear and direct path from the problem to its
correct solution, allows for hand-on-learning or
learning-by-doing rather than passive learning such as
demonstrations by an instructor, and

3. minimize the technological barriers between student
and the core-knowledge or principles being
disseminated to the student (Janicki and Liegle, 2001).

Therefore, our objective in this study is to assess the
suitability and fit of a new systems development
environment as a pedagogical tool for teaching a technical IS
course. We do this by comparing the new technology of
Visual Studio.NET to the more conventional technology of
J2EE. The .NET suite of technologies is selected because it
is a new technology recently launched to the public and, so
far, it has experienced minimal use as a pedagogical too! at
our institution. The conventional technology in this study is
Java and the J2EE framework. J2EE has been in use as an
enterprise-capable software engineering and information
systems development environment for over a decade. It is
well entrenched as the development platform of choice for
web applications and multi-tier enterprise information
systems (Sun Microsystems, 2002; Oestereich, 2002; Hall,
2003). For the past five years, J2EE has been the
pedagogical tool of choice in the teaching of systems design
at the site where this study was conducted.

The paper is structured as follows: The ensuing section
provides a discussion of the use of technology acceptance
theory in past studies on IT diffusion, and explains the
variables that we adopted from this theory to assess the
pedagogical fit of a new software development environment.
Part 3 presents the research methodology and hypotheses.
Part 4 reports the results of an experiment while part 5
provides inferences drawn from these results and discusses
the contributions of the study. Part 6 presents a discussion of
the results, while Part 7 draws conclusions and provides
directions for future research.

2. INTRODUCTION OF THE RESEARCH MODEL

When instructors are faced with the decision of whether to
introduce a particular new technology into the classroom,
they can use several methods to evaluate the ‘goodness’ of a
particular technology as a pedagogical tool. First is a feature
comparison using weighted scores. A second alternative

would be to poll actual users or a set of experts. These two
methods have their limitations: In the end, in order to come
up with an unbiased decision, one needs to be an expert in all
the technologies, and this is usually not the case when new
ones are introduced.

Another problem of the previous two methods is that they
represent a “top-down” decision making approach, where
student opinion is not taken into consideration.
Conventionally, students will be attracted to a technology
that is easy to use and directly relevant to the course
requirement tasks that they must complete, or to one that
they perceive as bearing these traits. Where students have a
choice between two or more technologies, a comparative
assessment of their reactions to each becomes possible. This
provides a means for determining the technology that best
fits the course based on the feedback received from the
students. Therefore, a third approach is to assess students’
acceptance of a technology. This is especially relevant, since
student acceptance will ultimately influence their evaluation
of the course and the instructor.

The argument can be made that actual usage of a technology
is a strong indicator of acceptance of a technology (Davis,
1989). Therefore, actual usage of a technology can be a
determinant of its appropriateness for the course. However,
within the context of using a new systems development
environment as a pedagogical technology, there are a number
of problems related to measuring its perceived or actual
usage. Traditional measures such as frequency of use,
number of features used, or amount of time spent using a
technology as employed in previous technology acceptance
studies (Szajna, 1996; Gefen and Straub, 1997) are
inadequate for a number of reasons. For example, someone
might have to use the systems development environment for
a long time due to lack of knowledge on how to use it, or, on
the other hand, because they actually implement a large
number of features in their project. Further, the number of
times an application is opened, and the number of features
used within the system may not be indicative of qualitative
usage.

Since qualitative usage measures can not be employed
objectively to evaluate students’ acceptance of a new
technology, alternative measures have to be used.
Fortunately, the theory of technology acceptance presents a
causal model called TAM (Technology acceptance model,
see figure x) that identifies two predictor variables for actual
usage of a technology (Davis, 1989). These two variables are
ease of use and usefulness respectively.

The Technology Acceptance Model (TAM) is the leading
theory used to explain adoption of information technology
by individuals in business and industry (Gallivan, 2001,
Chircu et a., 2000; Straub et al., 1997). Research abounds on
the use of TAM in explaining individual adoption and
acceptance of IT and the antecedent and consequent factors
that propel such diffusion within groups and organizations
(Davis, 1989, Davis et al. 1989; Szanja, 1996; Agrawal and
Prasad, 1997; Thompson, Higgins and Howeil, 1991; Moore
and Benbassat; 1991; Karahana, Straub and Chervany, 1999;

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 16(2)

Gallivan, 2001). While TAM has been widely used in IS
diffusion research, it has rarely been used to explain the
selection of an IT tool or technology to support the teaching
of a technical IT course. There has been little research
focusing on why certain IT tools and technologies are more
favored than others in the teaching of certain IT skills and
domain knowledge. Instead, existing studies have tended to
compare particular technologies or skill sets with respect to
predefined outcomes such as subject’s productivity, subject’s
cognitive performance and some output artifacts (e.g. higher
quality analysis diagrams, higher quality program code, etc)
(Basili et al., 1999; Burton-Jones and Meso, 2002; Havelka,
2003; Howard et al., 1999; Wang, 2003; Morris et al., 1999;
Vessey and Conger, 1994).

1998). The use of surrogate measures in terms of perceived
usefulness or ease of use is actually based on an assertion by
Davis (1993) that perceived measures are an accurate though
not direct measure of technology acceptance. In summary,
perceived measures are said to be appropriate in situations
where users have yet to use the technology, in other words,
pre-implementation (Szajna, 1996, Deane, Podd, and
Henderson, 1998). In post-implementation scenarios, actual
measures have been found to be superior to perceived
measures (Henderson and Divett, 2003; Szajna, 1996).

In our case, students had to take two consecutive
programming courses of a given track before taking the
systems development course. The currently offered tracks
include Java, C++, and Visual Basic.
For Java, the J2EE environment was
taught, while Visual Studio was used
for both C++ and Visual Basic. For

Amitade
Towards Using
o

Figure 1: Technology Acceptance Model (Chin, 2000)

The Technology Acceptance Model states that the factors
that propel the diffusion of an Information technology are its
ease-of-use and its usefulness (Davis, 1989; Chin, 2000,
Gallivan, 2001). TAM has been used to explain diffusion
using user-perception measures as well as actual usage
measures. Within the context of an IT course, we expect that
students will be attracted to that technology that is easy to
use and directly relevant to the course requirement tasks that
they must complete, or to that technology that they perceive
as bearing these traits. Therefore, assessing the reactions of
students toward a particular technology can determine the
effectiveness of that technology as a pedagogical tool for the
course in question.

In past TAM studies, the ease of use and usefulness variables
have been operationalized as either perceived or actual
measures (Davis, 1989; Deane, Podd, and Henderson, 1998;
Henderson and Divett, 2003; Szajna, 1996;). Perceived
measures have been more frequently employed than actual
measures due to the fact that actual measures are difficult to
obtain (Deane, Podd, and Henderson, 1998). In fact, there is
a paucity of research in TAM using actual behavioral
measures instead of perceived measures (Henderson and
Divett, 2003). However, there have been problems reported
with the use of perceived ease of use instead of actual ease of
use (Henderson and Divett, 2003). One of the rare studies
using actual measures showed that they are highly correlated
with perceived measures (Deane, Podd, and Henderson,

the systems design course, however,
the new Visual Studio.NET
environment had just become
available for students to use, and was
new to all students. Due to the steep
Bibsaviceal lef_iming curve for bqth J2EE and
Totention to Use Visual Studio, we did not expect
T students who had taken the Java
Track using J2EE to develop their
system using Visual Studio, or any
student with Visual Studio training
to suddenly use J2EE.

Thus, the wuse of perception

measures in evaluating the ease of
use and usefulness were not applicable to our study, since
students had already selected their programming track and
completed two courses in their respective track prior taking
the systems design course, and as such already selected one
of the two system development environments.

Given the fact that we could not capture actual usage through
any meaningful measures, we employed the predictor
variables ease of use and usefulness, and since we evaluated
the technology in a post-implementation setting, we opted to
operationalize these variables through actual measures.

3. THEORY AND HYPOTHESES

According to TAM theory, two factors propel the diffusion
of an information technology — its ease of use and its
usefulness.

3.1 Ease of Use
With respect to technologies for systems design and
construction, the technology is considered easy to use if it
allows the designer to effortlessly (Davis, 1989; Davis,
1993), or in simple straightforward steps,
o translate design models (blue prints) into program code,
* ensure that the specifications outlined in the design
models (blue prints), remain are mapped into the
functional program code without any loss in structure,
logic, or elements stipulated in the design models

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 16(2)

e integrate the multiple program-code modules or
components into one seamless and unitary system, and
o deploy the system into production.

Said otherwise, a technology is easy to use if it provides
intuitive-like features that include cues, graphical user
interfaces, wizards, menus, and similar artifacts to guide the
user through well established automated procedures of
converting specifications into functional program modules or
components, to integrate these components into a functional
unitary system, and to deploy the system into production.
Such a system simplifies the systems building function by
allowing the user to focus on the systems solution, rather
than on how to operate the technology. Therefore, ease-of-
use relates to the navigability, user-interfaces, automated
capabilities, and the functionality of the technology — the
ability to quickly and effortlessly discover how the
technology works and how to use it.

The .NET framework comes with a new integrated
development suite, Visual Studio.NET (VS.NET). VS.NET
is a significant step forward from prior releases, in that it not
only provides the programmer with an extensive online help,
a fully integrated editor with intellitype — auto completion of
method arguments —, excessive wizard support and graphical
drag/drop construction of user interfaces such as menus,
windows, buttons etc., but it also does this in a totally
integrated manner. The underlying byte code allows
developers to write part of the code in one language, and use
it from another language, i.e. define classes in C# and use
them in a Visual Basic.NET program. The integrated
debugger will switch from one language to another in real-
time (Cooper 2002).

The consequences for a development team are that each
participant can develop in the programming language they
are most familiar with, and the different parts can be easily
integrated and debugged — without the overhead of COM
(Component Object Model). This was especially helpful for
the students of this study, since they came from one of three
programming tracks (C++, Java, and Visual Basic) and often
did not know the other languages at all. And since students
from either track were familiar with the basic Visual Studio
environment and Windows technology in general, the initial
learning curve for this tool was relatively low.

3.2 Usefulness

Usefulness relates to the ability of the system to do what it
was designed to do. A tool or technology is useful if the user
is able to achieve pre-defined end-goals by following the
pre-defined directions of how to use the tool or technology.
Vessey and Conger (1994), in proposing the theory of
cognitive fit, state that a technology is most useful when it is
matched correctly with the task to be completed using that
technology. Where the fit between the technology and the
task is poor, the technology’s usefulness deteriorates.
Therefore, in the case of the use of a software development
environment (SDE), if a user is not able to successfully
implement a system’s design solution when using a specific
SDE, then that tool is less useful. In other words, the

usefulness of a tool relates to the capabilities of the
technology to deliver the anticipated outputs.

In the context of systems development, these outputs are a
functioning production system that meets established quality
standards. Therefore an IS technology for building IS
solutions is useful if it enables the designer to create
information-system solutions that are: efficient (solutions
with minimal lines of code and high through-put), robust,
scalable, reliable, capable of rigorous data quality and
integrity (data-validation, data verification, run-time error
detection and correction, etc) and secure.

For Visual Studio.NET, scalability is superb, since it is
designed as an enterprise-level programming environment.
Efficiency is greatly enhanced through the use of multiple
wizards that generate most of the code for the programmer,
i.e. user interfaces and database connectivity. Error detection
etc. is supported by the most powerful debugger that exists to
date, which allows the programmer to start debugging a
client side application and seaming less switch to the code of
the server side program — in the same session (Cooper,
2002).

J2EE technologies, on the other hand, are traditionally
known to be difficult to leamn and use. This has largely been
to the fact that most use text-based interfaces, and the
various tools required to complete a project are usually not
integrated in one comprehensive suite of programs. In recent
years, an increasing number of Java integrated development
environments (IDE) vendors have built graphic user-
interfaces into their IDEs and some have also implemented
wizards to simplify the systems construction, testing and
deployment processes. Examples include IBM’s Websphere
Studio (IBM, 2004), and Sun Microsystems’s NetBeans (Sun
Microsystems, 2002; Sun Microsystems, 2004). Most still
require that a separate deployment tool be initiated when a
developer transitions from code-generation and testing to
system deployment. This notwithstanding, J2EE remains a
powerful and robust development framework for enterprise
information systems.

3.3 Hypothesis

Given the newness of .NET and our inexperience with its use
as a pedagogical tool, we selected to use a neutral hypothesis
when assessing the efficacy of .Net as a tool for teaching
object oriented systems design. Therefore we hypothesized
that .NET will be as easy to use as J2EE technologies. That
is, users will not require more technical information and
know-how about how the .NET technology works in order to
successfully use .NET to develop an IS system solution than
they would require were they to use J2EE technologies:

HI: There will be no significant difference in the
ease-of use measures between student groups who
use .NET and those who use J2EE technologies.

Given that both technologies have been developed to address
object-oriented enterprise systems development, and both
have capabilities for developing web-based systems, we
hypothesized that there would be no significant difference in

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 16(2)

the usefulness of both technologies for developing systems
solutions. In other words, the capabilities demonstrated by
NET in facilitating the construction of a distributed web-
based object-oriented information system would also be
evident in J2EE technologies.

H2: There will be no significant difference in
usefulness measures between student groups who use
NET and those who use J2EE technologies.

4. RESEARCH METHODOLOGY

In order to test the hypothesis, we chose to use a quantitative
field study approach. This enabled us to operationalize the
research constructs within normal teaching practice. The
following subsections describe the details of our
methodology.

4.1 Subjects

This study was conducted at a leading south-eastern
university. It was designed as a semester long systems design
project, which was repeated over three semesters.
Participants in the study (study’s subjects) were required to
design and build an object-oriented web-based distributed
enterprise information system. Replication was chosen as a
strategy for validating the findings of the study. Therefore,
the same study was replicated at the same university, using
subjects enrolled in the same course over a period of three
consecutive semesters.

In all the studies, the subjects were senior-year
undergraduate students that were enrolled for the systems
design course. All were computer information systems
majors. They were drawn from sections of the same course
taught by the same instructor.

4.2 Experiment

The instructor provided the narrative for the project,
describing similar business cases. The project had four parts
to it: a conceptual design part (part 1), a technical design part
(part 2) and a systems-building part (part 3), followed by a
technical presentation (part 4). All teams used the rational-
rose software as the standard CASE tool in the completion of
the conceptual design part and the technical design part of
the project.

Subjects were organized into project teams for purposes of
completing the design project. The project teams were
formed by students self-selecting themselves into groups of
three to five members. In the original study, a total 13 teams
were formed, followed by 6 Teams in the 2" semester, and 7
teams in the 3™ semester for a total of 26 teams.

The nature of the study, being to use TAM theory to assess
the suitability and fit of a new technology for the
pedagogical support of a technical IS course, mitigated the
need for allocating technologies to the project teams.
Therefore each project team was allowed to select any
technology or set of technologies of their choice for the
systems-building (implementation) part of the project. The
technologies they selected thus determined what treatment

group they belonged to. In total four different technologies
were selected. These were NET (10 teams), J2EE
technology (11 teams), ASP 6.0 (3 teams) and HTML/CGI
(2 team). Students also made a presentation of their project at
the end of the semester. In the analysis of the results, project
teams that did not use .NET or J2EE were dropped from the
analysis.

All teams used the rational-rose CASE tool to develop the
conceptual and technical design solutions, and were at liberty
to select technologies of their choice for the systems-
building (implementation) part of the project. The selected
technology thus determined their treatment group.

4.3 Measurements for Ease of Use and Usability

The quantitative field study approach that we employed
provided for natural data collection in the form of actual
student performance scores instead of only perceived
measures. The use of actual performance measures such as
post-test quiz scores or time as a surrogate for measuring the
ease of use and/or usability of an object oriented technology
is common practice (Lui and Gradon, 2002; Agarwal et al.,
1996, Venkatesh and Davis, 1996, Vessey and Conger,
1994; Sharp and Griffyth, 1999).

For our study, we measured usefulness based on the
performance of the student project-teams on the third part
(part 3) of a four-part semester long teaching project on
object oriented systems design. Here (part 3), students
constructed the system solution according to the conceptual
design specifications developed in part 1 and the technical
design specifications developed in part 2 of the project
respectively. Scoring was done by the instructor using a
scale of 0 to 100.

The ease-of use of the technology was measured based on
the student-project-team’s performance on their presentation
assignment (part 4). In this assignment, each team
demonstrated the technology they used to build the system,
outlining how that technology supported the generation of
program code, the debugging and testing of the same, the
integration of the various programs into one system and the
deployment of the final solution as a production system.
Teams that demonstrated a superior understanding of the
development tool by being able to demonstrate its various
features and how they used these features in developing their
solution received a high score. Those that had difficulties
demonstrating the use of the tool, and/or reported having had
problems using the tool to develop their system received a
low score. Scoring was done by the instructor using a scale
of 0 to 100.

As control variables, students of both the original study and
the replication completed three examinations in the course of
the semester. We used the results from the average total
exam performance of each group, and their performance on
the conceptual design part of the project to test for the
differences among the treatment groups in terms of their
knowledge of the subject matter.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 16(2)

5. RESULTS

Descriptive statistics were evaluated for the student-group
performances on each part of the project and on the
presentation assignment. First we ran tests to confirm if the
data collected from the study was normally distributed. This
was done because the treatment groups in this study had not
been deliberately designed. Rather, in keeping with the
principle of diffusion, the subjects had been allowed to select
their own development technologies — and these technologies
established the respective treatment groups for the study.
Skewness and kurtosis tests confirmed that the data used as
measures for each of the hypotheses above, namely
Performance on Part 3 of the project, and Performance on the
Presentation, was normally distributed (Table 1 and 2).
Therefore, we were able to use it in the ANOVA (Analysis
of Variance)(Hair et al, 1998, pg. 332) analysis to
statistically analyze the differences between the treatment
groups, with respect to the hypotheses.

An analysis of their performance for project and presention
over the three semesters for the .NET (See Table 3) and the
J2EE teams (See Table 4) revealed that there was no
significant difference (p-values of .054 and .214 for .NET,
and .142 .125 for J2EE respectively) with the treatments over
the three semesters.

Since there was no significant differences within treatments

with respect to their presentation and project scores allows
for the aggregation of the data when evaluating the
hypotheses (see Tables 3 and 4), the pooled data over the
three semesters was used- for the analysis of the hypothesis.
Therefore, we reanalyzed descriptive statistics for the
subjects at team-level. Table 5 presents these statistics for
the two treatment groups. Consequently, the following
analysis uses team-level data. Across the three semesters, a
total of ten (10) teams used .NET, and eleven (11) teams
used J2EE (See Table 5). Teams that used other technologies
such as ASP6.0 or CGI/Perl were excluded from the
analysis.

Analysis of variance (ANOVA) tests for the pooled data
confirmed support for hypotheses HI and H2. Table 6
presents these results. Although the NET group performed
worse on the project than the J2EE (83.8 vs. 86.0), this
difference was not significant (p=0.686). This result
indicates that the two technologies ranked equally regarding
the ease-of-use construct.

Surprisingly, the results of the Presentation score were just
reversed, with .NET teams performing better than the J2EE
teams (86.4 vs. 82.), but yet again the difference was not
statistically significant (p=0.354). Again, this result indicates
that the two technologies ranked equally regarding the
usefulness construct.

Table 1: Test for Normality of Data in the Original Study’s Research Variables

N | Minimu| Maximum Mean Std. Dev Kurtosis
m Statistic Std. Err
Exam Total 62 16.40 29.00 25.0258 2.3343 2.062 .599
Conceptual Design Score 62 90.00 100.00 97.0000 3.1100 -.547 599
Implementation Score 62 64.00 99.00 77.5000 | 11.6348 -.758 2599
Presentation Score 62 80.00 98.00 88.1129 5.7747 -1.148 2999

Table 2: Test for Normality of Data in Replication Study’s Research Variables

N Minimum | Maximum Mean Std. Kurtosis
Deviation Statistic Std. Error
Exam Total 26 22.20 28.50 25:3385 1.5297 -.101 .887
Conceptual Design Score 26 71 85 80.65 4.23 1.103 .887
Implementation Score 26 87 98 9273 4.07 -1.396 .887
Presentation Score 26 90 100 95.08 B2, -1.280 .887

Table 3: ANOVA Comparison of Project and Presentation Scores across Three Semesters for the NET Group

Sum of df Mean F Sig.
Squares Square
Project Between 1025.517 2 512.758 4.543 .054
Groups
Within 790.083 7 112.869
Groups
Total 1815.600 9
Presentation Between 184.067 2 92.033 18939 214
Groups
Within 332333 7 47.476
Groups
Total 516.400 9
162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 16(1)

Table 4: ANOVA Comparison of Project And Presentation Scores Across Three Semesters for the J2EE Groups

Sum of df Mean B Sig.
Squares Square
Project Between Groups 352533 2 176.267 2512 142
Within Groups 561.467 8 70.183
Total 914.000 10
Presentation Between Groups 676.930 2 338.465 2:582 125
Within Groups 1310.762 10 131.076
Total 1987.692 12
Table S: Descriptive Statistics of pooled Treatment Groups
1=Net N Mean Std. Std. Error
2=]2EE Deviation Mean
Project 1 10 83.80 14.20 4.49
2 11 86.00 9.56 2.88
Presentation 1 10 86.40 95T 2.40
2 11 82.00 13.08 3.95
Table 6: ANOVA of Pooled Treatment Groups
t df Sig. (2-tailed) | Mean Std. Error 95% Confidence Interval
Difference Difference of the Difference
Lower Upper
Project -412 15.564 .686 -2.20 5.34 -13.54 9.14
Presentation 953 16275 354 4.40 4.62 -5.37 14.17

These findings show that that there was no significant
difference between the .NET and the J2EE suite of
technologies in both ease-of-use and usefulness.

6. DISCUSSION

TAM allowed us to empirically and objectively compare the
effectiveness of a new technology. The findings, that the
subjects who used the new technology in this study
performed on par with the subjects who used the existing
technology provides grounded evidence that the new
technology is as effective a pedagogical tool as the existing
technology. It allowed the students who used it to achieve
the stipulated course objective of building a quality solution
to a systems design problem and perform as well at the task
than those who did not. However, this conclusion is limited
to the specific context in which the emergent technology was
compared to existing technologies and cannot be generalized
to all IS courses, or even to systems design courses that take
on a different focus (e.g. process oriented as opposed to
object-oriented design).

As stated earlier, these findings simply confirm the
suitability of the new and emergent technology as a
pedagogical tool for a well-defined technical IS course. They
do not provide support for the notion that the emergent

163

technology is a superior technology to the existing
technologies.

These findings further indicate that using TAM may
facilitate the identification and selection of suitable IT tools
for teaching technical IS courses. Selection of such
technologies, for which .NET is an example, provides gains
to instructors of technical information systems courses by
mitigating the course-administration burden that such
courses place on the instructor.

This paper would be incomplete without some documented
observations of the instructor made during the lifetime of the
course. In retrospect, these observations may explain or point
to the reasons why the student teams that adopted .NET may
have performed as well as their J2EE colleagues.

First, the student-groups that selected to use .NET were able
to install and configure their selected technologies without
the instructor’s assistance. On the other hand, all but one of
the student groups that used J2EE technologies experienced
installation and set-up problems significant enough to have
them consult with the instructor. This was likely due to the
complex nature of J2EE-based technologies, most requiring
add-ons and components from different vendors in order to
function. The most common problems that students had
regarding technology installation and configuration had to do

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 16(2)

with establishing database connectivity and getting the
server-side run-time environment to function correctly.

Most of the course preparation and administration time in
technical IS courses is spent on issues relating to installing
and configuring the IS technologies to be used by the class,
and administering/maintaining these through the lifetime of
the course. Thus the first lesson learned from this study is
that a technology that allows the students to perform these
tasks simply and effectively, without excessive dependence
on the instructor, greatly reduces the technological burden of
delivering the course. Both the instructor and the students
benefit in this set-up. Students get to learn the nuances of a
technology that otherwise only the instructor knows, and
gain confidence in technology management. The instructor,
on the other hand, is able to allocate more course time to
addressing subject knowledge issues rather than
administrative issues. As such, providing students with more
in-depth knowledge of the subject matter becomes not only
possible, but feasible, even within the time constrains of a
single semester.

Second, groups that selected .NET required little or no
assistance in solving problems regarding how to use the IS
tool, and how to generate, compile and run software code
using the tool. Their consultations largely involved
translation of UML symbols, diagrams and logic into
appropriate software-code and persistent date repositories.
Student groups that selected to use J2EE had significantly
more difficulty in learning how to use the integrated
development environment they had selected without
assistance from the instructor. This tended to inhibit their
focus on, and performance in, completing the actual IS
development project. Said otherwise, because groups that
opted for .NET and simple text editors spent less time in
learning tool specific knowledge, they were able to allocate
more time to learning domain specific knowledge (systems
design knowledge needed to complete the IS project). On the
other hand, those groups that opted for J2EE-based tools
spent so much time learning tool-specific knowledge that
they had little time left to concentrate on domain specific
knowledge.

Therefore, the second key lesson learned from this study is
that selecting an easy-to-use, easy to learn IS tool as per the
parameters of TAM allows for more, if not all, class time to
be used in teaching the core knowledge and principles
pertinent to the technical IS course being taught rather than
in teaching how to use a specific IS tool that supports,
facilitates, or implements the learned core-knowledge. The
result is a purer pedagogical coverage of the core-knowledge
in the teaching of technical information systems courses.

Still, more studies need to be conducted before our findings
can be generalized. In addition, one should keep in mind that
.NET is a fairly new technology and that students who opted
for using .NET for their project are therefore early adopters —
a group that often consist of students that are very
comfortable with new technology and usually the better IS
students overall.

7. CONCLUSION

We employed the Technology Acceptance Model (TAM) of
information technology (IT) innovation diffusion to assess
the suitability and fit of a new IT, the NET suite of
technologies, as a pedagogical tool for teaching a technical
information systems (IS) course. Results of this study
indicate that the factors that led to the selection of .NET over
the other technologies were consistent with the TAM theory.
Those project-teams that opted for NET performed equally
well on the implementation/deployment part of the project,
and reported significantly less technical difficulties than
those who used the conventional technologies. They also
performed as well as the other teams on the presentation of
the project. The results supported the use of TAM for
selecting a new technology such as .NET based on the
usefulness and the ease-of-use constructs. The results
suggest that NET is an appropriate technology for this
particular course. However, before the results can be
generalized, more research must be done.

Our study was constrained by a number of limitations: First,
we did not consider or measure different learning styles of
the students. Learning styles can affect the usage of a
system; however, little research has been done to show how
learning styles impact ease of use. Second, our study did not
focus on assessing reflective learning outcomes. Mumford
(1985) argues that individuals can record and review
incidents and events and - through analysis and critical
reflection - can develop different approaches to guide future
action. Due to environmental constraints, our study was
limited to a one time assessment of the subjects, which
constrained the observation of any long term actions by the
subjects. Third, we did not employ an instrument to capture
perceived measures. Using such an instrument could have
validated the claim by Davis (1989) that perceived measures
are a viable substitute for actual measures. Fourth, the
sample size in the study was relatively small, in particular
the number of groups. We tried to compensate for this
limitation by replicating the study. Similar results in both the
original and the two replications provide some validation for
the study. These limitations provide possible and viable
extensions of this study. We propose future studies
investigate the long term usage of new technology and its
effects on an individuals’ learning,

This paper demonstrates that TAM can be used as a basis of
identifying the suitability and fit of a particular technology
for teaching a select body of IS knowledge. Using the TAM
framework provided us with an established framework with
well established decision criteria for evaluating technology
before adopting it for use in the classroom. This is especially
relevant when the technology is new and its benefits vs. the
more established technologies are largely unknown and
untested.

8. REFERENCES

Agarwal, R. and J. A. Prasad. “Conceptual and Operational
Definition of Personal Innovativeness in the Domain of

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 16(2)

Information Technology,” Information Systems Research,
Vol. 9, No. 2, (1998), pp. 204-215.

Basili, V., Shull, F., and Lanubile, F., (1999). “Building
Knowledge Through Families Of Experiments,” IEEE
Transactions on Software Engineering, Vol. 25 No.4, pp.
456-473

Burton-Jones, Andrew and Peter Meso, “How Good are
These Uml Diagrams? An Empirical Test of the Wand and
Weber Good Decomposition Model,” 23rd Annual
International Conference on Information Systems, 15 — 18
December 2002, Barcelona, Spain

Chin W. “Partial Least Squares for Researchers: An
Overview and Presentation of Recent Advances Using the
PLS Approach,” 2000, http://disc-
nt.cba.uh.edu/chin/indx.html

Chircu, Alina M; Kauffman, Robert J, “Limits to value in
electronic commerce-related IT investments,” Journal of
Management Information Systems, Vol. 17 No 2, 2000,
59-80

Cooper, J. “Visual Basic Design Patterns. VB 6.0 and
VB.NET,” Addison Wesley, 2002

Cooper, Randolph B.; Bhattacherjee, Anol, “Preliminary
Evidence for the Effect of Automatic Responses to
Authority on Information Technology Diffusion,”
Database for Advances in Information Systems, Vol. 32
No. 3, 2001, pp. 36-50

Davis, F.D., “Perceived Usefulness, Perceived Ease-of-Use
and User Acceptance of Information Technology,” MIS
Quarterly, Vol. 13 No. 3, 1989, pp. 319-339.

Davis, F.D., Bagozzi, RP, and Warshaw, RR., “User
Acceptance of Computer Technology: Comparison of
Two Theoretical Models,” Management Science, Vol. 35
No. 8, 1989, pp. 982-1003.

Davis, F.D. ”User acceptance of Information Technology:
System characteristics, user perceptions, and behavioral
impacts,” International Journal of Man-Machine Studies,
Vol. 38, 1993, pp. 475-487.

Deane, F., Podd, J., Henderson, R. “Relationship between
self-report and log data estimates of information system
usage,” Computers in Human Behavior, Vol 14, 1998, pp.
621-636.

Gallivan, Michael, “Organization Adoption and Assimilation
of Complex Technological Innovations: Development and
Application of a New Framework,” Database for
Advances in Information Systems, Vol. 32 No. 3, 2001,
pp. 51-85

Hair, J., Anderson, R., Tatham, R., Black, W. “Multivariate
Data Analysis,” 5" Edition, 1998, Prentice Hall, Upper
Saddle River, NJ.

Hall, M and Brown, L., “Core Web Programming,” second
edition, Prentice Hall (Sun Microsystems Book Series),
2003

Havelka D., “Predicting software self efficacy among
business students: A preliminary assessment,” Journal of
Information Systems Education, Vol. 14 No. 2, 2003, pp.
145-152

Henderson, R., and Divett, M. “Perceived usefulness, ease of
use and electronic supermarket use,” International Journal
of Human-Computer Studies, Vol 59 No. 3, September
2003, pp. 383-395

165

Howard, G., Bodnovich, T., Janicki, T., Liegle, J., Klein, S.,
Albert, P., and Cannon, D. “The Efficacy of Matching
Information Systems Development Methodologies with
Application Characteristics - An Empirical Study.”
Journal of Systems and Software, Vol. 45 No. 3, 1999, pp.
177-195 ,

IBM, WebSphere Studio Application Developer, IBM
Corporation, White Plains, New York , 2004, http:/www-
306.1ibm.com/softwarc/awdtools/studioappdev/

Janicki, Thomas N. and Liegle, Jens O. “Development and
Evaluation of a Framework for Creating Web-based
Learning Modules.” Journal of Asynchronous Learning
Networks, Vol. 5 No. 1, June 2001, pp. 58-84

Karahanna, E., Straub, D.W., and Chervany, N.L,
“Information Technology Adoption Across Time: A
Cross-Sectional Comparison of Pre-Adoption and Post-
Adoption Beliefs,” MIS Quarterly, Vol. 23 No. 2, 1999,
pp. 183-213.

Lederer, A.; Maupin, D.; Sena, M.; and Zhuang, Y. “TAM
and the World Wide Web,” Proceedings of the
Association for Information Systems (AIS) Americas
Conference, Indianapolis, IN, 1997.
http://hsb.baylor.edu/ramsower/ais.ac.97/papers/lederer2.h
tm

Liddle, J., Brown, K., Slater, A., MacDonnchadha, S. :
“Utilizing Multiple Training Strategies within Intelligent
Industrial Training Systems,” AI-ED 95 workshop on
Authoring shells for intelligent Tutoring Systems,
Washington D.C August 1995, 1-7

Liegle, J. and Johnson R. “A Review of Premier Information
Systems Journals for Pedagogical Orientation,”
Information Systems Education Journal, Vol. 1 No. §,
2003, http://isedj.org/1/8/. ISSN: 1545-679X.. (Also
appears in The Proceedings of ISECON 2003: §2511.
ISSN: 1542-7382.)

Liegle, J., Madey, G.: “A Classification of Programming
Knowledge and applicable Teaching Strategies,” IEEE
Transaction on Education, pp. 1-27, resubmitted Sept.
2003 (under review)

Meso, P and J. O. Liegle. “An Exploratory Comparative
Assessment of .NET as a Pedagogical Tool for Teaching
Object-Oriented ~ Systems Design,” In D Colton,
M J Payne, N Bhatnagar, and C R Woratschek (Eds.), The
Proceedings of ISECON 2002, v 19 (San Antonio): 244a.
AITP Foundation for Information Technology Education.
ISSN: 1542-7382, 2002.

Morris, M. G., Speier, C., and Hoffer, J., , “An Examination
of Procedural And Object -Oriented Systems Analysis
Methods: Does Prior Experience Help Or Hinder
Performance?” Decision Sciences, Vol. 30 No. 1, 1999,
pp- 107-136

Mumford, E. “Researching people problems: Some advice to
a student,” in Research Methods in Information Systems.
E. Mumford. North-Holland, Elsevier Science Publishers
B.V.,, 1985, pp. 315-320.

Oestereich, B., “Developing Software with UML: Object-
Oriented Analysis and Design in Practice,” Addison
Wesley, 2002

Straub, Detmar W., Mark Keil and Walter Brenner, “Testing
the Technology Acceptance Model across Cultures: A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Journal of Information Systems Education, Vol. 16(2)

Three Country Study, Information & Management.” Vol.
31 No. I, 1997, pp. t-11

Szajna, B., “Empirical Evaluation of the Revised
Technology Acceptance Model,” Management Science,
Vol. 42 No. 1, 1996, pp.85-92.

Sun Microsystems, “Enterprise JavaBeansTM Components
and CORBA Clients: A Developer Guide,” Sun
Microsystems, Inc., Palo Alto, CA, 2002,
http://Java.sun.com/]2se/1.4.2/docs/guide/rmi-
tiop/interop.htmi

Sun Microsystems, “The NetBeans Platform,” Sun
Microsystems, Inc., Palo Alto, CA, 2004,
http://www.netbeans.org/products/platfornvindex.html

Thompson, R.L., Higgins, C.A., and Howell, J.M., “Personal
Computing: Toward a Conceptual Model of Utilization,”
MIS Quarterly, Vol. 15 No. 1, 1991, pp. 124-143.

Vessey, 1, and Conger, S., “Requirements Specification:
Learning Object, Process, and Data Methodologies.”
Communications of The ACM, Vol. 37 No. 5, 1994,
pp-102-113

Wang, M., “E-business application development with Java
technology and Oracle: The Fortune Invest Inc. case,”
Journal of Information Systems Education, Vol. 14 No 3,
pp. 293-300.

AUTHOR BIOGRAPHIES

Peter Meso is an Assistant Professor of Information Systems

= at Georgia State University. His current
research deals with the contributions of
software engineering in knowledge
management, and consequences of
information systems in underdeveloped
nations. He earned his PhD degree in
Information Systems from Kent State
University, and holds a Bachelor of
Science (Information systems) and an MBA degree from the
United States International University - Africa. His
published works have appeared in the Communications of
the ACM, Journal of Global Information Management,
Information Systems Journal, and the Journal of Knowledge
Management, among others.

Jens Liegle is an Assistant Professor of Information Systems
at Georgia State University. His
research Interests include emergent
technologies, user modeling, adaptive
hypermedia, and IS education. He
received his PhD in Management
Information Systems from Kent State
University and his MBA from the
University of Akron. He has a Diplom
Betriebswirt (FH) degree from the
Fachhochschule fiir Wirtschaft, Pforzheim, Germany. His
published works have appeared in Journal of Systems and
Software, Computers in Human Behavior, Information
Systems Education Journal, and the Journal of Asynchronous
Learning Networks, among others.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ISCCID Evsic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2005 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

