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ABSTRACT 
 
The introduction of reference modification in standard COBOL allows COBOL programming students to bypass much 
of the tedium that plagues the process of report planning and programming.  It is possible to avoid the drudgery of 
coding each heading line, detail line, subtotal line and total line in WORKING-STORAGE SECTION.  Although the 
student will program more in the PROCEDURE DIVISION, the end result is a source program that is shorter and an 
object program that is smaller. 
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1. INTRODUCTION 
 
The traditional method of creating output lines in 
COBOL is tedious and time-consuming.  WORKING-
STORAGE grows tremendously with each additional 
output line that is generated.  Later, when testing, the 
lining up of columns of information under the heading 
and column heading lines can cause the student 
programmer many “runs” just to get the already correct 
output to look “pretty.” 
 
In the more recent versions of COBOL, a programming 
capability called reference modification (“ref mod”) 
exists.  It allows the student programmer to access 
specific bytes within an alphanumeric field.  For 
example, if IN-NAME is a 6-byte field and contains 
JOSEPH, a programmer could code IN-NAME (1:1) and 
reference only the J.  The parentheses contain 2 numbers 
separated by a colon -- the first number indicates the 
initial byte of the field to access and the second number 
shows how many bytes to access.  It works similarly to 
the MID$ function in Visual BASIC. 
 
By employing reference modification, the COBOL 
student programmer can utilize the print record defined 
in the FILE SECTION directly and not have to define 
each heading, column heading, detail line and total line 
called for in the report format.  This greatly reduces the 
size of WORKING-STORAGE. 
 

2.  DISADVANTAGES  
 
The technique does not come without some 
disadvantages.  More code is required in the 
PROCEDURE DIVISION.  Since the student 
programmer no longer pre-defines each needed output 
line, it must be done via MOVEs at the appropriate 
point in the code.  But statistical analysis shows that the 
resulting programs are smaller than programs employing 
the traditional output method. 
 
Another disadvantage associated with the reference 
modification method involves the problem with editing 
numeric values.  Since reference modification assumes 
alphanumeric data, it will not automatically edit numeric 
values for output.  To fix the problem, the student 
programmer must establish separate editing fields to first 
edit the value, then MOVE the edited field to the output 
file’s print record.   
 

3.  “REF MOD” METHOD 
 
A simple example appears in Figures 1 and 2.  Figure 1 is 
a printer spacing chart to define the output.  Figure 2 is a 
program that illustrates the reference modification 
method. 
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As you will notice, WORKING-STORAGE is only 8 
bytes long...rather unusual for a report-generating 
COBOL program.  However, the heading and detail line 
modules are longer than usual.  As mentioned above, 
when using the reference modification output method, 
the programmer must create each line in its entirety at 

the time of print.  Since all print lines use the one output 
area (OUT-REC), nothing is left in the area that can be 
used during the next print. 
 
Notice also that the output area is initialized in START-
UP.  This initialization is done at this point since the 

Figure 1 

 
IDENTIFICATION DIVISION. 
PROGRAM-ID.  ILLUSTRATE-REF-MOD-OUTPUT. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER.  PC. 
OBJECT-COMPUTER.  PC. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 
 SELECT IN-FILE ASSIGN TO DISK “C:INFILE.DAT” 
  ORGANIZATION IS LINE SEQUENTIAL. 
 SELECT OUT-FILE ASSIGN TO PRINTER “C:OUTFILE.RPT”. 
DATA DIVISION. 
FILE SECTION. 
FD IN-FILE. 
01 IN-REC. 
 05  IN-LAST-NAME  PIC X(15). 
 05  IN-FIRST-NAME  PIC X(12). 
 05  IN-MONTH  PIC 99. 
 05  IN-YEAR  PIC 99. 
 05  IN-DEPT  PIC 99. 
FD OUT-FILE. 
01 OUT-REC   PIC X(80). 
WORKING-STORAGE SECTION. 
01  END-FLAG  PIC XXX VALUE “NO”. 
 88  DONE    VALUE “YES”. 
01 EDIT-FIELDS. 
 05  ED-DATE  PIC Z9/. 
 05  ED-2-0  PIC Z9. 
 
PROCEDURE DIVISION. 
000-START-UP. 
 PERFORM 100-START-UP. 
 PERFORM 200-PROCESS UNTIL DONE. 
 PERFORM 300-WRAP-UP. 
 STOP RUN. 
 
100-START-UP. 
 OPEN INPUT IN-FILE 
      OUTPUT OUT-FILE. 
 MOVE SPACES TO OUT-REC. 
 PERFORM 110-HEADINGS. 

 PERFORM 120-READ-FILE. 

 
110-HEADINGS. 
 MOVE “Aeronautical Manufacturing Company” TO 
OUT-REC (22:34). 
 WRITE OUT-REC AFTER PAGE. 
 MOVE SPACES TO OUT-REC. 
 
 MOVE “Employee of the Month Awards” TO OUT-REC 
(25:28). 
 WRITE OUT-REC AFTER 1. 
 MOVE SPACES TO OUT-REC. 
 
 MOVE “Last Name” TO OUT-REC (7:9). 
 MOVE “First Name” TO OUT-REC (23:10). 
 MOVE “Department” TO OUT-REC (42:10). 
 MOVE “Award Date” TO OUT-REC (59:10). 
 WRITE OUT-REC AFTER 2. 
 MOVE SPACES TO OUT-REC. 
 
 WRITE OUT-REC AFTER 1. 
 
120-READ-FILE. 
 READ IN-FILE 
  AT END SET DONE TO TRUE 
 END-READ. 
 
200-PROCESS. 
 PERFORM 210-DETAIL-LINE. 
 PERFORM 120-READ-FILE. 
 
210-DETAIL-LINE. 
 MOVE IN-LAST-NAME TO OUT-REC (5:15). 
 MOVE IN-FIRST-NAME TO OUT-REC (23:12). 
 MOVE IN-DEPT TO ED-2-0. 
 MOVE ED-2-0 TO OUT-REC (46:2). 
 MOVE IN-MONTH TO ED-DATE. 
 MOVE ED-DATE TO OUT-REC (62:3). 
 MOVE IN-YEAR TO OUT-REC (65:2). 
 WRITE OUT-REC AFTER 1. 
 MOVE SPACES TO OUT-REC. 
 
300-WRAP-UP. 
 CLOSE IN-FILE 

       OUT-FILE 

Figure 2 
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use of the VALUE clause is invalid in the FILE 
SECTION unless used with condition names.  The 
output area is cleared to spaces following each WRITE 
command.  This ensures that the line is clear for the next 
usage. 
 
It could be argued that the student programmer could 
clear the line before each preparation for print.  That, 
however, causes a problem with group indication logic 
employed with control break reporting where some of 
the print line is created in modules other than the detail 
line module.  By initializing the output line in START-
UP, then clearing it out after each WRITE, group 
indication logic can proceed without problems. 
 
When using the reference modification method, the 
printer spacing chart is indispensable.  The first number 
in the reference modification notation is the print 
position as shown on the printer spacing chart.  This 
makes it easy to code and position the output as the 
programmer keys-in the code. 
 
Notice how the numeric editing is handled in the third 
and fourth MOVEs in the DETAIL-LINE module.  The 
numeric field is first moved to an edit field, then the edit 
field is moved to the output location.  It is not necessary 
to create an edit field for each numeric field to be 
outputted.  For instance, assume that a column of 
numbers is totaled.  Normally the total field is larger 
than the detail line field.  Also, normally, the total is 
positioned under the column so that the decimal points 
line up.  It’s possible to set-up one edit field large 
enough for the total field and use it for both the detail 
line value and the total.  With this in mind, the student 
programmer can create a minimum of edit fields and 
reuse them as needed. 
 
I have found it helpful to name the edit fields according 
to the number of integer and decimal positions edited.  
In the example program, ED-2-0 is an edit field for a 2 
byte integer field -- 2 integer positions, 0 decimal 
positions.  As I code in the PROCEDURE DIVISION, I 
do not have to continually turn back to WORKING-
STORAGE to check field names. This is not a 
requirement, only a suggestion to make the numeric 
editing problem easier to handle. 
 
The problem of lining up columns of information under 
headings and column headings becomes easier to 
accomplish.  If one column is 3 bytes too far to the left, 
increasing the first number in the reference modification 
notation by 3 moves it.  This change will not impact any 
of the other fields in the line, therefore eliminating the 
need to alter subsequent FILLER fields as in the 
traditional output method. 

 
4.  STATISTICAL FINDINGS  

 
The reference modification output method was applied 
to five programming assignments commonly assigned in 

a collegiate beginning COBOL course. Characteristics of 
the programs follow: 
 
Program Characteristics 

1 One calculation for the detail line and a 
total 

2 Four calculations for the detail line with 
two accumulations. 

3 
Single level control break, no detail line 
calculation, simple accumulations for 
subtotal and final total. 

4 
Two level control break, file sort, no 
detail line calculations, simple 
accumulations for subtotal and final total. 

5 Detail line reporting, accumulations, and 
three single dimensional tables. 

 
Each program was written using the ref mod method and 
the traditional method.  Primary logic within the 
programs was maintained; only the handling of output 
was changed.  Comparing the ref mod method to the 
traditional method, the following average statistics were 
obtained: 
 
Category Result 
1. Total lines of code 19.1% smaller 
2. PROCEDURE DIVISION 18.1% larger 
3. Number of variables 149.1% fewer 
4. DATA DIVISION 48.1% smaller 
5. Address table space needed 14.8% smaller 
6. Executable program size 11.7% smaller 
 
Graph 1 shows the plotted percentages by program and 
category of the ref mod to traditional methods 
comparisons.  Graph 2 plots the average percentages.  
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5.  CONCLUSION 
 

The application of the ref mod method to report 
generation in COBOL results in a batch programming 

Graph 1:  Comparison of Ref Mod to Standard Methods of 
Outputting in COBOL
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Graph 2:  Average Percentages:  Ref Mod to 
Standard Methods of Outputting in COBOL
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technique that allows student programmers to get more 
quickly to the PROCEDURE DIVISION.  The tedious 
WORKING-STORAGE SECTION truly becomes a 
portion of the program for creating working fields.  This 
contributed to an overall improvement in attitude in the 
student programmers, many of whom refuse to employ 
the traditional method once they become comfortable 
with ref mod. 
 
Secondly, although the PROCEDURE DIVISION is 
longer, comparison of programs written via the ref mod 
method versus the traditional method showed a decrease 
of 19.7% in the source program size and 11.7% smaller 
in the object module size.  These statistics impact us in 
three ways: 1) smaller source and object programs 
require less disk storage space, 2) smaller object 
programs require less main memory for execution, and 3) 
student programmers (and their professors), on average, 
have 19.7% fewer lines of code to key-in and debug.   
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