
Journal of Information Systems Education, Vol. 13(4)

 273

Teaching Tip

Simplifying Batch Outputting in COBOL

Barbara Russell
Computer Information Systems
Northwestern State University

Natchitoches, Louisiana 71497, USA
brussell@nsula.edu

ABSTRACT

The introduction of reference modification in standard COBOL allows COBOL programming students to bypass much
of the tedium that plagues the process of report planning and programming. It is possible to avoid the drudgery of
coding each heading line, detail line, subtotal line and total line in WORKING-STORAGE SECTION. Although the
student will program more in the PROCEDURE DIVISION, the end result is a source program that is shorter and an
object program that is smaller.

Keywords: COBOL, Report generation.

1. INTRODUCTION

The traditional method of creating output lines in
COBOL is tedious and time-consuming. WORKING-
STORAGE grows tremendously with each additional
output line that is generated. Later, when testing, the
lining up of columns of information under the heading
and column heading lines can cause the student
programmer many “runs” just to get the already correct
output to look “pretty.”

In the more recent versions of COBOL, a programming
capability called reference modification (“ref mod”)
exists. It allows the student programmer to access
specific bytes within an alphanumeric field. For
example, if IN-NAME is a 6-byte field and contains
JOSEPH, a programmer could code IN-NAME (1:1) and
reference only the J. The parentheses contain 2 numbers
separated by a colon -- the first number indicates the
initial byte of the field to access and the second number
shows how many bytes to access. It works similarly to
the MID$ function in Visual BASIC.

By employing reference modification, the COBOL
student programmer can utilize the print record defined
in the FILE SECTION directly and not have to define
each heading, column heading, detail line and total line
called for in the report format. This greatly reduces the
size of WORKING-STORAGE.

2. DISADVANTAGES

The technique does not come without some
disadvantages. More code is required in the
PROCEDURE DIVISION. Since the student
programmer no longer pre-defines each needed output
line, it must be done via MOVEs at the appropriate
point in the code. But statistical analysis shows that the
resulting programs are smaller than programs employing
the traditional output method.

Another disadvantage associated with the reference
modification method involves the problem with editing
numeric values. Since reference modification assumes
alphanumeric data, it will not automatically edit numeric
values for output. To fix the problem, the student
programmer must establish separate editing fields to first
edit the value, then MOVE the edited field to the output
file’s print record.

3. “REF MOD” METHOD

A simple example appears in Figures 1 and 2. Figure 1 is
a printer spacing chart to define the output. Figure 2 is a
program that illustrates the reference modification
method.

Journal of Information Systems Education, Vol. 13(4)

 274

As you will notice, WORKING-STORAGE is only 8
bytes long...rather unusual for a report-generating
COBOL program. However, the heading and detail line
modules are longer than usual. As mentioned above,
when using the reference modification output method,
the programmer must create each line in its entirety at

the time of print. Since all print lines use the one output
area (OUT-REC), nothing is left in the area that can be
used during the next print.

Notice also that the output area is initialized in START-
UP. This initialization is done at this point since the

Figure 1

IDENTIFICATION DIVISION.
PROGRAM-ID. ILLUSTRATE-REF-MOD-OUTPUT.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. PC.
OBJECT-COMPUTER. PC.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT IN-FILE ASSIGN TO DISK “C:INFILE.DAT”
 ORGANIZATION IS LINE SEQUENTIAL.
 SELECT OUT-FILE ASSIGN TO PRINTER “C:OUTFILE.RPT”.
DATA DIVISION.
FILE SECTION.
FD IN-FILE.
01 IN-REC.
 05 IN-LAST-NAME PIC X(15).
 05 IN-FIRST-NAME PIC X(12).
 05 IN-MONTH PIC 99.
 05 IN-YEAR PIC 99.
 05 IN-DEPT PIC 99.
FD OUT-FILE.
01 OUT-REC PIC X(80).
WORKING-STORAGE SECTION.
01 END-FLAG PIC XXX VALUE “NO”.
 88 DONE VALUE “YES”.
01 EDIT-FIELDS.
 05 ED-DATE PIC Z9/.
 05 ED-2-0 PIC Z9.

PROCEDURE DIVISION.
000-START-UP.
 PERFORM 100-START-UP.
 PERFORM 200-PROCESS UNTIL DONE.
 PERFORM 300-WRAP-UP.
 STOP RUN.

100-START-UP.
 OPEN INPUT IN-FILE
 OUTPUT OUT-FILE.
 MOVE SPACES TO OUT-REC.
 PERFORM 110-HEADINGS.

 PERFORM 120-READ-FILE.

110-HEADINGS.
 MOVE “Aeronautical Manufacturing Company” TO
OUT-REC (22:34).
 WRITE OUT-REC AFTER PAGE.
 MOVE SPACES TO OUT-REC.

 MOVE “Employee of the Month Awards” TO OUT-REC
(25:28).
 WRITE OUT-REC AFTER 1.
 MOVE SPACES TO OUT-REC.

 MOVE “Last Name” TO OUT-REC (7:9).
 MOVE “First Name” TO OUT-REC (23:10).
 MOVE “Department” TO OUT-REC (42:10).
 MOVE “Award Date” TO OUT-REC (59:10).
 WRITE OUT-REC AFTER 2.
 MOVE SPACES TO OUT-REC.

 WRITE OUT-REC AFTER 1.

120-READ-FILE.
 READ IN-FILE
 AT END SET DONE TO TRUE
 END-READ.

200-PROCESS.
 PERFORM 210-DETAIL-LINE.
 PERFORM 120-READ-FILE.

210-DETAIL-LINE.
 MOVE IN-LAST-NAME TO OUT-REC (5:15).
 MOVE IN-FIRST-NAME TO OUT-REC (23:12).
 MOVE IN-DEPT TO ED-2-0.
 MOVE ED-2-0 TO OUT-REC (46:2).
 MOVE IN-MONTH TO ED-DATE.
 MOVE ED-DATE TO OUT-REC (62:3).
 MOVE IN-YEAR TO OUT-REC (65:2).
 WRITE OUT-REC AFTER 1.
 MOVE SPACES TO OUT-REC.

300-WRAP-UP.
 CLOSE IN-FILE

 OUT-FILE

Figure 2

Journal of Information Systems Education, Vol. 13(4)

 275

use of the VALUE clause is invalid in the FILE
SECTION unless used with condition names. The
output area is cleared to spaces following each WRITE
command. This ensures that the line is clear for the next
usage.

It could be argued that the student programmer could
clear the line before each preparation for print. That,
however, causes a problem with group indication logic
employed with control break reporting where some of
the print line is created in modules other than the detail
line module. By initializing the output line in START-
UP, then clearing it out after each WRITE, group
indication logic can proceed without problems.

When using the reference modification method, the
printer spacing chart is indispensable. The first number
in the reference modification notation is the print
position as shown on the printer spacing chart. This
makes it easy to code and position the output as the
programmer keys-in the code.

Notice how the numeric editing is handled in the third
and fourth MOVEs in the DETAIL-LINE module. The
numeric field is first moved to an edit field, then the edit
field is moved to the output location. It is not necessary
to create an edit field for each numeric field to be
outputted. For instance, assume that a column of
numbers is totaled. Normally the total field is larger
than the detail line field. Also, normally, the total is
positioned under the column so that the decimal points
line up. It’s possible to set-up one edit field large
enough for the total field and use it for both the detail
line value and the total. With this in mind, the student
programmer can create a minimum of edit fields and
reuse them as needed.

I have found it helpful to name the edit fields according
to the number of integer and decimal positions edited.
In the example program, ED-2-0 is an edit field for a 2
byte integer field -- 2 integer positions, 0 decimal
positions. As I code in the PROCEDURE DIVISION, I
do not have to continually turn back to WORKING-
STORAGE to check field names. This is not a
requirement, only a suggestion to make the numeric
editing problem easier to handle.

The problem of lining up columns of information under
headings and column headings becomes easier to
accomplish. If one column is 3 bytes too far to the left,
increasing the first number in the reference modification
notation by 3 moves it. This change will not impact any
of the other fields in the line, therefore eliminating the
need to alter subsequent FILLER fields as in the
traditional output method.

4. STATISTICAL FINDINGS

The reference modification output method was applied
to five programming assignments commonly assigned in

a collegiate beginning COBOL course. Characteristics of
the programs follow:

Program Characteristics

1 One calculation for the detail line and a
total

2 Four calculations for the detail line with
two accumulations.

3
Single level control break, no detail line
calculation, simple accumulations for
subtotal and final total.

4
Two level control break, file sort, no
detail line calculations, simple
accumulations for subtotal and final total.

5 Detail line reporting, accumulations, and
three single dimensional tables.

Each program was written using the ref mod method and
the traditional method. Primary logic within the
programs was maintained; only the handling of output
was changed. Comparing the ref mod method to the
traditional method, the following average statistics were
obtained:

Category Result
1. Total lines of code 19.1% smaller
2. PROCEDURE DIVISION 18.1% larger
3. Number of variables 149.1% fewer
4. DATA DIVISION 48.1% smaller
5. Address table space needed 14.8% smaller
6. Executable program size 11.7% smaller

Graph 1 shows the plotted percentages by program and
category of the ref mod to traditional methods
comparisons. Graph 2 plots the average percentages.

Journal of Information Systems Education, Vol. 13(4)

 276

5. CONCLUSION

The application of the ref mod method to report
generation in COBOL results in a batch programming

Graph 1: Comparison of Ref Mod to Standard Methods of
Outputting in COBOL

-350.0%

-300.0%

-250.0%

-200.0%

-150.0%

-100.0%

-50.0%

0.0%

50.0%

1 2 3 4 5 6
Categories

P
er

ce
nt

 R
ef

 M
od

 to
 S

ta
nd

ar
d

Pgm 1: RM to Std Pgm 2: RM to Std Pgm 3: RM to Std

Pgm 4: RM to Std Pgm 5: RM to Std

Graph 2: Average Percentages: Ref Mod to
Standard Methods of Outputting in COBOL

-200.0%

-150.0%

-100.0%

-50.0%

0.0%

50.0%

1 2 3 4 5 6

Categories

P
er

ce
n

ta
g

es

Journal of Information Systems Education, Vol. 13(4)

 277

technique that allows student programmers to get more
quickly to the PROCEDURE DIVISION. The tedious
WORKING-STORAGE SECTION truly becomes a
portion of the program for creating working fields. This
contributed to an overall improvement in attitude in the
student programmers, many of whom refuse to employ
the traditional method once they become comfortable
with ref mod.

Secondly, although the PROCEDURE DIVISION is
longer, comparison of programs written via the ref mod
method versus the traditional method showed a decrease
of 19.7% in the source program size and 11.7% smaller
in the object module size. These statistics impact us in
three ways: 1) smaller source and object programs
require less disk storage space, 2) smaller object
programs require less main memory for execution, and 3)
student programmers (and their professors), on average,
have 19.7% fewer lines of code to key-in and debug.

6. ACKNOWLEDGEMENTS

 I owe special thanks to Ms. Kim Roberts of Tarleton
State University for her coding expertise and to Mr.
Mark Kachel who published an article, ‘Cascade
Method’ Simplifies Programming, Improves
Productivity, Data Management, 10/86, who first caused
me to think about alternative output methods.

BIOGRAPHY

Barbara Russell is an instructor of CIS at Northwestern

State University in Natchitoches,
LA. She worked in industry for
five years before entering the
teaching field and has taught for 19
years. Her areas of expertise are in
programming logic, COBOL, and
Visual BASIC. She holds a B.S.
and M.S. in computer science and
earned the CCP in 1991. Barbara
coordinated six of the past seven

national COBOL programming contests associated with
AITP’s National Collegiate Conference.

Journal of Information Systems Education, Vol. 13(4)

 278

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2002 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

