
Journal of Information Systems Education, Vol. 13(2)

 85

Teaching Tip

A Simpler (and Better) SQL Approach to Relational
Division

Victor M. Matos
Computer and Information Science Department

Cleveland State University
Cleveland, Ohio 44114
matos@cis.csuohio.edu

Rebecca Grasser

Information Systems Department
Lakeland Community College

Kirtland, Ohio 44094
rgrasser@acm.org

ABSTRACT

A common type of database query requires one to find all tuples of some table that are related to each and every one of
the tuples of a second group. In general those queries can be solved using the relational algebra division operator.
Relational division is very common and appears frequently in many queries. However, we have found that the phrasing
of this operator in SQL seems to present an overwhelming challenge to novice and experienced database programmers.
Furthermore, students seem to have the most problems with the SQL version commonly recommended in the database
literature. We present an alternative solution that is not only more intuitive and easier to deliver in the classroom but
also exhibits a better computational performance.

Keywords: Database systems, SQL, Division operator, Relational algebra, Classroom presentation, Human reactions,

Code performance.

1. INTRODUCTION

Proficiency in SQL is an important skill for IS
students. SQL is a relatively small and easy to use
database query language. One virtue of the language is
its continuous simplicity. Complex queries could be
progressively decomposed into a collection of simpler
SQL interrelated fragments. This structured approach
works on most cases. Unfortunately, the traditional
SQL implementation of the relational division opera-
tor is an exception to this observation. We have
consistently found this topic to be rather troublesome
for the students (and the instructor, too). Some

critiques include code complexity, lack of intuitive
interpretation, and departure from the simple nature of
most SQL constructs. In this note, we suggest an
alternative implementation of the – rather common –
division operator that greatly simplifies the classroom
presentation of this important database operator. In
addition to clarity, the recommended solution outper-
forms, by many times, the traditional SQL code. We
have collected empirical evidence suggesting that
students find the alternate version easier to interpret
and maintain.

Journal of Information Systems Education, Vol. 13(2)

 86

2. THE RELATIONAL DATA MODEL AND THE
DIVISION OPERATOR

The relational data model deals with data held into
simple two-dimensional tables. Relational algebra is a
compact symbolic language used to query relational
databases. The basic operators of the relational
algebra are the projection, selection, Cartesian
product, union and difference (Codd 1970; Codd
1972). Those operators are the foundation for modern
database query languages and have been extensively
discussed in the database literature. For convenience,
other useful operators were added such as different
forms of joins (general, natural, left/right outer),
rename, intersection, and division. The division
operator is less common than simple join-select-
project queries. However it is naturally applied in
many common everyday queries. For instance,
division could be used in solving the following
problems:

(a) Find suppliers who supply all the red parts,
(b) Find students who have taken all the core

courses,
(c) Find customers who have ordered all items

from a given line of products, and so on.
The characteristic pattern of this family of inquires is
the attempt to verify whether or not a candidate
subject is related to each of the values held in a base
set. That base set is called the divisor (or denominator
T2[B]), and the table holding the subject’s data is
called the dividend (or numerator T1[A,B]). Without
loosing generality, the expression T1[A,B] / T2[B]
selects the A-values from the dividend table T1[A,B],
whose B-values are a super-set of those B-values held
in the divisor table T2[B].

2.1 An Example
Consider the tables T1[A,B] and T2[B] depicted in
Figure 1. T1 represents a list of customers and the
options they bought for their new cars. Column A is
the customer identification number and B represents
the option included in the car. For instance, customer
a1 bought her vehicle with the b1, b2, and b3 options.
Table T2[B] represents a particular set of options

Figure 1. Customers who bought vehicles including

options b2 and b3
(such as b2: leather seats, and b3: winter package).
The resulting table T3[A] identifies the customers
who acquired at least those items listed in table T2[B].

3. SQL IMPLEMENTATIONS OF THE
DIVISION OPERATOR

A large number of highly regarded database books
(Date 1995; Desai 1990; Elmasri 1999; Kroenke 2000;
O’Neil 1999; Ramakrishnan 2000; Watson 1999)
describe the implementation of the division operator
using the SQL syntax of Q1 (below). Even though this
solution is commonly accepted in the database
literature, we have found that this syntactical version
is not only difficult for the programmers to understand
and maintain, but also computationally complex.
Instead, we propose the alternative syntactical varia-
tion called Q0.

Q0: Alternate Version. Computing Relational
Division using membership test, group-by, counting,
and having SQL constructors.

Q0: SELECT A
 FROM T1
 WHERE B IN (SELECT B FROM T2)
 GROUP BY A
 HAVING COUNT(*) =
 (SELECT COUNT (*) FROM T2);

Version Q0 uses membership test, group-by, counting,
and having SQL constructors. The “GROUP BY A”
clause is responsible for splitting the rows and
creating non-overlapping A-partitions. This is
equivalent to separating T1[A,B] (Figure 1) according
to customer. Tuples in each A-group have already
been restricted by the WHERE… predicate to those
whose B-value matching any entry in T2[B]. To
continue with the example, this will select from
T1[A,B] customers who have purchased either options
b2 or b3. The count of tuples in each A-partition is
compared with the size of table T2. In our example,
the two rows selected from T1 need to match the two
rows in T2. Only those A-groups HAVING… the
same count are selected, and their A-value is finally
selected.

Q1: Classical Version.

Q1: SELECT DISTINCT x.A
 FROM T1 AS x
 WHERE NOT EXISTS
 (SELECT * FROM T2 y
 WHERE NOT EXISTS
 (SELECT * FROM T1 AS z
 WHERE (z.A=x.A) AND
 (z.B=y.B)));

T1 A B T2 B T3 A
 a1 b1 b2 a1
 a1 b2 b3 a3
 a1 b3
 a2 b1
 a2 b3 A: Customer Number
 a3 b2 B: Car’s Option ID
 a3 b3
 a3 b4 T3 = T1 / T2
 a4 b1 .

Journal of Information Systems Education, Vol. 13(2)

 87

This version is based on deeply nested sub-queries
which are interconnected using doubly negated
EXISTS functions. The identifiers x, y, and z are
aliases of the tables T1, T2, and T1 respectively. Here
the outermost SELECT statement picks a candidate
x.A as a potential answer. This candidate becomes
part of the final solution if there is not a tuple y in T2
(the divisor table) for which it doesn’t exist a tuple z
in T1 that matches the candidate’s ID (x.A=z.A) but
fails to match the current y value (y.B = z.B). If such
y tuple exists it would create a contradiction, because
there is data in T2 to which the candidate is not
related to, and therefore the candidate must be
rejected.

4. CODE PERFORMANCE

In (Matos 2001) an operational comparison of Q0, Q1,
and other SQL versions of the division is described.
That research shows that, for some samples, Q0 was
between 300 to 700 times faster than Q1. The data-
base used in (Matos 2001) is similar to that of Figure
1, and the performance estimation is controlled by the
number of records in the table and the coherence
between the two tables. Q0 tends to be constant or
predictably linear while Q1 in general is slow and
sensitive to changes of the size of the numerator table
as well as the selectivity factor.

5. ZERO DIVISION

When the divisor table T2[B] is empty, the code for
Q0 and Q1 produce two different results. Q0 reports
an empty set, whereas Q1 enumerates each of the A-
values in T1[A]. The lack of intuitive interpretation
for Q1’s result creates a serious philosophical problem
(Date 1991). An interesting class discussion involves
looking at the outputs produced by each query - where
there is a zero divisor - and asking the students to
interpret the meaning of the data. This discussion will
show why explaining the results of an application to
non-technical staff is an important skill for IS
professionals.

6. HUMAN PERCEPTIONS

In a forthcoming paper, the authors provide an
empirical estimation of difficulty for Q0 and Q1. In a
survey conducted among graduate and undergraduate
database students we have found that regardless of
their academic background, experience, and practitio-
ner’s level, the experimental subjects ranked query Q1
as more difficult than Q0. Subjects with an Engineer-
ing or Science major, or those students with some
previous database experience, were able to understand
and manipulate both Q0 and Q1 with more ease than

other subjects. However, less than half of the cohort
was able to correctly solve query Q0 and only 30% of
respondents were able to formulate the correct answer
for Q1. This is a disappointing score for a group of
otherwise good students.

7. CONCLUSION

The code Q1 is a classical SQL solution for relational
division. However, if you combine the poor
performance of Q1 to its high degree of relative
difficulty, it is clear that other equivalent but
improved SQL code should be used. We strongly
recommend Q0, not only for its enhanced pedagogical
value, but also for its better computational speed.
Students need to be aware that performance could be
critical in real life production environments,
particularly if the computation involves large data
sets. We believe the syntactical construction of Q0
allows the student to grasp the concepts of
implementing SQL division in a more intuitive way.

8. BIBLIOGRAPHY

Codd, E.F., "A Relational Model of Data for Large

Shared Data Banks". CACM 13, No. 6, June
1970.

Codd, E.F., "Relational Completeness of Data Base
Sublanguages", In Database Systems, Courant
Computer Science Symposia Series 6.
Englewoods Cliffs, NJ, Prentice Hall, 1972

Date, C. J., An Introduction to Database Systems. 6th
Edition, 1995. ISBN 0-201-54329-4.

Date C.J., Darwen H. "Into the Great Divide",
appeared in Relational Database Writings 1989-
1991, Ed. Addison-Wesley, 1992. ISBN 0-201-
82459-0.

Desai, B. An Introduction to Database Systems. Ed.
West Publishing CO., 1990. ISBN 0-314-66771-
7.

Elmasri, R., Navathe, SR. Fundamentals of Database
Systems, Third Edition. Addison-Wesley
Publishing Co. 1999. ISBN 0-8053-1755-4.

Kroenke, David. Database Processing Fundamentals,
Design and Implementation. Ed. Prentice-Hall,
2000. ISBN 0-13-084816-6.

Matos, V., Grasser, R., “Assessing the Performance
of Various SQL Versions of the Relational
Division Operator”, Database Management,
Auerbach Pub., Feb 2001.

O’Neil, Patrick, Database Principles, Programming,
Performance. Ed. Morgan Kauffman Pub., 1999.

Ramakrishnan R., and Gehrke J., Database
Management Systems 2nd Edition. Ed. McGraw-
Hill, 2000. ISBN 0-07-232206-3.

Watson, Richard. Database Management – Databases
and Organization. 2nd Edition. Ed. Wiley, 1999.

Journal of Information Systems Education, Vol. 13(2)

 88

ISBN 0-471-18074-2.

AUTHOR BIOGRAPHIES

Victor Matos is an Associate
Professor of Computer and
Information Science at Cleveland
State University in Cleveland,
Ohio.

Rebecca Grasser is an
Assistant Professor of Information
Systems at Lakeland Community
College in Kirtland, Ohio.

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2002 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

