A Process for Modeling the
Analysis of Information Systems
with the Unified Modeling Language

Joseph H. Danie

121

Computer Information Systems Management
Delaware Valley College, Doylestown, PA 18901 USA

Abstract

A two-phased process for modeling the analysis of an information system by means of the Unified Modeling
Language has been developed from over two years of experience with a Systems Analysis and Design course.
The first phase of this process, Requirements Analysis, involves the application of a Use Case Diagram and a
Sequence Diagram. The second phase of this process, Domain Analysis, includes the application of a Class
Diagram and a State Transition Diagram. This process is still evolving and, hopefully, will continuously

improve in the future.

Keywords: Use case diagram, sequence diagram, class diagram, state transition diagram

1. INTRODUCTION

Currently, no standardized process exits for the
modeling of information systems by means of the
object-oriented Unified Modeling Language (UML).
UML is not a process in itself, but primarily a
graphical notation that is used to express the designs
of an information system (Fowler 1997).

In spite of this limitation, I have developed a two-
phased process for modeling the analysis of an
information system as a result of over two years of
teaching an undergraduate course in Systems
Analysis and Design,

Throughout the two phases of requirements analysis
and domain analysis, I have used a College Course
Registration System as an example for the student
assignments. The students relate well to this
information system because they use it several times
during the academic year.

2. MODELING PROCESS

The first phase of this process, Requirements
Analysis, involves the application of a Use Case
Diagram and a Sequence Diagram for analyzing the
requirements of the information system. The

21 danieli@devalcol.edu

264

purpose of this analysis is to create a better
understanding of what the users want from the new
system (Eriksson 1998).

The second phase of this process, Domain Analysis,
includes the application of a Class Diagram and a
State Transition Diagram for analyzing the domain
of the information system. The purpose of this
analysis is to achieve a better understanding about
the world that the new information system is
supporting (Eriksson 1998).

The four UML. diagrams mentioned above are drawn
by the students with the “AutoShapes” feature in the
WORD 97 software. WORD was chosen over the
two software engineering tools mentioned below
because it was easy to use and readily available at a
low cost.

The Object-Oriented Software Engineering package,
which is free on the Internet for a demo version from
the Rational Rose Company, was not used because it
is limited to 10 use cases in the Use Case Diagram
and will not draw a State Transition Diagram.

The Visible Analyst Workbench software, which is
$99 for a student version from the Visible Systems

Company, was not used because it will not draw a
Use Case Diagram nor draw a Sequence Diagram.

3. REQUIREMENTS ANALYSIS

In the Use Case Diagram of Figure #1, the students
are required to have 5-10 actors (stick persons), 10-
15 use cases (ovals), and 2-3 extends (ovals). An
actor, such as a Student, is an object that interacts
with the Course Registration System, but is not a
component of this information system.

-

Add/Drop Courses (Early)
Schedule Section Time & Room Dept Chaic
N Assign Professor to Courses

O %

Get Advice on Courses

Student

List Closed Sections Add/Drop Course (Late)

Complete Invoice

Figure # | - USE CASE DIAGRAM

This actor initiates a method or a use case, such as
the adding or dropping college courses, in order to
yield a measurable result. Interactlon between two
use cases is called an “extend”, such as the listing of
the closed sections for a course.

The Use Case Diagram concentrates on many
methods, whereas the Sequence Diagram takes only
one of these methods and looks at the interaction
among many objects. An object, such as a Course
Schedule, is a set of people, places, or things that

R G (I

265

performs common methods and shares common data
attributes.

In the Sequence Diagram of Figure #2, the students
are required to have one actor, one use case, 5-7
objects (rectangles), 5-7 time lines (vertical lines),
10-15 messages (straight arrows), and 2-3 self-
messages (backward arrows). A time line represents
one object, and the distance between two time lines
represents the start and stop time between two
objects during their interaction.

Student Roster Schedule Professor

1- Print Colhge Schedule l

B

I
I~
l |

2- Provxile Curriculum
i B
3- Design Student §ct=¢xb

p— |
r

| 4 Display Closed Sections

{
5 - Develop Student Schedule

i
|
|
|
|
|
!
| s
| |
LZ s |
[
|
l
:
|
|
|
|
|

l l
6 - Add/Drop Courses
D l

l I

| 7-Disphy Student Schedule

|

Figure #2 - SEQUENCE DIAGRAM
This interaction between two objects is represented

by a message, such as the printing of a Course
Schedule for a Student. A self-message, on the other

I 1R A |/

hand, is an interaction that an object performs upon
itself, such as the designing of a student schedule by
the Student.

Briefly, the first phase captures and describes the
user requirements for the new information system.
This phase documents the requirements by a Use
Case Diagram of many methods and many Sequence
Diagrams of one method with many of its objects.

4. DOMAIN ANALYSIS

In conjunction with the first phase, the second phase
defines the real world environment or domain, such
as a College, which uses a Course Registration
System. This domain is documented by means of a
Class Diagram of many objects and State Transition
Diagrams of one object with many of its methods.

For the Class Diagram of Figure #3, the students are
required to include 10-15 classes (rectangles), 5-10
associations (straight arrows), 1-2 reflexives
(backward arrows), 2-3 aggregations (diamond on
arrows), and 2-3 inheritances (triangle on arrows).
Each class in this diagram should contain about 2-3
data attributes and 1-2 methods.

0.*
Prerequisite
CourseCode
CourseName
0.% CourseCredits
ListEnrollment
1..1
1.*
gmgemgode 1.1 1..* [SectionCode
StmdentName ionLimi
StudentAddress SectionLimit
AddSection
GetStatus CountEnmoliment
[RegisterSection DeleteSection
FullGradClass PartAttend Years
EFullStatus IsPartStatus

Figure # 3 - CLASS DIAGRAM

266

A class, such as a College Course, represents a group
of objects, which contains instances of this class,
such as the college courses of CM 2114, CM 3103,
and CM 4146. When comparing the object oriented
to the traditional systems approach, it is interesting to
note that a class is analogous to a data file and an
object is analogous to a data record.

The relationships in Figure #3, for example, involve
(1) a bi-directional association between the Student
and Section, (2) a reflexive relationship of the
Course upon itself, (3) a "whole-part" aggregation
among a Course and its component Sections, or (4) a
"'parent-child" inheritance where a Student is either
Full-time or Part-time. Each of these relationships,
except inheritance, has their multiplicity, such as one
(1..1) Student is taking one or more (1..*) College
Courses.

In the State Transition Diagram of Figure #4, the
students are required to have one primary object, 15-
20 events (arrows), 2-3 self-events (arrows), 10-15
states (rectangles), one start state (small circle), and
one or more stop states (small double-circles).

C

Sml" .
registration

engage student

Waiting for |4
Course

Registarldle

A

select

ston
course

registration

close
section

check

] Waitin
student Timit aitine for |

Opening

onen
section

Readv to
Register

section

work on
dent schedule

Readv to
Qchadul:

4 heduk

print

Figure # 4 - STATE TRANSITION DIAGRAM

An event represents a message sent between two
objects, whereas a self-event is a self-message that
an object performs upon itself. A message can also
denote a request to perform the method of another
object, such as the selection of a course from the
Course Schedule. A state is the result of an event,
such as waiting for a course to have an opening.

It is important to mention that the second phase is
not a detailed design of the entire domain for the
information system. For the student of a Systems
Analysis and Design course, this phase, for example,
should define only about 80 percent of the most
significant objects and methods in the Course
Registration System.

S. MODEL EXTENSIONS

In the first phase of this UML modeling process, the
Use Case Diagram was used because it simplifies the
traditional Data Flow Diagram (DFD) by including
only the actor/end-user and use case/method in
describing the requirements of an information
system. The input documents, data files, and output
reports are named only within the use case itself.

The Sequence Diagram was used because it details
the Use Case Diagram by taking one use
case/method apart to show the dynamics among its
objects. Note that the Sequence Diagram is very
useful in the early analysis phases of system
development. As an extension to this diagram, a
Collaboration Diagram may be used to display the
same material, but with an overall design phase
perspective.

In the second phase of this UML modeling process,
the Class Diagram was used because it extends the
traditional Entity Relationship Diagram (ERD) by
including not only the data attributes, but also the
methods of a class. As an extension to the Class
Diagram, a Package Diagram may be used to
organize classes into groups.

The State Transition Diagram was used because it
details the Class Diagram by taking one object apart
to explain the dynamics between its events/methods.
As an extension to both the Sequence Diagram and
the State Transition Diagram, an Activity Diagram

LN

may be used to illustrate the complex dynamic
interaction among many objects and many methods
simultaneously.

6. CONCLUSION

In an effort to make the assignments in the Systems
Analysis and Design course more like the real world,
an industry-based case study was also given to the
student. The New National Bank case, for example,
allows the student to learn more about the
information processing inside a bank and its unique
vocabulary. Other cases in wholesale distribution,
manufacturing, and hospital administration are
planned for this course in the future (Vitalari 1995).

It is important to point out that it is not necessary to
model the business processes before the analysis of
an information system. However, this modeling
would help provide a better understanding of the user
requirements when creating the Use Case Diagram in
a business domain (Bahrami 1999).

In conclusion, this two-phased process for modeling
the analysis of an information system is still evolving
and, hopefully, will continuously improve with each
course in Systems Analysis and Design in the future.

7. REFERENCES

Ambler, Scott; Rosenberg, Doug; and Fowler,
Martin.
1998. "Focus on UML." Software Development.
v6 n3 pSR1-SR22.

Bahrami, Ali. 1999. Object Oriented Systems
Development. Boston, MA: Irwin/McGraw-Hill.

Eriksson, Hans-Erik, and Penker, Magnus. 1998.
UML Toolkit. New York, NY: Wiley Publishing.

Fowler, Martin. 1997. UML Distilled: Applying the
Standard Object Modeling Language. Reading,
MA:
Addison-Wesley.

Melewski, Deborah. 1998. "UML Gains Ground."
Application Development Trends. v5 n10 p34-44.

(GRS

4

O’Brien, Larry. 1997. "Rational Rose 4.0 for C++."
Software Development. v5 n6 p17-22.

Quatrani, Terry. 1998. Visual Modeling with
Rational
Rose and UML. Reading, MA: Addison-Wesley.

Reed, Paul. 1998. "The Unified Modeling Language

268

Takes Shape." DBMS. v11 n8 p46-52.

Shepherd, George. 1998. "When UML Meets FMC."
Software Development. v6 n10 p51-56.

Vitalari, Nicholas, and Wetherbe, James. 1995.
Cases in Systems Analysis and Design.
Minneapolis, MN: West Publishing.

ISCCD Eosic

Serving Information Systems Educators

Information Systems & Computing

Academic Professionals v

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©1999 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 1055-3096

